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II. Pfaffians and Schur Polynomials

Masao Ishikawa1

Department of Mathematics, Faculty of Education, Tottori University,
Koama, Tottori 680, Japan

E-mail: ishikawa�fed.tottori-u.ac.jp

and

Masato Wakayama2

Graduate School of Mathematics, Kyushu University,
Hakozaki, Fukuoka 812, Japan

E-mail: wakayama�math.kyushu-u.ac.jp

Communicated by George Andrews

Received January 12, 1999

The purpose of this paper is, to establish, by extensive use of the minor summation
formula of pfaffians exploited in (Ishikawa, Okada, and Wakayama, J. Algebra
183, 193�216) certain new generating functions involving Schur polynomials which
have a product representation. This generating function gives an extension of the
Littlewood formula. During the course of the proof we develop some techniques for
computing sub-Pfaffians of a given skew-symmetric matrix. After the proof we
present an open problem which generalizes our formula. � 1999 Academic Press
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1. INTRODUCTION

In this paper we establish certain new formulas concerning Schur
polynomials with two parameters. The prototype of these formulas is the
so-called Littlewood formula, which the reader can find in the book [Ma],

:
*

ac(*)s*(x1 , x2 , ..., xn)= `
n

i=1

1
1&axi

`
1�i< j�n

1
1&xi xj

, (1.0)
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where the sum on the left is over all partitions * and c(*) is the number
of columns of odd length in *. Here s*=s*(x1 , x2 , ..., xn) is the Schur
polynomial of n variables corresponding to a partition *. These Littlewood
formulas have been generalized by several authors, e.g., [LP, YW].
Making extensive use of the minor summation formula of the Pfaffian
developed in [IW1] we may extend these Littlewood formulas in various
directions, e.g., [IOW, IW2, Ok, IW3]. In this paper we prove the following
formulas algebraically by evaluating certain Pfaffians and by developing
some techniques to compute sub-Pfaffians of a given skew-symmetric
matrix.

Theorem. We have

:
*

.2, 0
* (a, b) s*(x1 , x2 , ..., xn)

= `
n

i=1

1
(1&axi)(1&bxi)

`
1�i< j�n

1
1&xi x j

, (1.1)

:
*

.1, 1
* (a, b) s*(x1 , x2 , ..., xn)

= `
n

i=1

1+bxi

1&axi
`

1�i< j�n

1
1&xi x j

, (1.2)

where the functions .2, 0
* (a, b) and .1, 1

* (a, b) of variables a, b are given by

.2, 0
* (a, b)=ac(*) `

�

k=1

[*k&*k+1+1; a=(k)b], (1.3)

.1, 1
* (a, b)=ac(*) `

�

k=1

[*$k&*$k+1+1; a=(*$k), b]. (1.4)

Here we put

[n; q]=
1&qn

1&q
, (1.5)

[n; a, b]={
1&bn+1

1&b2 +ab
1&bn&1

1&b2

(1+ab)
1&bn

1&b2

if n is odd,

if n is even,
(1.6)

=(k)={&1
1

if k is odd,
if k is even.

(1.7)
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Since *k&*k+1=0 for a sufficiently large number k the product
representations in (1.3) and (1.4) are well-defined. In particular,

Corollary. We have

:
*

N(*, q) s*(x1 , x2 , ..., xn)

= `
n

i=1

1
(1&x i)(1&qxi)

`
1�i< j�n

1
1&x i xj

, (1.8)

:
*

N(*$, q) s*(x1 , x2 , ..., xn)

= `
n

i=1

1+qxi

1&x i
`

1�i< j�n

1
1&x i x j

, (1.9)

where we put N(*, q)=>�
i=1 [*i&* i+1+1; q].

We briefly discuss a combinatorial proof of our main theorem in the last
section and conclude that our proof gives an algebraic proof (i.e. an evalua-
tion of Pfaffians) of the Pieri formula. It seems that our proof is still
interesting as a method of evaluating Pfaffians even though it is possible to
prove our theorem by a combinatorial method.

Naturally we may ask whether it is possible to generalize our theorem.
We believe that the answer is yes, but we found that this problem is not
as easy as we expected. In Section 5 we provide one conjecture which
includes one more constant c. (Look at the conjecture in Section 5.) This
conjecture looks very beautiful and mysterious to us, but we have not
found any proof at this stage. We made sure that the coefficients of Shur
functions coincide on both sides of the identity of the conjecture for smaller
partitions. We used Maple V and calculated the identity for all partitions
included in the 8 by 10 rectangle.

2. NOTATION AND GENERAL PRINCIPLE OF PROOFS

We fix some notation concerning partitions and symmetric polynomials.
Let us denote by N the set of nonnegative integers and by Z the set of

integers. Let [m] denote the subset [1, 2, ..., m] of N for a positive integer
m. A partition is a non-increasing sequence *=(*1 , *2 , ...) of non-negative
integers with a finite sum. Sometimes we use notation which indicates the
number of times each integer occurs as a part: *=(1m12m2 } } } ) means that
exactly mi of the parts of * are equal to i. The partition *$=(*$1 , *$2 , ...)
defined by *$i=*[ j : *j�i] is called the conjugate partition of *. The
length l(*) of a partition * is the number of non-zero terms of *. For a
partition *, we denote by c(*) the number of columns of odd length in *.
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If * is a partition of length �n, then we define the subset J(*) of N by

J(*)=[*1+n&1, *2+n&2, ..., *n]. (2.1)

Conversely, for a subset J=[ j1< } } } < jn] of N, let *(J) denote the
partition defined by the equation

*i= jn+1&i&n+i. (2.2)

This clearly defines a one-to-one correspondence between n-element subsets
of N and partitions of length �n.

For an n-row matrix T with columns indexed by I and an n-element sub-
set J of I, we denote by TJ the n_n submatrix of T obtained by picking
up the columns indexed by J. Namely, if T=(Tij)i=1, ..., n, j # I , then TJ=
(Tij) i=1, ..., n, j # J .

A matrix A=(aij) i, j # I is said to be skew-symmetric if the entries of A
satisfy aij=&a ji . Given a skew-symmetric matrix A=(aij) i, j # I with the
index set I=[i1 , ..., i2m] of even cardinality, we define the Pfaffian pf(A) of
A by

pf(A)= :
_ # S$2m

sgn _ `
m

k=1

ai_(2k&1) i_(2k)
, (2.3)

where

S$2m=[_ # S2m : _(2k&1)<_( j) for 1�k�m, 2k&1< j�2m]. (2.4)

For each r�0 the r th complete symmetric polynomial hr is defined by

hr(x1 , x2 , ..., xn)= :
1�i1�i2� } } } �ir�n

x i1
xi2

} } } xir
. (2.5)

It is convenient to define hr to be zero for r<0. Further, the Schur function
(polynomial) in the variables x1 , x2 , ..., xn corresponding to the partition
*=(*1 , *2 , ..., *n) is defined by

s*=s*(x1 , x2 , ..., xn)=det(x*j+n& j
i )�det(xn& j

i ). (2.6)

These Schur functions are, in fact, symmetric polynomials in the variables
x1 , x2 , ..., xn and are known as the characters of the polynomial repre-
sentations of the general linear group GL(n, C). Recall now the minor
summation formula of Pfaffians (in even cases).
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Lemma 2.1 [IW1]. Assume that n�N and n is even. Let T=(t ik) be an
n_N matrix and A=(akl) be an N_N skew-symmetric matrix. Then we
have

:
I/[N], *I=n

pf(AI
I) det(TI)=pf(TAtT ), (2.7)

where AI
I denotes the n_n submatrix of A obtained by picking up the rows

and columns indexed by the same index set I. Further, we note that the (i, j)-
entry of the skew-symmetric matrix TAtT is explicitly given by

(TAtT) ij= :
1�k<l�N

akl }Tik

Tjk

Til

Tjl } , (1�i, j�n). (2.8)

In the preceding paper [IOW] we exploited machinery to establish iden-
tities on the irreducible characters of the classical groups. For instance, we
take the matrix T as the special one; Tij=x j

i (i=1, 2, ..., n, j=0, 1, 2, ...) in
the case of GL(n, C). Then the minor summation formula reads

:
* : l(*)�n

pf(AJ(*)) s*(x1 , ..., xn)=
1

> i< j (x i&xj)
pf \:

k, l

akl xk
i x l

j+ i, j
,(2.9)

for any skew-symmetric matrix A=(akl) with rows and columns indexed
by N. Recall the identity which is a Pfaffian's counterpart of the Cauchy
formula (see [Wy]):

pf \ x j&x i

1&xi x j+ i, j=1, ..., n
=

>1�i< j�n (xi&xj)

>1�i< j�n (1&xixj)
, (2.10)

for each even integer n (see [IW1, Ste]).

Definition 2.1. Define ;r, s
kl =;r, s

kl (a1 , ..., ar ; b1 , ..., bs) for k, l # N via
the equation

:
�

k, l=0

;r, s
kl xkyl=

>s
k=1 (1+bkx)(1+bky)

> r
k=1 (1&ak x)(1&aky)

y&x
1&xy

. (2.11)

Further, we form a skew-symmetric matrix

Br, s=Br, s(a1 , ..., ar ; b1 , ..., bs)=(;r, s
kl (a1 , ..., ar ; b1 , ..., bs))0�k, 0�l . (2.12)
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Definition 2.2. We put

.r, s
* (a1 , ..., ar , b1 , ..., bs)=pf(Br, s(a1 , ..., ar ; b1 , ..., bs)J(*)). (2.13)

It is clear that this .r, s
* (a1 , ..., ar , b1 , ..., bs) is a symmetric polynomial

with variables a1 , a2 , ..., ar or b1 , b2 , ..., br respectively, since one can easily
see that ;r, s

kl is as well. Then the following lemma follows immediately from
(2.11) and (2.13).

Lemma 2.2. The identity

:
*

.r, s
* (a1 , ..., ar , b1 , ..., bs) s*(x1 , ..., xn)

= `
n

i=1

> s
k=1 (1+bk xi)

> r
l=1 (1&alxi)

`
1�i< j�n

1
1&xi x j

(2.14)

holds, where the sum is over all partitions *.

In the formula (2.14) above, we face the problem of evaluating all the
sub-Pfaffians .r, s

* (a1 , ..., ar , b1 , ..., bs) in an explicit form. We call this
problem the (r, s) case problem in this paper. We settle the (2, 0) and (1, 1)
cases stated in the main theorem. We shall give also a conjecture for the
(3,0) case in Section 5. Though we have some evidence which leads us to
expect that there are explicit formulas for further cases, we have not
obtained that result.

We close this section by quoting a useful formula. Although the formula
itself is known (see, e.g. [Ste]), we give here another proof by Lemma 2.2.

Lemma 2.3. Let A and B be m_m skew-symmetric matrices. Put
s=[m�2], the integer part of m�2. Then

pf(A+B)= :
s

t=0

:
i # I m

2t

(&1) |i |&t pf(Ai) pf(Bic), (2.15)

where we denote by ic the complementary set of i in [m] which is arranged
in increasing order, and |i |=i1+ } } } +i2t for i=(i1 , ..., i2t). In particular, we
have the expansion formula for a Pfaffian with respect to any column (row):
For any i, j we have

$ij pf(A)= :
m

k=1

(&1)k+ j&1 akj pf(Aki), (2.16)

$ij pf(A)= :
m

k=1

(&1) i+k&1 aik pf(A jk), (2.17)
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where Aij represents the (m&2)_(m&2) skew-symmetric matrix which is
obtained from A by removing both the (i, j )-th rows and the (i, j )-th columns
for 1�i{ j�m.

Proof. Let Im be an identity matrix of degree m. It is clear that

(Im Im) \A
0

0
B+\

Im

Im+=A+B.

Hence by the minor summation formula we see that

pf(A+B)=pf \(Im Im) \A
0

0
B+

t

(Im Im)+
= :

k # I m
2m

pf \A
0

0
B+k

det(Im Im)k .

The only index k in I 2m
m for which det(ImIm)k does not vanish is of the form

k=(i, (m, m, ..., m)+ic) for i # I m
s and in this case we have det(Im Im)k=

(&1)_(i, ic), where _(i, ic) means the number of inversions of i via ic.
Further, if s is even then

pf \A
0

0
B+k

=pf \A i

0
0

Bic+=pf(A i) pf(B ic).

This Pfaffian obviously vanishes in the case s is odd. Hence we see

pf(A+B)= :
k # Im

2m

:
k=(i, (m, m, ..., m)+ic)

pf(Ai) pf(Bic)(&1)_(i, ic)

= :
[m�2]

t=0

:
i # I m

2t

(&1) |i |&t pf(Ai) pf(Bic),

because _(i, ic)=|i |&t for i # I m
2t .

The latter assertion can be proved by applying the previous result to the
following form of the decomposition of a skew-symmetric matrix A with
respect to the i th row and column:

0 V 0 V 0 V

A=\V 0 V++\0 0 0+ .

0 V 0 V 0 V

This completes the proof. K
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3. PROOF OF THE FIRST FORMULA

The following lemma is shown by a simple calculation.

Lemma 3.1. Let ;2, 0
ij be as in Definition 2.1. Then

;2, 0
ij =a j&i&1[i+1; ab][ j&i; a&1b]

=
1&ai+1bi+1

1&ab
a j&i&b j&i

a&b
. (3.1)

Let B2, 0 be a skew-symmetric matrix whose entries are ;2, 0
ij as in

Definition 2.1. The proof of the first identity of the main theorem is due to
an evaluation of the sub-Pfaffians of B2, 0.

Proposition 3.2. We have

pf(B2, 0
J(*))=ac(*) `

�

k=1

[*k&*k+1+1; a=(k)b]. (3.2)

Proof. We proceed by induction on even integers n. When n=2, it is
easy to see that (3.2) derives directly from Lemma 3.1. So we assume n�4.
Using the formula (2.16) we expand pf(BJ(*)) with respect to the first row
and column. We have thus

pf(BJ(*))= :
n&1

k=1

(&1)k&1 pf(BJ(*)&[ j1 , jn+1&k]) Bj1 , jn+1&k
. (3.4)

We put mi=*i&*i+1+1. We define +k, l to be the partition corresponding
to the set

J(*)&[ jn+1&l , jn+1&k]=[ j1 , ..., }̂n+1&l , ..., }̂n+1&k , ..., jn]

for k<l. Then a straightforward computation shows +k, l=(*1+2, ...,
*k&1+2, *k+1+1, ..., * l&1+1, * l+1 , ..., *n). Also, from the fact that
c(*)=��

i=1 (*2i&1&*2i) we note that

c(+k, l)= :
l&1

i=k

mi =(i )+c(*)+1. (3.5)
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Let &k=+1, k=(*1+2, ..., *k&1+2, *k+1+1, ..., *n&1+1). By our induction
hypothesis for l(&k)<n we have

pf(BJ(*)&[ j1 , jn+1&k])

=

ac(+1) `
n&1

i=2

[mi ; a=(i )b][mn&1+mn ; ab] if k=1,

ac(+k) `
k&2

i=1

[mi ; a=(i )b][mk&1+mk ; a=(k&1)b]

_ `
n&2

i=k+1

[mi ; a=(i&1)b][mn&1+mn ; ab] if 2�k�n&2,

ac(+n&1) `
n&3

i=1

[mi ; a=(i )b][mn&2+mn&1+mn ; ab] if k=n&1.

(3.6)

By substituting (3.5) and (3.6) and Bj1 jn+1&k
=a*k&*n+n&k&1[mn ; ab]

[�n&1
i=k mi ; a&1b] into (3.4), we obtain

pf(BJ(*))=ac(*)+�i=1
n&1 mi (=(i )+1) `

n&2

i=2

[mi ; a=(i&1)b][mn&1+mn ; ab]

_[mn ; ab] _ :
n&1

i=1

mi ; a&1b&+ :
n&2

k=2

(&1)&1 ac(*)+�i=k
n&1 mi(=(i )+1)

_ `
k&2

i=1

[m i ; a=(i )b] `
n&2

i=k+1

[mi ; a=(i&1)b]_[mk&1+mk ; a=(k&1)b]

_[mn&1+mn ; ab][mn ; ab] _ :
n&1

i=k

mi ; a&1b&

+ac(*) `
n&3

i=1

[mi ; a=(i )b][mn&1 ; a&1b][mn ; ab]

_[mn&2+mn&1+mn ; ab]. (3.7)
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We claim that (3.7) is equal to ac(*) >n
k=1 [mi ; a=(i )b]. Put

Pn=a�i=1
n&1 mi (=(i )+1) >n&2

i=2 [mi ; a=(i&1)b][�n&1
i=1 mi ; a&1b]

>n&1
i=1 [mi ; a=(i )b][mn&1+mn ; ab]

+ :
n&2

k=2

(&1)k&1 a�i=k
n&1 mi (=(i )+1)

_
_>n&2

i=k+1 [mi ; a=(i&1)b][mk&1+mk ; a=(k&1)b]
_[�n&1

i=k m i ; a&1b][mn&1+mn ; ab] &
>n&1

i=k&1 [mi ; a=(i )b]

+
[mn&2+mn&1+mn ; ab]

[mn&2 ; ab]
. (3.8)

Then it is enough to show that Pn=1 for all even integers n with n�4. We
prove this by induction on even integers n. When n=4, we can show by
direct calculation that P4=1. Suppose that this holds for an even integer
n�4. Then by the expression (3.8) we obtain

Pn+2=a�i=1
n&1 mi (=(i )+1)+2mn

>n
i=2 [mi ; a=(i&1)b][�n+1

i=1 m i ; a&1b]
>n+1

i=1 [mi ; a=(i)b]

_[mn+1+mn+2 ; ab]+ :
n

k=2

(&1)k&1 a�i=k
n&1 mi (=(i )+1)+2mn

_
>n

i=k+1 [mi ; a=(i&1)b][mk&1+mk ; a=(k&1)b][�n+1
i=k m i ; a&1b]

>n+1
i=k&1 [m i ; a=(i )b]

_[mn+1+mn+2 ; ab]+
[mn+mn+1+mn+2 ; ab]

[mn+2 ; ab]
,

Replace [�n+1
i=k mi ; a&1b] in the first and second terms of this formula by

the following expression

_ :
n&1

i=k

mi ; a&1b&+a&�i=k
n&1 mi b�i=k

n&1 mi[mn+mn+1 ; a&1b],

then we obtain

Pn+2=A+B+
[mn+mn+1+mn+2 ; ab]

[mn+2 ; ab]
. (3.9)
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Here A and B are respectively given by

A=a�i=1
n&1 mi(=(i )+1)+2mn[mn+1+mn+2 ; ab]

_
>n

i=2 [mi ; a=(i&1)b][�n&1
i=1 mi ; a&1b]

>n+1
i=1 [mi ; a=(i )b]

+ :
n

k=2

(&1)k&1 a�i=k
n&1 mi (=(i )+1)+2mn[mn+1+mn+2 ; ab]

_
>n

i=k+1 [mi ; a=(i&1)b][mk&1+mk ; a=(k&1)b][�n&1
i=k m i ; a&1b]

>n+1
i=k&1 [mi ; a=(i )b]

,

B=a�i=1
n&1 mi =(i )+2mn b�i=1

n&1 mi[mn+mn+1 ; a&1b]

_[mn+1+mn+2 ; ab]
>n

i=2 [mi ; a=(i&1)b]
>n+1

i=1 [mi ; a=(i )b]

+ :
n

k=2

(&1)k&1 a�i=k
n&1 mi =(i )+2mnb�i=k

n&1 mi[mn+mn+1 ; a&1b]

_[mn+1+mn+2 ; ab]_
>n

i=k+1 [mi ; a=(i&1)b][mk&1+mk ; a=(k&1)b]
>n+1

i=k&1 [mi ; a=(i)b]
.

Substituting

[mk&1+mk ; a=(k&1)b]

=[mk&1 ; a=(k&1)b]+a=(k&1) mk&1bmk&1[mk ; a=(k&1)b]

into B yields

B=a�i=1
n&1 mi =(i )+2mnb�i=1

n&1 mi

_[mn+mn+1 ; a&1b][mn+1+mn+2 ; ab]
>n

i=2 [m i ; a=(i&1)b]
>n+1

i=1 [mi ; a=(i )b]

+ :
n

k=2

(&1)k&1 a�i=k
n&1 mi =(i )+2mn b�i=k

n&1 mi[mn+mn+1 ; a&1b]

_[mn+1+mn+2 ; ab]_
>n

i=k+1 [mi ; a=(i&1)b]
>n+1

i=k [m i ; a=(i )b]

+ :
n

k=2

(&1)k&1 a�n&1
i=k&1

mi =(i )+2mnb�n&1
i=k&1

mi[mn+mn+1 ; a&1b]

_[mn+1+mn+2 ; ab]_
>n

i=k [mi ; a=(i&1)b]
>n+1

i=k&1 [mi ; a=(i )b]

=&a2mn
[mn+mn+1 ; a&1b][mn+1+mn+2 ; ab]

[mn ; ab][mn+1 ; ab]
. (3.10)
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In the meanwhile, our induction hypothesis Pn=1 applied to A yields

A=a2mn
[mn&1 ; ab][mn ; a&1b][mn+1+mn+2 ; ab]

[mn ; ab][mn+1 ; a&1b][mn&1+mn ; ab]

_\a�i=1
n&1 mi (=(i)+1)

_>n&2
i=2 [m i ; a=(i&1)b][mn&1+mn ; ab]

[�n&1
i=1 m i ; a&1b] &

>n&1
i=1 [mi ; a=(i)b]

+ :
n&2

k=2

(&1)k&1 a�i=k
n&1 mi (=(i)+1)[mk&1+mk ; a=(k&1)b]

_[mn&1+mn ; ab]_
>n&2

i=k+1 [mi ; a=(i&1)b][�n&1
i=k mi ; a&1b]

>n&1
i=k&1 [mi ; a=(i)b] +

+a2mn
[mn ; a&1b][mn&2+mn&1 ; ab][mn+1+mn+2 ; ab]

[mn&2 ; ab][mn ; ab][mn+1 ; a&1b]

=a2mn
[mn&1 ; ab][mn ; a&1b][mn+1+mn+2 ; ab]

[mn ; ab][mn+1 ; a&1b][mn&1+mn ; ab]

_\1&
[mn&2+mn&1+mn ; ab]

[mn&2 ; ab] +
+a2mn

[mn ; a&1b][mn&2+mn&1 ; ab][mn+1+mn+2 ; ab]
[mn&2 ; ab][mn ; ab][mn+1 ; a&1b]

.

Owing to [xq][y; q]&[x+ y+z; q][y; q]+[x+ y; q][y+zq]=[x; q]
[y+z; q], it follows that

A=a2mn
[mn ; a&1b][mn+1+mn+2 ; ab]

[mn ; ab][mn+1 ; a&1b]
. (3.11)

Combining (3.10) and (3.11) with (3.9), we obtain

Pn+2=a2mn
[mn ; a&1b][mn+1+mn+2 ; ab]

[mn ; ab][mn+1 ; a&1b]

&a2mn
[mn+mn+1 ; a&1b][mn+1+mn+2 ; ab]

[mn ; ab][mn+1 ; ab]

+
[mn+mn+1+mn+2 ; ab]

[mn+2 ; ab]
,
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and this is indeed shown to be 1 by a simple calculation. This completes
the proof. K

4. PROOF OF THE SECOND FORMULA

The following lemma is also easily verified.

Lemma 4.1. Let ;1, 1
ij be as in Definition 2.1. Then ;1, 1

ij determined by

;1, 1
ij ={

1
a j&1(1&a&1b)
1+ab+b2

a j&i&1(1+a&1b)(1+ab)

if i=0, j=1
if i=0, j�1,
if i�1, j�i+1,
if i�1, j�i+2.

(4.1)

Let B1, 1 be a skew-symmetric matrix whose entries are ;1, 1
ij . We obtain

the following evaluation of the sub-Phaffians of B1, 1 which proves the
second identity of the main theorem.

Proposition 4.2. We have

pf(BJ(*))=ac(*) `
�

k=1

[*$k&*$k+1+1; a=(*$k), b]. (4.2)

Lemma 4.3. Let A be a skew-symmetric matrix of even degree of the
form

A=_ B
&tD }

D
C& .

Suppose that the rank of the submatrix D is less than or equal to 1. Then

(1) If B is a 2m_2m matrix, C is 2n_2n, and D is 2m_2n, then we
have

pf(A)=pf(B) pf(C ). (4.3)

(2) If B is a (2m&1)_(2m&1) matrix, C is (2n+1)_(2n+1), and
D is (2m&1)_(2n+1), and we assume that D is of the form D=(:, d) =
t:d for some two vectors := t(:1 , :2 , ..., :2n+1) and d= t(d1 , d2 , ..., d2n+1),
then

pf(A)=pf \_ B
&td }

d
0&+ :

2n+1

j=1

(&1) j&1 :j pf(Cj c). (4.4)
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Here Cj c indicates the submatrix of degree 2l&2 of C which is obtained by
removing the jth row and jth column from C.

Proof. In both cases we write A in the form

A=_ B
&tD }

D
O&+_O

O }
O
C&

and apply Lemma 2.3. Then we have

pf(A)= :
m+n

k=0

:

>J=2k
J/[2m+2n]

(&1)s(J )&k pf \_ B
&tD }

D
O&J+ pf \_O

O }
O
C&Jc+ .

First we consider the case (1). Put I1=[2m] and I2=[2m+1, ...,
2m+2n]. If J#3 I1 , then there exists some j # I1 such that j # J c, and this
implies that

pf \_O
O }

O
C&Jc+

vanishes. Thus we can assume J#I1 . Further, if >(J & I2)�2, then

pf \_ B
&tD }

D
O&J+

vanishes since the rank of D is �1. Consequently, only the term with index
set J=I1 remains non-zero in the above sum and this proves (4.3). Next
we consider the case (2). Put I1=[2m&1] and I2=[2m, ..., 2m+2n]. In
the same manner as that used for we can show that if the product of
Pfaffians above does not vanish then it is necessary to hold the condition
J#I1 and >(J _ I2)=1. Thus we have

pf(A)= :

1� j�2n+1
J=[2m&1] _ [2m&1+ j]

(&1)s(I )&m pf \_ B
&:j

td }
: j d
O &+ pf(Cj c)

=pf \_ B
&td }

d
O&+ :

2n+1

j=1

(&1) j&1 : j pf(Cj c).

This proves (4.4). K

Proof of Proposition 4.2. We shall proceed by induction on even
integers n. When n=2, it is easy to see that (4.2) holds from Lemma 4.1.
Assume n�4. Put

mi=*i$&*$i+1+1.
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We separate the proof into two cases, that is, the case *n&2>*n&1 and the
case *n&2=*n&1 , and use Lemma 4.3(1). We first consider the case
*n&2>*n&1 . In this case, since j2+1< j3 , the (i, k)-entry of B1, 1

J(*) is given
by a ji& jk&1(1+a&1b)(1+ab) for 1�i�2 and 3�k�n. Thus we can
directly apply Lemma 4.3(1) to B1, 1

J(*) to obtain

pf(B1, 1
J(*))=;1, 1

j1 j2
pf(B1, 1

J(*)&[ j1 , j2]). (4.5)

Let + be the partition defined by +=*(J(*)&[ j1 , j2])=+n&1, n and put
l=*n&2 . Then

+i$={n&2
*$i&2

for 1�i�l+2,
for i>l+2.

(4.6)

By Lemma 4.1,

;1, 1
j1 j2

=;1, 1
*n , *n&1+1={a*n&1&*n(1+a&1b)(1+ab)

1+ab+b2

(*n&1>*n),
(*n&1=*n),

(4.7)

and by (3.5) we have c(+)=c(*)&(*n&1&*n). On the one hand, if
*n&1>*n then, by our induction hypothesis, we have

pf(BJ(*))=a*n&1&*n(1+a&1b)(1+ab)

_ac(*)&(*n&1&*n) `
�

i=l

[mi ; a=(*i$), b]. (4.8)

Since *n&2>*n&1>*n , we have

n if 1�i�*n ,

*i$={n&1 if *n<i�*n&1 ,

n&2 if *n&1�i�l=*n&2 .

This fact and (4.8) prove (4.2) in this special case. On the other hand, if
*n&1=*n , then, by our induction hypothesis, we observe that

pf(BJ(*))=(1+ab+b2)_ac(*) `
�

i=l

[mi ; a=(*i$), b]. (4.9)

Since *n&2>*n&1=*n , we have

*i$={n
n&2

if 1�i�*n=*n&1 ,
if *n&1<i�l=*n&2 .

Hence this fact and (4.9) also prove (4.2) in this case.
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Next assume *n&2=*n&1 , i.e., j3= j2+1. In this case, since
Bj2 j3

=1+ab+b2=(1+a&1b)(1+ab)&a&1b, we use Lemma 2.3 and
Lemma 4.3(1) to obtain

pf(B1, 1
J(*))=;1, 1

j1 j2
pf(B1, 1

J(*)&[ j1 , j2])&a&1b pf(B1, 1
J(*)&[ j2 , j3]). (4.10)

Let + and l be as before. We define the partition & to be &=*(J(*)&
[ j2 , j3])=+n&2, n&1 . By (3.5), c(&)=c(*)+2+*n&2&*n&1=c(*)+2. In
view of (4.7) we have to separate our proof into two sub-cases. First we
consider the sub-case *n&1>*n . Note that +i$ is as in (4.6) and

n&2 for 1�i�*n ,

&i$={n&3 for *n<i�*n&3+2, (4.11)

*$i&2 for i>*n&3+2.

From out induction hypothesis we have

pf(BJ(*))=a*n&1&*n(1+a&1b)(1+ab)

_ac(*)&(*n&1&*n)[ml&1; a, b] `
�

i=l+1

[mi ; a=(*i$), b]

&a&1b_ac(*)+2(1+ab)[m l&2; a, b] `
�

i=l+1

[mi ; a=(*i$), b] (4.12)

By the recursion formula [m; a&1, b]=(1+a&1b)[m&1; a, b]&ab[m&2;
a&1, b], Eq. (4.12) is equal to

pf(BJ(*))=ac(*)(1+ab)[m l ; a, b] `
�

i=l+1

[mi ; a=(*i$), b]. (4.13)

Since *n&2=*n&1>*n , we have

*i$={n
n&1

if 1�i�*n ,
if *n<i�l=*n&2 ,

and from this we see that (4.2) holds in this case.
Finally, we consider the sub-case *n&1=*n . In this case

n&2 for 1�i�l,
&i$={n&3 for l<i�*n&3+2, (4.14)

*$i&2 for i>*n&3+2.
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From our induction hypothesis we have

pf(BJ(*))=(1+ab+b2)_ac(*)[*l$&*$l+1 ; a, b]

_[ml&2; a, b] `
�

i=l+1

[mi ; a=(*i$), b]

&a&1b_ac(*)+2[m l&3; a, b] `
�

i=l+1

[mi ; a=(*i$), b]. (4.15)

Use the recursion formula [m; a, b]=(1+ab+b2)[m&2; a, b]&ab
(1+ab)[m&3; a&1, b] to see that (4.15) is equal to

pf(BJ(*))=ac(*)[m l ; a, b] `
�

i=l+1

[mi ; a=(*i$), b]. (4.16)

Since *n&2=*n&1=*n , we have *i$=n for 1�i�l. This shows that (4.2)
holds and hence the proof is complete. K

5. ONE CONJECTURE

Define the symmetric functions Pr(a, b, c) and Qr(a, b, c) by

Pr(a, b, c)= :
r

k=0

ak+1&bk+1

a&b
1&ar&k+1br&k+1

1&ab
ck, (5.1)

Qr(a, b, c)= :
r

k=0

hr&k(a, b, c) akbkck, (5.2)

where hr is a rth complete symmetric polynomial. For convention we define
Pr=Qr=0 if r<0. A composition is a sequence #=(#1 , #2 , ..., #n , ...) of
integers containing finitely many non-zero terms. We denote by Z� the set
of all compositions. For a partition *=(*1 , *2 , ...) we define the composition
#=1(*) by

#i=*i&*i+1 . (5.3)

For each integer i we define Di : Z� � Z� by

Di (#1 , ..., #i , ..., #n , ...)=(#1 , ..., # i&1, ..., #n , ...).

For a composition #=(#1 , ..., #n , ...) we define the symmetric function
F#(a, b, c) by

F#(a, b, c)=h#1
(a, b, c) `

�

k=1

P#2k
(a, b, c) `

�

k=1

Q#2k+1
(a, b, c). (5.4)
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For each composition #, since P#2k
(a, b, c), Q#2k+1

(a, b, c) are identically
equal to 1 for a sufficiently large number k, the product in (5.4) is well-
defined. According to their definitions of hr , Pr , and Qr , if there is a
negative #j for some j then F#=0. Further, we define the operation of Di

to F# by

Di F#=FDi # .

We expect that the following conjecture would hold for the type (3, 0)
case.

Conjecture.

.3, 0
* (a, b, c)= `

�

k=1

(1&abc Dk Dk+1) F1(*)(a, b, c). (5.5)

A s a consequence we have

:
* { `

�

k=1

(1&abc Dk Dk+1) F1(*)(a, b, c)= s*(x1 , ..., xn)

= `
n

i=1

1
(1&axi)(1&bxi)(1&cx i)

`
1�i< j�n

1
1&xi xj

. (5.6)

To settle the (4, 0) case problem or more generally the (r, 0) case
problem is still a problem. Further, the reader can challenge the special
(r, s) cases or general (r, s) case.

Remark. Recall the Schur�Weyl duality for the pair (GLn , GLm))

:
*

s*(x1 , ..., xn) s*( y1 , ..., ym)=`
i, j

1
1&xi y j

,

and the Littlewood�Richardson rule

s+(x) s&(x)=:
*

c*
+ &s*(x)

(see, e.g., [Ma]). Combining these identities with the Littlewood formula
(1.0) for a=0, we see that .n, 0

* is expressed by

.n, 0
* (a1 , ..., an)= :

&$ : even partition
+, &

c*
+&s+(a1 , ..., an), (5.7)

while we cannot expect to obtain a desirable product expression by this
formula.
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6. CONCLUDING REMARKS

We shall give another explanation (proof) of our formulas briefly based
on the Pieri formula (a special case of the Littlewood�Richardson rule for
an irreducible decomposition of tensor products) and the Littlewood
formula.

By the Pieri formula

s*(x) s(r)(x)= :

+&* : horizontal r-strip
+

s+(x). (6.1)

Here a horizontal r strip means a skew diagram % which consists of at most
one square in each column such that |%|=r (see [Ma, I, Sect. 1]). Recall
the Littlewood formula

:
*

ac(*)s*(x1 , x2 , ..., xn)= `
n

i=1

1
1&axi

`
1�i< j�n

1
1&xi xj

.

Multiply both sides of the above formula by

:
�

r=0

s(r)(x1 , x2 , ..., xn) br= `
n

i=1

1
1&bxi

to see that

:
+

:

horizontal r-strip

*, r�0
+&* :

ac(*)brs+(x1 , x2 , ..., xn)

= `
n

i=1

1
(1&ax i)(1&bxi)

`
1�i<j�n

1
1&xi xj

.

Denote +=(+1 , +2 , ...) and *=(*1 , *2 , ...). If +&* is a horizontal strip
then

c(*)=c(+)&k1+k2&k3+k4& } } } , (6.2)
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where ki=+i&*i and satisfies +i&+i+1�k i�0. Hence

:

horizontal r-strip

*, r�0
+&* :

ac(*)br=ac(+) :
+1&+2

k1=0

(a&1b)k1 :
+2&+3

k2=0

(ab)k2 :
+3&+4

k3=0

(a&1b)k3 } } }

=ac(+) 1&(a&1b)+1&+2+1

1&a&1b
1&(ab) +2&+3+1

1&ab

_
1&(a&1b) +3&+4+1

1&a&1b
} } }

=ac(+) `
�

k=1

[+k&+k+1+1; a=(k)b].

This proves the formula (1.1).
The formula (1.2) can be proved quite similarly. In fact, in place of (6.1)

we employ the formula

s*(x) s(1r)(x)= :

+&* : vertical r-strip
+

s+(x). (6.3)

Note that if +&* is a vertical strip then we have

c(*)=c(+)+ :
i�0

1&(&1) ji

2
, (6.4)

where ji=+i$&*i$ and satisfies +i$&+$i+1� ji�0. Hence an elementary
manipulation shows

:

+&* : vertical r-strip
*, r�0

ac(*)br=ac(+) `
�

k=1

[+$k&+$k+1+1; a=(+$k), b].

This implies the formula (1.2).

We close this paper by listing some remarks.

Remarks. (1) Although it is seemingly less obvious from the definition
of .2, 0

* (a, b) in (1.3), it is clear that .2, 0
* (a, b) is symmetric with respect
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to the variables a and b by the formula (1.1). In fact, since c(*)=
��

i=1 (*2i&1&*2i), as we saw in the computation above, an elementary
calculation shows that

.2, 0
* (a, b) :=pf \\1&(ab) i+1

1&ab
a j&i&b j&i

a&b +J(*)+
= `

j : even

1&(ab)*j&*j+1+1

1&ab
`

k : odd

a*k&*k+1+1&b*k&*k+1+1

a&b
,

(see Proposition 3.2). Moreover, by this expression, if we put a=b&1=ei%

and t=cos %, then in particular, in contrast to Theorem 3.1 in [IW2], we
see that

:
*

`
�

k=1

(*2k&*2k+1+1) U*2k&1&*2k
(t) s*(x)

= `
n

i=1

1
1&2tx i+x2

i

`
1�i< j�n

1
1&x i x j

,

where Un(t)=(sin(n+1) %)�sin % represents the n th Chebyshev polynomial
of the second kind.

(2) As well as the Littlewood formulas and the identity cited above
from [Ma], our formulas may describe an irreducible decomposition of
certain GLn(C)-modules which is not multiplicity free under the action of
GLn(C). For example, if we take a=b=1 then the identity (1.1) (resp.
(1.2)) asserts that a finite-dimensional polynomial representation of
GLn(C) corresponding to * appears N(*)-times (resp., N(*$)-times) as an
irreducible component in the decomposition of P(Cn)�2�P(Skewn_n)
(resp., 41(C)�n�P(Cn)�P(Skewn_n)) where N(*)=>�

i=1 (*i&*i+1+1).
Here P(Skewn_n) represents the polynomial ring of the skew-symmetric
matrices, and the action is obviously coming from the usual actions of
GLn(C) on Skewn_n by X � gX tg for g # GLn(C), X # Skewn_n .

(3) If we put a=| and b=|2 in (1,1), where | is a cubic root of unity,
then we obtain the formula (5.10) in [LP].

(4) During the evaluation of our special choice of Pfaffians, we have
encountered various formulas which resemble certain special values of hyper-
geometric series, e.g., on a finite field in appearance, but we have not yet
clarified this matter.
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