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A Pfaffian-Hafnian Analogue of Borchardt’s Identity

Masao ISHIKAWA* Hiroyuki KAWAMUKOT Soichi OKADA?

Abstract
We prove
Pf(M) - I mi_mj.Hf( ! )
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(and its variants) by using the complex analysis. This identity can be regarded as a Pfaffian—
Hafnian analogue of Borchardt’s identity and as a generalization of Schur’s identity.

1 Introduction

Determinant and Pfaffian identities play a key role in combinatorics and the representation theory
(see, for example, [, [B], [6], [8], [T0], [T]). Among such determinant identities, the central ones
are Cauchy’s determinant identities (|2])
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C. W. Borchardt [I] gave a generalization of Cauchy’s identities:
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Here perm A is the permanent of a square matrix A defined by
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This identity @) is used when we evaluate the determinants appearing in the 0-enumeration of
alternating sign matrices (see [I1]).

I. Schur [I2] gave a Pfaffian analogue of Cauchy’s identity () in his study of projective repre-
sentations of the symmetric groups. Schur’s Pfaffian identity and its variant ([9], [I4]) are
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In this note, we give identities which can be regarded as Pfaffian analogues of Borchardt’s
identities @), @) and as generalizations of Schur’s identities (@), (&l).
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Theorem 1.1. Let n be a positive integer. Then we have
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Here Hf A denotes the Hafnian of a symmetric matrix A defined by

Hf A = Z Ao(1)0(2)Ao(3)o(4) " " Co(2n—1)c(2n)s
oc€EFan

where Fa,, is the set of all permutations o satisfying o(1) < 0(3) < --- < o(2n—1) and 0(2i —1) <
o(2i) for 1 <i <n.

2 Proof

In this section, we prove the identity (@) in Theorem [Tl by using the complex analysis. The other
identity (@) is shown by the same method, and also derived from more general identity (&) in
Theorem B2, which follows from ([). So we omit the proof of (&) here.

Hereafter we put

O (= DR €= B
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For an 2n x 2n symmetric (or skew-symmetric) matrix M = (m;;) and distinct indices i1, - , %y,
we denote by M% i the (2n —r) x (2n — r) matrix obtained by removing the rows and columns
indexed by i1, , .

First we show two lemmas by using the complex analysis.

Lemma 2.1.

2n
1 2:Ck
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Proof. Let us denote by F'(z) (resp. G(z)) the left (resp. right) hand side of [{@), and regard F'(z)
and G(z) as rational functions in the complex variable z, where x1,- - , 29, are distinct complex
numbers. Then F(z) and G(z) have poles at z = a1, - , £xa, of order 1. The residues of F(z)
at z = +ux,, are given by
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By considering the expansion of Hf(B) along the mth row/column, we have
Res,=s,, F(z) = —HI(B), Res,=_,,, F(z) =H{(B).
On the other hand, the residues of G(z) at z = t+x,, are given by
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-
Since lim,_, o F(z) = lim,_ G(z) = 0, we conclude that F(z) = G(z). O



Lemma 2.2. If n is a positive integer, then

2n—1 2n—1 2n—1
Tk — 2 Tr + x; 5.2 T, — 2 1 £2
—_— -Hf(B™<") = Hf(B™="). (10)
k=1 (zk +2) 19!2[71—1 Tk = Ti z];[ Tit 2 1; Tk + 2
ik
Proof. Let P(z) (resp. Q(2)) be the left (resp. right) hand side of [[), and regard P(z) and Q(z)
as rational functions in z, where 1, - -+ , 23,1 are distinct complex numbers. Then P(z) and Q(z)
have poles at z = —x1, -+, —x2,—1 of order 2. Thus, for a fixed m such that 1 < m < 2n —1, we
can write
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in a neighborhood of z = —z,,. Now we compute the coefficients ps, p1, g2 and ¢, and prove

D2 = q2, P1 = q1-
By using the relation
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we see that
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The first factor can be written in the form
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By using the Taylor expansion log(1 —t) = —t + O(t?), we have
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Hence we see that
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Therefore the second factor of Q(z) has the form
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Since we have




the last factor of (z) has the following expansion:
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Combining these expansions, we have
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It follows from ([l and ([3)) that ps = ¢2. From (&) and (@), in order to prove the equality
p1 = q1, it is enough to show that
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By permuting the variables z1,--- ,x2,—1, we may assume that m = 2n — 1. Then, by expanding

the Hafnian on the left hand side along the last row/column, it is enough to show that
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This follows from Lemma B (with 2n replaced by 2n — 2 and z replaced by x2,-1), and we
complete the proof of Lemma O

Now we are in the position to prove the identity (@) in Theorem [l

Proof of ([ll). We proceed by induction on n.
Expanding the Pfaffian along the last row/column and using the induction hypothesis, we see
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By using the relation
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On the other hand, by expanding the Hafnian along the last row/column, we have
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So it is enough to show the following identity:
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This identity follows from Lemma and the proof completes. O

3 Generalization

The Cauchy’s identities ([[l) and (), and the Borchardt’s identities @) and (@) are respectively
unified in the following form.

Theorem 3.1. Let f(x,y) = axy + bx + cy + d be a nonzero polynomial. Then we have
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det (7)
f(SCi,yj) 1<i,j<n
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Similarly we can generalize the Schur’s identities ([H) and (@), and our identities ([ and (&).

Theorem 3.2. Let g(x,y) = axy + b(z + y) + ¢ be a nonzero polynomial. Then we have

Pt (L — ) = (B — a0 [ S (17)
1<i,j<2n
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This generalization () is given in [1].

Proof. We derive (1) and [@8) from @) and (@) respectively.
First we consider the case where b? — ac # 0. Suppose that a # 0. Then, by putting

1 1
Azi, B:2—(b+\/b27ac), C=a, D=b—+b?>—ac
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and substituting

in (@) and [@), we obtain ([[7) and ([[&). Similarly we can show the case where ¢ # 0.
If b2 — ac = 0 and a # 0, then we have

T; — (1 <i<2n)
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Hence we can evaluate the left hand sides of ([[) and (I¥) by using
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and obtain the equalities in ([[7) and (I¥). Similarly we can show the case where b — ac = 0 and
c#0. O



From ([H) and ([IH), we have

1 1 1
det (7) = det (7) - perm (7) .
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Since the matrix (f(xs,y;))
following theorem.

1<ij<n has rank at most 2, this identity is the special case of the

Theorem 3.3. (Carlitz and Levine [3]) Let A = (a;;) be a matrix of rank at most 2. If a;; # 0
for all 4 and j, we have

1 1 1
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From () and ([¥), we have
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It is a natural problem to find a Pfaffian-Hafnian analogue of Theorem Also it is interesting
to find more examples of a skew-symmetric matrix X and a symmetric matrix Y satisfying

Pf (zijyij)1gi,j§2n =Pt (xij)gi,jgzn - Hf (yij)1§z‘,j§2n :

Recently there appeared a bijective proof of Borchardt’s identity (see [I3]). It will be an interesting
problem to give a bijective proof of ([@) and ).
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