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The first and the third authors obtained a minor-summation formula of Pfaffian,
which expresses a weighted sum of minors of any rectangular matrix in terms of a
single Pfaffian. In this paper, as an application of this minor-summation formula,
we give a new proof of Littlewood’s formulas with additional parameters and
generalize them for the classical groups.  © 1996 Academic Press, Inc.

INTRODUCTION

In our recent paper [IW1], we obtained a basic formula, which we call a
minor-summation formula of Pfaffian. This formula expresses a weighted
sum of maximal minors of an arbitrary rectangular matrix in terms of a
single Pfaffian. Such a minor-summation formula has developed in the
study of enumerative combinatorics of plane partitions. (See [l], [O1], and
[St], for example.) Our minor-summation formula can be viewed as a
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Pfaffian version of the Cauchy-Binet formula and as a generalization of
the relation Pf(TA'T) = det(T)Pf(A) for square matrices. (See Section 2.)

The aims of this paper are to give a new elementary proof of Littlewood’s
formulas for Schur functions and to generalize them for the characters of
the classical groups Sp(2n,C) and SO(N,C). The original Littlewood
formulas [L] are the expansions of the products

Il (1—xix]-)i1 and Il (1—xixj)i1

1<i<j<n l<i<j<n

in terms of the Schur functions. Our generalizations for the classical
groups provide the expansion formulas of the products of the form

n

LI(xf +x7%)

i=1

in terms of the irreducible characters of Sp(2n,C) and SO(n, C). These
Littlewood-type formulas might bring some information about the repre-
sentation theory of classical groups.

This paper is organized as follows: We prepare some notations and
review Weyl’'s character formula in Section 1. The minor-summation
formula and its corollaries are presented in Section 2. Section 3 is devoted
to the calculation of the subPfaffians, which appear as weights in the
minor-summation formula. Littlewood’s formulas for GL(n, C) are derived
in Section 4 and their generalizations for Sp(2n,C) and SO(N,C) are
given in Section 5.

In this paper, we only deal with the Littlewood-type formulas. In a
forthcoming paper, we will investigate several expansion formulas related
to the dual pairs in the sense of R. Howe [H]. See [IW2] and [O2] for other
applications.

1. NOTATIONS AND PRELIMINARIES

We will fix some notations concerning partitions and characters of the
classical Lie algebras. And we collect some formulas for the irreducible
characters.

Partitions

In this paper, we denote by N (resp. Z) the set of non-negative integers
(resp. the set of integers). Also, we use the notation [i, j] = {i,i + 1,..., ]}
fori,j €7 (i <j)and[n] =[1,n]
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A partition is a non-increasing sequence A = (A, A,,...) of non-nega-
tive integers with finite sum Al = X, A,. The length I(A) of a partition A is
the number of non-zero terms of A. If an integer i appears exactly m;
times as a part of A, we write A = (1":2"2...). For example, (") is the
partition

(r,r, r)

n times

The conjugate partition A" = (X}, X,,...) of a partition A is defined by
No=#{j A =)

For a partition A, we denote by r(A) (resp. ¢(A)) the number of rows
(resp. columns) of odd length. We say that A is even (resp. transposed-even)
if (1) =0 (resp. c(A) = 0).

Given a partition A, we put p(A) = #{i: A, > i} and define

a =X -], B=X—j forl<j<p(A).

Then a; > -+ > a,,)>0 and B; > === > B,,,>0. We write A=
(a| B) and call this the Frobenius notation of A.

For r€ Z and n € N, let T, , be the set of all partitions of the form
A=(By+r,....B,+7|By..., B,) with length < n. For example, T, ,
consists of four partitions

g, (3)=(210), (41)=(311), (4,4) = (32]10).

A half-partition of length n is a non-increasing sequence A =
(A, ..., A, of non-negative half-integers A, € N + 1. Then we can write
A=(u; + 3,..., 4, + 3), Where u is a partition of length < n. If there
is no confusion, we simply write A = u + 3.

If A is a partition of length < n (resp. a half-partition of length n), we
associate to A a subset J(A) of N (resp. N + %) defined by

JA) ={M+n—-1,0+n—-2,...,7,}.

Then A can be recovered from J(A) = {j, < --- <j,} by putting A, =
jn+1*i —n+i

Let T be an n-rowed matrix with columns indexed by a set 1. Given an
n-element subset J of I, we denote by 7, the n X n submatrix of T
obtained by picking up the columns indexed by J. If T =(#;);_1 ., jen
then 7, = (¢;),_1 ., jes 1T A=1(a;), ;o is a skew-symmetric matrix,

then we write 4, = (a;;); ;- , by abuse of the notation.
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Characters

We will consider the following four series of classical Lie algebras of
types A4, B, C, and D:

Qam = al(n,C),
Ay = 90(2n + 1,C)

= {X € al(2n +1,0)  JoypusnyX +'X o0y = O},
Qe = 50(2n,C) = {X € al(2n,C) : Vo X +'X ) = 0},

Qo = $0(21,C) = {X € gl(21,©) : L oo X +'XV. 0 = O}
Here J,,y, and J;,.,, are the anti-diagonal matrices given by

Jso(N):JN’ J~3p(2n): (_]

where

See [W] for the representation theory of classical groups.

Let 0y, be the Cartan subalgebra consisting of diagonal matrices in
A x(n) Where X(n) represents A(n), B(n), C(n), or D(n). And let &;:
H xy — C be the linear functional assigning the (i, i)-entry of H € §) to
H. Then we can take a simple system of roots as follows:

A(n) — {‘91 & &1 T gn}’

I

1_[B(n) = {81 &€ T 6‘”,8”},
ey ={e1— 2801 — 64, 28,},
IT

D(n) = {‘91 T &y &y T & & T gn}'
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It is well known that the finite dimensional irreducible representations of
Q x(ny @re parametrized by the dominant integral weights

Pl ={Me + - +A08,: 4, €C A — Ay €NJ,
Py = {M&; + - + 4,8, Ais a partition or a half-partition},
Pl = {Neg + - +A,e, 0 Als apartition},
Py ={Me + - +A,_18, , + A, &, Als apartition or a half-partition} .

If X(n) = A(n), B(n), or C(n), and A = (A;,..., A,) is a partition or a
half-partition, we denote by Ay, the (formal) irreducible character of
@ x(my With highest weight A;&; + -+ +A,¢,. In the D(n) case, we define
Aby to be the irreducible characters of 0(2n,C) with highest weights
Mep+ o +A, 16,1+ Ag,, respectively. Note that A, = Abny if
I(A) < n. Here we regard a character as a Laurent polynomial in the
variables x /% = e*“/2 For g 4, = gl(n, ), the irreducible characters
Ay @re often denoted by s,(x,,..., x,) and called the Schur functions.

We now recall Weyl’s character formula. We introduce the n-rowed
matrices

Y = (1X™),_, (X=A4,B,C,D+ ,D— D)

with (i, k)-entries defined by

tim = xk for k € N,

thW = xkTY2 — x k2 for k € 5N,

G = xktl — ykt for k € N,
th0 = xk 4 xk for k € 1IN,
tPm = xk — xok for k € IN,

and
(D) _ 1k . rfk=0
ik xF 4+ x; if £ > 1.

Then Weyl’s character formula can be written in the following form.
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ProposITION 1.1.  For a partition or a half-partition X = (A, ..., A,), we
have
det(TXm™
ey = ST v e,
det(T,(@) )

s det(T,?;)(")) + det(Tf(’;)("))
o )

The Weyl denominators

Ay = det(7%y)  for X=A4,B,C,D

of Weyl's character formulas factorize as follows.

ProrosITION 1.2.

Ay = Il (xj —X;),

1<i<js<n

(n+1)/2 —-n+1/2
AB(n) = (_:I-)nnJr / (xg - x,) "

n

X ll_ﬁll(l -x) 1 (x; —x)(1 — x;x;),

l<i<j<n

nn+1)/2 -n
AC(n) =(-1) i (X - x,)

X Flill(l -x2) IT (x—x)(1-xx)),

1<i<j<n

Apiny = (_1)"(’!*1)/2()61 xn)f'ﬁl I (xj —xi)(l —x,-xj).

1<i<j<n

The following lemma enables us to reduce the problems to the cases
where the rank is even.

LEMMA 1.3. (1) For a partition A with length < n + 1, we have

SA(xl""'xn) if)\n+l=0

$2(Fpx 0 ifA, ., >0.

0) =

nt

(2) Let A=(Ay,..., A1) be a partition with length <n +1 or a
half-partition of length n+1 such that A <m. Then (x; -+ x, )"



APPLICATIONS OF MINOR-SUMMATION FORMULA 199

Ax(X1.---, X, 1) is a polynomial in the variables xy/?,..., x}/? and
satisfies
[xin "'xrrln+1/\3(n+1)(x1’---nxn+1)]xn+1:o
O A D3 x) A =m
0 if A, <m,
[xi" xz1+1/\C(n+1)(xl"'"xn+1)]xn+1:o
[ O Ay Deo(Fe k) A =m
0 if A, <m,
[xin "'x;”+1/\$<n+1)(x1,---,xnﬂ)]xmzo
T .
_ X (Mg Ay ) peo(Xas -0 X,) fr=m
0 if A, <m,

where [f1,  _, indicates substituting x,, ., = 0 into f.

Proof. 1t easily follows from Propositions 1.1 and 1.2, so we leave it to
the readers. |

Another useful lemma derived from Weyl's character formula is the
following relation among the irreducible characters.

LEMMA 1.4. (1) If A is a partition with length < n, we have

1 n
()H——) = TT(x72 +x7Y%)  Acguy-
2 ) B i=1

(2) If X\ is a partition with length < n or a half-partition of length n, we
have

n
D(n) i=1

(X772 = x7Y2)  Agy-

2. MINOR-SUMMATION FORMULA

Our starting point is the following minor-summation formula.

THEOREM 2.1 [IW1, Theorem 1(1)]. Assume that n < N are integers

=l=n,l=<Kk=
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(ay)1 <1< n be an N X N skew-symmetric matrix. Then we have

Y Pf(A,)det(T,) = PF(TA'T).
JCIN], #J=n

In this formula, the (i, j)-entry of the skew-symmetric matrix TA'T is
given by

N t, t
ik il

(TAT)i; = 2 atuty= X adet P
k=1 1<k<I<N Jko ol

We will apply this theorem to various skew-symmetric matrices A4 and the
matrices 7% introduced in Section 1 to derive the Littlewood-type
formulas for classical Lie algebras.

Theorem 2.1 implies several well-known formulas. For example, if n = N,
then Theorem 2.1 says that

PF(TA'T) = det(T)Pf(A) (2.1)

for square matrices T and A. The following corollary is known as the
Cauchy—Binet formula.

COROLLARY 2.2.  Let m < n be integers. Let X = (X); _j <1<k <n and
Y = (Vi1 <i<m 1<k <n be arbitrary matrices. Then we have

Y. det( Xg)det(Yy) = det( X'Y).
Kc[n], #K=m

Proof. In Theorem 2.1, we take

(59 ()

Then it is easy to see that

()

Pf(A,) ={(-1) if J={k, <<k, <k, +n<--<k,+n}
0

otherwise
and that, if J ={k, < - <k, <k, +n< - <k, + n}, then

det(7,) = det( Xy )det(Yy),
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where K = {k,, ..., k,,}. On the other hand, we have

0

oy X(;Y) - (—1)( ? )det(X’Y).

PF(TA'T) = Pf(

The proof is completed by the minor-summation formula. ||

By applying Theorem 2.1 to the matrices TX" and using Weyl's
character formula (Proposition 1.1), we immediately see the following
general formulas.

THEOREM 2.3. Let n be an even integer and let A = (a,,) be a skew-
symmetric matrix with rows and columns indexed by N (resp. N + % in the
B(n) and D(n) cases). Then we have

Y PR(A00) A
Al(ND)<n

1
= Pf( Zak,xi"x;) :

AA(n) k,l 1<i,j<n
Z Pf(AJ()\)))\B(n)
Al <n
=3 Pf(Zakz(xf‘”/2 — X ) (a2 —xj‘"l/z)) ,
B(n) k,l 1<i,j<n
Z Pf(AJ(/\))/\C(n)
Al <n
1
= PI‘( Zakl(xilﬁl _ x;kfl)(lefl _ xj—l—l)) ’
C(n) k1 1<i,j<n
Y PH(A00) (b £ Apey)
A l(N)<n
=3 Pf(Zak,(x{‘ ixfk)(x; ix;l)) N
D(n) k,l 1<i,j<n

where A runs over all partitions of length I(X) < n (resp. over all half-parti-
tions of length n). 1

Remark. The first formula for g[(n, C) was obtained by T. Sundquist;
see [Su].
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3. SUBPFAFFIANS

When applying Theorem 2.3, we must calculate all the subPfaffians of
the weight matrix A4 and evaluate the Pfaffian in the right hand side. This
section is devoted to the calculation of subPfaffians, which will be used to
derive the Littlewood-type formulas.

PropOSITION 3.1.  Let A = (a;;); ;- o be the skew-symmetric matrix given
by

aij — si[j—luodd(i)+even(j)U[i/2]+[(j—1)/2] fO}" 0 < i <j|

where [ x] is the largest integer not exceeding x and

1 ifkis odd, 1 if k is even,
odd(k) = f . even(k) = f .
0 if k is even, 0 if k is odd.
That is,
0 1 tu t?v 3up t4v? tSup?
0 stu? stPuwv stPuPv st*uw? stPuo?
0 s%t%0?  sPw? st sAHhwd
4 0 s u?v? SSttued s8tSutod
- 4.4 4 4,5 .4
0 st st uv
0 s2tPu?v?
0

Let J be an n-element subset of N and A be the corresponding partition. Then
the subPfaffian of A corresponding to J is given by

Pf(AJ) — se()‘)+m(m71)to(/\)+m(m71)ur()\)UZ,ZQ’1[)‘l/2]+m(m71).

where r(\) denotes the number of rows of odd length in A and
o(A) = X Ayiy, e(A) = X Ay
i=1 i=1

Proof. If J={j, < -+ <j,,}, then we have j, =A,, ., ,+k—1
and

M=

m
Ayiog +m(m — 1) = Z (Jaic1 — 1),
i=1 i=1
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m
Ay +m(m — 1) = ijw
1 i=1

NgE

;m [A/2] + m(m — 1) = in [(jZi—l - 1)/2] + i [/2:/2].

i=1

Also, since Ay =jomi1-26 AN Ayp 1 = jomi2-2x — 1 mod2, we see that

even(A;) +even(A,) + --- +even(A,, _,) + even(a,,)

r(A)

even(j,) + odd(j,) + - +even(j,,,_,) + 0dd(j,,,).

Now the proposition can be obtained by putting

X, = tjk_1ueven(jk_1)v[(jk_1)/2] and Ve = tfku(’dd(fk)v[jk/z]

in the following lemma. |

LEMMA 3.2.  Let r be an even integer and x4, ..., X,, ¥y, ..., Yy, be indeter-
minates. Then the Pfaffian of the skew-symmetric matrix with (i, j)-entry x; Vi
i <j,is equal to

r/2 r/2

l_[le-_l : l_lyzi-
i=1 i=1

Proof. See [IW1, Lemma 7]. |

ProposITION 3.3.  For an even integer n = 2m and a non-negative integer
r, let A = (aij)Osi,j§2n+r—l and B"" = (bij)Osi,j£2n+r—l be the
@2n +r) X 2n +r) skew-symmetric matrices whose non-zero entries are

given by

1 fo<i<m-—1,
Gin—1-i = Qontr—1-in+r+i = | _q fm<i<n-1
—_ —_ ’

b _p _ 1 if0<i<m-—1,
ion+r+i - Yn—i—-12n4+r—-1—-i — -1 lfm < i <n-— 1.
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That is, the matrices A" and B"™" are of the form

J, 0
~J, 0
A" =1 0 0 0 0 0 |,
0 -J,
0 J,
0 I,
0 -1,
B =1 0 0 0 O o |,
-1, 0
I, 0

where J,, is the anti-diagonal matrix with anti-diagonal entries 1 and 1, is the
identity matrix. Let J be a subset of [0,2n + r — 1] and A be the correspond-
ing partition. Then the subPfaffian of A" + B"™ " corresponding to J is
given by

(A== Dp(r) /2 .
_ (=D frel,,

PF((A™" + BOD
(( - )J) 0 otherwise.

Proof. We put A*=A"" + Brm,

First, we show that Pf(A47) = O unless A € I, . Suppose that Pf(A}) +
0. By the definition of the matrices A" and B", the columns of 4*
from the nth to the (n + r — D)st are 0 vectors and, foreach 0 <i <n — 1,
the ith column is proportional to the (2n + r — 1 — i)th column. Hence
we see that the subset J contains exactly one element of each pair
{(j2n+r—-1-j}.

Here we note that p(A) = #{j € J: j = n}. The largest p(A) elements of
Jare ;y +n—1,..., 1, +n—p(d). From the above observation, we
see that the smallest p(A) elements of the complement J€ in [0,2n + r — 1]
are

n+r—/\1,...,n+r+p()\)—1—/\[,0).

On the other hand, it follows from [M, 1.(1.7)] that the smallest p(A)
elements of J° are

n—A,...,n +p(A)—1—)\:U(A).
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Therefore we have
n+r+i—1—-MN=n+i—-1-A,

sothat A, = A; for 1 <i < p. This shows that A € T, .

From now on, we assume that A = (B +r|B) € I, . The matrix A~ is
obtained from A™* by multiplying by —1 the rows and the columns with
index > n + r and there are p(A) such rows of (or columns). Hence, by
(2.1), we have

Pi(A;) = (—1)"VPf(4]).
Therefore it is enough to prove
PR(A;) = (-1,

because |A| = 2| B8] + (r + D p(A). We will proceed by induction on p(A).
If p(A) =0,i.e, A =, then we see that

. o J,
Pi(Aje) =Pl _, 0| =1

m

Suppose that p(A) > 0and J = {j; < - <j }. Ifweputk =2n+r —
1—-j,and K={j;,...,j,_1.k}, then k<n—1and j,=i for 1 <i <
k — 1. Hence A7 is obtained from A} by permuting rows and columns
by the same cyclic permutation o = (k, k + 1,...,n). The inversion num-
ber of o is equal to n —k—1= A +r+1=p; (mod2). Hence we
have

PR(A}) = (1) Pf(A4}).
Let w be the partition corresponding to K. Then it is easy to see that

w=C(B,+r,....,B,+r|By...,B,) By using the induction hypothesis,
we have

PR(AJ) = (~1)P (=™ " = (-1l 1

4. LITTLEWOOD’S FORMULAS FOR g 4,

In this section we prove Littlewood’s formulas and their generalizations
for the Schur functions s,(x;, ..., x,) = Ay, (x5, ..., x,).
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THEOREM 4.1. Let n = 2m be an even integer. Then we have
Z Se()\)+m(m71)to(/\)+m(m7l)ur()\)v):,-z;"l[)\,-/2]+m(m71)S)\(xl’ . xn)
Al <n
1 1
- 2,.2
AA(n) I—[lrl:l(l —t Uxi )

(x; = x,-){(l + tzuxixj)(l + stuzxixj)
+tu(L + stx;)(x; + x;) )

1 — 522027 |

X Pf

where e(A) = X" 1 Ay, and o(A) = L1 Ay .

Proof. Apply Theorem 2.3 to the skew-symmetric matrix A given in
Proposition 3.1. Then a straightforward calculation gives us the (i, j)-entry
of TA'T:

k

X

Z gkgl=1y 00d(k)+even() [k /214 [(1=1)/2] gt lk
0<k<I

Rl 4
==

X
_ X; = X;
(1 -2 (1 - 2n?)

(L + 2oxx; ) (1 + slxx;) + (x; + x) (1 + stox,x;)

1 - s*?v%xix}

X

Now the proof follows from Theorem 2.3 and Proposition 3.1. ||

There are cases when the Pfaffian in the right hand side is factorized as
a product. The following corollary is usually called Littlewood’s formula.

COROLLARY 4.2 [L, p. 238; M, I, Ex. 5.7, 5.8].

W T e Wne.r) = 1

Al(ND)<n
@ T W o [T
u'Ms (x,,...,x,) = _
AN <n m "l 1=l asicien 1o X

Proof. Since Ay;_; — Ay, = #{j: X; = 2i — 1}, we have

o(A) —e(A) =c(A).
Hence, if we put s =+t 1, u =0 =1(resp. s =t = v = 1) in Theorem 4.1,
then the summation side reduces to that of (1) (resp. (2)). On the other
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hand, the Pfaffian in the right hand side can be evaluated by using the
Pfaffian form of Cauchy’s determinant formula:

Pf( X — X ) 3 Ay
1 — XX 1<i,j<n n1£i<jsn(l _xixj)

(See [Kn] or [St, Proposition 2.3(e)] for the proof). 1

Now we apply Theorem 3.1 to the skew-symmetric matrices A" +
B in Proposition 3.3 and derive another type of Littlewood’s formulas.
Then the Pfaffian in the right hand side is evaluated by the following
lemma.

LEmMmMA 4.3. Ifn = 2m € N is even and r > 0, then we have

PH(TAM(AT™ 4+ BT ™) TAM) = det(x/~* + x2"*"77),

<i,j<n-*

Proof. A direct calculation shows that the (i, j)-entry of T4"M(4m
+ Bm)'TAM js equal to

2
(xm —x") (1 —x/"x]")
g J ! 2m+r 2m+r L
(1 —xpmorzm ) LTI amer _ meny
! ! X, — X ! ' 1—xx

If we put C = (fj ’g*) and § = (x/~* +x?"""/) _; ;. then the (i, j)-

entry of SC'S is equal to the (i, j)-entry of TAMW(A"™ + Brmryp A,
Hence, we have

pf(TAw)(A(r,n) + B(r.n))’TA(n))

= Pf(SC'S) = det(S)Pf(C) = det(S). |

Now we are in position to prove our generalization of Littlewood’s
formulas. Recall that T, , is the set of all partitions A with at most n parts
and of the form

A=(Bi+r,....,B, +7[B.... B)

in the Frobenius notation.
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THEOREM 4.4. (1) If r € N, then we have

(A= (=D pr) /2
Y (—n) g ()
AeT

n n r r
= 1—x; 1—xx; x{/z-(—,...,—) .
Ha=wlla-x) ™7 3),,

(2) If r = 1 is an odd integer, then

(A= =Dp(r)/2
Y~y )
rel

r.n

n n r—1 r—1
_ 1_[(1—xiz)l_[(l—xixj)l_[x,(’_l)/2~( ) |
i=1 i=1 C(n)

i<j 2 2

) If r € N, then we have

(M= +Dp(r) /2
Y~y )
AE F”,iﬂ

r+1 r+1\*
2 T2

n
=T1(1 —xx,) [ [x072 (
i=1

i<j D(n)

where T,%, are subsets of T, , defined by
LY,={reTl ,:p(A) =nmod2},
I,={AeTl ,:p(A)=n—1mod2}.
Remark. We can prove (3) for the case of r = —1 by modifying the
matrix A"™ + B"™, The original Littlewood formulas correspond to the
cases of r=01in (1), r=1in (2), and r = —1 in (3). These cases are

proved in [M, I, Ex. 5.9] by using Weyl's denominator formula (see also
[KTD.

Proof. First we consider the case where n is even. By applying Theo-
rem 2.3 to the matrices A" + B"™ and by using Lemma 4.3 and the
relation

-1 2n+r—j
det(x{ X" l)lgi,jsn

— (_1)n(n$1)/2(xl e xﬂ

X det(xl(r+1)/2+jfl ixif(rJrl)/ijJrl)l

)(2n+r— 1)/2

<i,j<n?
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we obtain

E ( _ 1)(|/\\—(r—1)p()t))/2 det Tf(‘l)f?)

AEF}"H
(n+1)/2 @n+r-1/2
= (—D)""PR(xy e x,) T 2 det TEM, (4.1)
(n+1)/2 @n+r-1)/2
= (_1)nn+ / (xqg =+ x,) "2 det TJ%(((ﬁ)—l)/z)") (4.2)

(n+1)/2 ¥ —-1)/2 -
= (_1)'”1+ / (xg - x,) "2 det TJ(((r+1)/2)")lD o (4.3)

Z ( _ l)(|M—(r+ Dp(N)/2 det Tf&(ﬁ”
AET, ,

(n—-1)/2 @n+r-1)/2 +
=(-n"" / (xg - x,) "2 det TJI()((r(-f)l)/Z)")' (4.4)

Now (1) (resp. (2)) follows from (4.1) (resp. (4.2)) and Proposition 1.2. By
adding (4.3) and (4.4) and by subtracting (4.3) from (4.4), we see that

Z ( _ 1)(\)\|—(r+ 1)]’(/\))/2{1 + ( _ 1)]7(/\)}det TJIEl)(L;l)

AET,,

_ (_1)n(n—l)/2(x e x )(2n+r—l)/2
1

n

Dt n D
X {det T am £ (—1)" det TJ(((r(f)l)/m")}-

From this we obtain (3).
Next we prove (3) when #n is odd. Since n + 1 is even, we already know
that

(A= (r+Dp(A) /2
Z (—1) o /s/\(xl""*xn+1)

+
Aerr.n+1

ntl r+1 r+1\%

= II (1-xx) 1‘1:_[1 x{r+h/2.

l<i<j<n+1

2 72 pasn

Substitute x,,; = 0 and use Lemma 1.3. Then, by noting I,7, = {A €
[, ,.1:A,,; = 0}, we obtain the desired formula. The other formulas are

r

similarly proved. |
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Remark. Here we proved Theorem 4.4 by using the minor-summation
formula of Pfaffians. However, one can give another proof by applying the
Cauchy—Binet formula to suitable matrices X with entries 0, +1, and
Y = T4, The details are left to the readers.

5. LITTLEWOOD'S FORMULAS FOR q 5, 8c(m)
AND g,

In this section we establish a generalization of Theorem 4.4 to B, C, D
types. The proofs are similar to that of Theorem 4.4 and need a somewhat
more complicated calculation. In order to treat all the types in a unified
way, we introduce the n-rowed matrix 7 *(«) for a half-integer a. The
(i, k)-entry of T*(«a) is given by

ti(a) =xkre+x %k« fork e iN.

Then we obtain the following lemma.

LEMMA 5.1, Letr € N, k € N and let n be a positive even integer. Then
we have

PR(T*(a) A" + B"")'T*(a))

— 1_[ (xinJraJr(rfl)/Z + x;nfaf(rfl)/Z)
i=1

X det(xljfnf(r+l)/2 + x;j+n+(r+1)/2)1

<i,j<n?

PHT™(a)(AT™ + B"")'T™ ()]

I

(xin-f— at+(r—1)/2 F xi—n—a—(r— 1)/2)
1

X det(x{—n—(r+l)/2 + xi—j+n+(r+l)/2)l

L

<i,j<n-*

Proof. We put N=2n+r—1 and A*=A"" + B =
(a;7)g; < n- By the definition of 4" and B" ", we have

t_ 4 _ +  _ +
ag=ay_ N = tagy = tay ;-



APPLICATIONS OF MINOR-SUMMATION FORMULA 211

Also, we note that
(xk+a +x—k—a)(yl+a +y—l—oz)
+(xN—k+o< +x—N+k—a)(yN—l+a +y—N+Z—o<)
i(xk+a +x—k—a)(yN—l+a +y—N+l—a)
i(xN—k+a +x—N+k—u)(yl+a +y—l—az)
=xaya(1ifof2a)(1inyfZOz)
X(xkyl+foknylixN*kylixknyl).
Then the (i, j)-entry of T*(a)A*' T (a) is given by
(T*(a)AilTJr(a))ij

N
— Z aki,—l(xlk*—a +xi—k—a)(le_+a +xj_—l—a)

k. 1=0
1
= leax]a(l ix;N*Za)(l ix;N*Za)
N
X kzz akil(x,kx; +xiN_kx]N_l ixlN_kx]l- +xl"x]N_l)
=0

N
=xff (L2 V2L 2V 2) X e xfy]
k,1=0

- xi“xj“(l + xi—N—za)(l + xij72a)(TA(n)/lJ_rtTA(n))i'j_

By using Lemma 4.3, we obtain the first formula. The second identity can
be proved by the same argument. |

Now we can prove a generalization of Theorem 4.4, which we call
Littlewood’s formula of type B.

THEOREM 5.2. (1) If r € N and s € 1N, then we have

Z (_1)(|A\—(r+1)p(/\))/2(A + (s,,))B(n)

A€l ,
n+s+r/2 _ ,—n—s—-r/2
— (_1)n(n71)/2 H X X
Lt xil/z _xi—l/z
+ _
r+1\" r+1\"
X + .
2 D(n) 2 D(w)
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(2) If r € N and s € %N, then we have

(A= (r=Dp(A) /2 "
Y (-1 PEVZON + (5)) b
reTl’

ron

— (_1)Il(f’l+1)/2

n r\"
xl_[(xierrerr/Z +xinsr/2)((5) )
i=1 B(n)

_ (_1)n(n+l)/2

n r—1\"
X 1_[ (xin+s+r/2 + xi—n—s—r/Z)(x;I./Z + xi—l/Z)(( 5 ) )
i=1 C(n)

D(n) D(n)

Here the second identity makes sense only when r is an odd integer.

n n+s+r/2 —n—s—r/2
% 1_[ X; +xl-
1/2 -1/2
i=1 )Cl-/ —X; /

Proof. First, we assume that » is even. Apply Theorem 2.3 to the
matrix of the form

0 0
0 AmD 4 pon ]

Then, by using Lemma 5.1, we have

(A= Dp(A) /2 B
Y (-1 det 7,¢ (ony
AET,,

Il
=

(x_rz+s+r/2 F xfn—s—r/Z)
i i
1

xdet(x{’”’('“)/z ix;'f+n+(r+l)/2)i,j=1 ..... n

n(n—1)/2 +s+r/2 —n—s—r/2 D
(-1 Ty (! 20772 = a7/ )det T 1y 2y,

(_1)n(n+l)/21—[;,:1(x;1+s+r/2 + x;nfsfr/Z)det TJI(R((rn/)Z)”)'

Dividing both sides by the Weyl denominator A, =TT/ (x}/2 —x; */?)-
Ap.y» We obtain (1) and the first equality in (2). The other equalities follow

from Lemma 1.4.
Before proving the case where n is odd, we prepare the following

lemma.
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Lemma 53. Ifweput I} ., ={A €T, , 0 Ay =n +r+ 1}, then the
map given by

A=A A ) P A=A =14, — 1)

provides a bijection from T}, ., to T, ,. And we have [\l = |\l — 2n —r — 1
and p(A) = p(A) — 1.

Proof. 1f A€T/,,,, then N =A, —r=n+1and A=(A, -1,

..y»A,41 — 1) is a partition. The Young diagram of A is obtained from
that of A by removing the first row and the first column. Hence we have
A€, , and p(A) = p(A) — 1. The inverse map sends p €T, , to (n +
r+L o +1. 0+ 1

Next, suppose that » is odd. We will prove the first equality in (2). (The
other equalities can be proved in a similar way.) Since n + 1 is even, we
already know that

(M= =DpA) /2 n
Z (-1 ! D/ (/\ + (s +l))B(n+1)

)‘Err‘rwl

n+l rynt+l
= (_1)(”+1>(n+2)/2 1 (xl(1+l+s+r/2 +xinlsr/2)((_) ) .
i-1 2 B(n+1)

We put m = n + r + s + 1. Multiply both sides by (x; -+ x,_ )", substi-
tute x,, , = 0, and then divide by (x, --- x,)". By Lemma 1.3, we obtain

O CE (CE S )
(S

ron+l

n r n
— (_1)(n+l)(n+2)/2 l—l (x;q+(s+l)+r'/2 + xi—n—(s+1)—r/2)((5) ) )
i=1 B(n)

We can complete the proof by using Lemma 5.3 and the relation [A] —
rF=DpM)=IN-G-DpNM)+2n+2 1

Remark. Precisely speaking, we have not yet given a proof for the case
where n is odd and s = 0 or ;. However, one can give a direct proof for
this case by using another minor-summation formula of Pfaffians [IW1,
Theorem 1(2)] (or the Cauchy-Binet formula). The argument and the
calculation needed in this case are almost the same as those in the case
where n is even, so we omit the proof.

The Littlewood-type formula for g.,, and g, can be stated in the
following form. We can deduce these theorems from Theorem 5.2 by using
Lemma 1.4 or prove them by an argument similar to the proof of the B(n)
case.
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THEOREM 5.4. (1) If r, s € N, then we have

(A= (r+ Dp(A) /2 0
Y (—)MTTEPEZO0 4 (57) e
AET, ,

ts+(rt1)/2 —n—s—(r+1)/2
noxmHSTOHD/2 g yonss— (41

=(-1 n(n—1)/2 i
(-0 ] P
(r+1)" (r+1)")
X .
2 2 D(n)

(2) If r, s € N, then we have

+

+
D(n)

(M= (= Dp(A) /2 ;
Y (—n)MTTEEERON 4 (5M)) eim
rel

r.n

( l)n(,,+1)/2 ﬁ xin+s+(r+1)/2 +xi—n—s—(r+1)/2 (( r)n)
=~ 1/2 ~1/2 5
i=1 x4 x Y 2) Jpm

n _ n
_ (_1)n(n+1)/2 l—[(xirl+s+(r+1)/2 +xins(r+1)/2)((r 1) )
i=1 2 C(n)

n xjn+s+(r+1)/2 +x;nfsf(r+1)/2

_ (_1)n(n+1)/2 l_[

1
i=1 X — X
X{

n+ ny
r+1)) (r+l))
2 D(n) 2 D(n)'

Here the second identity makes sense only when r is odd.

THEOREM 5.5. (1) If r € N and s € 1N, then we have

Z (_l)(\)\\*(rJrl)p(A))/Z{(/\ + (s”));(n) 4 ()\ + (Sn))l;(n)}
AET, ,

_ (_1)n(nfl)/2 li[(xinJrer(rfl)/Z ix;nfsf(rfl)/Z)
i=1

r+1)”)+ (r+1)”)_
X + .
2 D(n) 2 D(n)
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(2) If r € N and s € %N, then we have

ZF (_1)(\/\\_(}'—1)P()\))/2{()\ + (sn));(n) + (/\ + (Sn))L;(n)}

= (_1)"(”+1)/2 ﬁ(xanrer(rfl)/Z $xlfﬂ*5*(f*1)/2)
i=1

r n
X (x}/% = x; /2 ((—) )
( W2) ),

_ (_1)n(n+l)/2 li[ (xin+s+(r—1)/2 ¢xi—n—s—(r—1)/2)
i=1

-5,

_ (_1)n(n+l)/2 “ (xinJrer(rfl)/Z ¢x;n7sf(r71)/2)
i=1

s+
r+l) )
2 D(n)

(r + 1)")
2 D(n)

X
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