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Abstract

For any partition λ let ω(λ) denote the four parameter weight

ω(λ) = a
P

i≥1dλ2i−1/2eb
P

i≥1bλ2i−1/2cc
P

i≥1dλ2i/2ed
P

i≥1bλ2i/2c,

and let `(λ) be the length of λ. We show that the generating function
∑

ω(λ)z`(λ), where the
sum runs over all ordinary (resp. strict) partitions with parts each ≤ N , can be expressed
by the Al-Salam-Chihara polynomials. As a corollary we derive G.E. Andrews’ result by
specializing some parameters and C. Boulet’s results by letting N → +∞. In the last section
we prove a Pfaffian formula for the weighted sum

∑
ω(λ)z`(λ)Pλ(x) where Pλ(x) is Schur’s

P -function and the sum runs over all strict partitions.

Keywords: Andrews-Stanley partition function; basic hypergeometric series; Al-Salam-
Chihara polynomials; minor summation formula of Pfaffians; Schur’s Q-functions.

1 Introduction

For any integer partition λ, denote by λ′ its conjugate and `(λ) the number of its parts. Let
O(λ) denote the number of odd parts of λ and |λ| the sum of its parts. R. Stanley ([16]) has
shown that if t(n) denotes the number of partitions λ of n for which O(λ) ≡ O(λ′) (mod 4),
then

t(n) =
1
2

(p(n) + f(n)) ,

where p(n) is the total number of partitions of n, and f(n) is defined by

∞∑
n=0

f(n)qn =
∏

i≥1

(1 + q2i−1)
(1− q4i)(1 + q4i−2)

.

Motivated by Stanley’s problem, G.E. Andrews [1] assigned the weight zO(λ)yO(λ′)q|λ| to
each partition λ and computed the corresponding generating function of all partitions with
parts each less than or equal to N (see Corollary 4.4). The following more general weight
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first appeared in Stanley’s paper [17]. Let a, b, c and d be commuting indeterminates. For
each partition λ, define the Andrews-Stanley partition functions ω(λ) by

ω(λ) = a
P

i≥1dλ2i−1/2eb
P

i≥1bλ2i−1/2cc
P

i≥1dλ2i/2ed
P

i≥1bλ2i/2c, (1.1)

where dxe (resp. bxc) stands for the smallest (resp. largest) integer greater (resp. less)
than or equal to x for a given real number x. Actually it is more convenient to define the
above weight through the Ferrers diagram of λ: one fills the ith row of the Ferrers diagram
alternatively by a and b (resp. c and d) if i is odd (resp. even), the weight w(λ) is then equal
to the product of all the entries in the diagram. For example, if λ = (5, 4, 4, 1) then ω(λ) is
the product of the entries in the following diagram for λ.

a b a b a

c d c d

a b a b

c

In [2] C. Boulet has obtained results for the generating functions of all ordinary partitions
and all strict partitions with respect to the weight (1.1) (see Corollary 3.6 and Corollary 4.5).
On the other hand, A. Sills [15] has given a combinatorial proof of Andrews’ result, which
has been further generalized by A. Yee [19] by restricting the sum over partitions with parts
each ≤ N and length ≤ M .

In this paper we shall generalize Boulet’s results by summing the weight function ω(λ)z`(λ)

over all the ordinary (resp. strict) partitions with parts each ≤ N . It turns out that the
corresponding generating functions are related to the basic hypergeometric series, namely
the Al-Salam-Chihara polynomials and the associated Al-Salam-Chihara polynomials (see
Corollary 3.4 and Corollary 4.3).

This paper can be regarded as a succession of [6], in which one of the authors gave a
Pfaffian formula for the weighted sum

∑
ω(λ)sλ(x) of the Schur functions sλ(x), where the

sum runs over all ordinary partitions λ, and settled an open problem by Richard Stanley.
Though it is not possible to specialize the Schur functions to z`(λ), we show in this paper
that this approach still works, i.e., we can evaluate the weighted sum

∑
ω(λ)z`(λ) by using

Pfaffians and minor summation formulas as tools ([8], [9]), but, as an after thought, we also
provide alternative combinatorial proofs.

In the last section we show the weighted sum
∑

ω(µ)z`(µ)Pµ(x) of Schur’s P -functions
Pµ(x) (when z = 2, this equals the weighted sum

∑
ω(µ)Qµ(x) of Schur’s Q-functions Qµ(x))

can be expressed by a Pfaffian where µ runs over all strict partitions (with parts each ≤ N).

2 Preliminaries

A q-shifted factorial is defined by

(a; q)0 = 1, (a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n = 1, 2, . . . .

We also define (a; q)∞ =
∏∞

k=0(1 − aqk). Since products of q-shifted factorials occur very
often, to simplify them we shall use the compact notations

(a1, . . . , am; q)n = (a1; q)n · · · (am; q)n,

(a1, . . . , am; q)∞ = (a1; q)∞ · · · (am; q)∞.
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We define an r+1φr basic hypergeometric series by

r+1φr

(
a1, a2, . . . , ar+1

b1, . . . , br
; q, z

)
=

∞∑
n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, . . . , br; q)n
zn.

The Al-Salam-Chihara polynomial Qn(x) = Qn(x;α, β|q) is, by definition (cf. [11, p.80]),

Qn(x;α, β|q) =
(αβ; q)n

αn 3φ2

(
q−n, αu, αu−1

αβ, 0
; q, q

)
,

= (αu; q)nu−n
2φ1

(
q−n, βu−1

α−1q−n+1u−1
; q, α−1qu

)
,

= (βu−1; q)nun
2φ1

(
q−n, αu

β−1q−n+1u
; q, β−1qu−1

)
,

where x = u+u−1

2 . This is a specialization of the Askey-Wilson polynomials (see [3]), and
satisfies the three-term recurrence relation

2xQn(x) = Qn+1(x) + (α + β)qnQn(x) + (1− qn)(1− αβqn−1)Qn−1(x), (2.1)

with Q−1(x) = 0, Q0(x) = 1.
We also consider a more general recurrence relation:

2xQ̃n(x) = Q̃n+1(x) + (α + β)tqnQ̃n(x) + (1− tqn)(1− tαβqn−1)Q̃n−1(x), (2.2)

which we call the associated Al-Salam-Chihara recurrence relation. Put

Q̃(1)
n (x) = u−n (tαu; q)n 2φ1

(
t−1q−n, βu−1

t−1α−1q−n+1u−1
; q, α−1qu

)
, (2.3)

Q̃(2)
n (x) = un (tq; q)n(tαβ; q)n

(tβuq; q)n
2φ1

(
tqn+1, α−1qu

tβqn+1u
; q, αu

)
, (2.4)

where x = u+u−1

2 . In [10], Ismail and Rahman have presented two linearly independent
solutions of the associated Askey-Wilson recurrence equation (see also [4, 5]). By specializing
the parameters, we conclude that Q̃

(1)
n (x) and Q̃

(2)
n (x) are two linearly independent solutions

of the associated Al-Salam-Chihara equation (2.2) (see [10, p.203]). Here, we use this fact
and omit the proof. The series (2.3) and (2.4) are convergent if we assume |u| < 1 and
|q| < |α| < 1 (see [10, p.204]).

Let
Wn = Q̃(1)

n (x)Q̃(2)
n−1(x)− Q̃

(1)
n−1(x)Q̃(2)

n (x) (2.5)

denote the Casorati determinant of the equation (2.2). Since Q̃
(1)
n (x) and Q̃

(2)
n (x) both satisfy

the recurrence equation (2.2), it is easy to see that Wn satisfies the recurrence equation

Wn+1 = (1− tqn)(1− tαβqn−1)Wn.

Using this equation recursively, we obtain

Wn+1 = (tq, tαβ; q)nW1,

which implies

W1 =
limn→∞Wn+1

(tq, tαβ; q)∞
.
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Using (2.3) and (2.4), we obtain

lim
n→∞

Wn+1 =
u−1(tαu, tq, tαβ, βu; q)∞

(tβuq, αu; q)∞

(for the detail, see [10]). Thus we conclude that

W1 =
u−1(tαu, βu; q)∞
(αu, tβuq; q)∞

. (2.6)

In the following sections we need to find a polynomial solution of the recurrence equation
(2.2) which satisfies a given initial condition, say Q̃0(x) = Q̃0 and Q̃1(x) = Q̃1. Since Q̃

(1)
n (x)

and Q̃
(2)
n (x) are linearly independent solutions of (2.2), this Q̃n(x) can be written as a linear

combination of these functions, say

Q̃n(x) = C1 Q̃(1)
n (x) + C2 Q̃(2)

n (x).

If we substitute the initial condition Q̃0(x) = Q̃0 and Q̃1(x) = Q̃1 into this equation and
solve the linear equation, then we obtain

C1 =
1

W1

{
Q̃1Q̃

(2)
0 (x)− Q̃0Q̃

(2)
1 (x)

}
,

C2 =
1

W1

{
Q̃0Q̃

(1)
1 (x)− Q̃1Q̃

(1)
0 (x)

}
.

By (2.6), we obtain

Q̃n(x) =
u(αu, tβuq; q)∞
(tαu, βu; q)∞

[{
Q̃1Q̃

(2)
0 (x)− Q̃0Q̃

(2)
1 (x)

}
Q̃(1)

n (x)

+
{

Q̃0Q̃
(1)
1 (x)− Q̃1Q̃

(1)
0 (x)

}
Q̃(2)

n (x)
]

(2.7)

with

Q̃
(1)
0 (x) = 2φ1

(
t−1, βu−1

t−1α−1u−1q
; q, α−1uq

)
,

Q̃
(1)
1 (x) = u−1(1− αtu) 2φ1

(
t−1q−1, βu−1

t−1α−1u−1
; q, α−1uq

)
,

Q̃
(2)
0 (x) = 2φ1

(
tq, α−1uq

tβuq
; q, αu

)
,

Q̃
(2)
1 (x) =

u(1− tq)(1− tαβ)
(1− tβuq) 2φ1

(
tq2, α−1uq

tβuq2
; q, αu

)
.

Since

lim
n→∞

un Q̃(1)
n (x) =

(tαu, βu; q)∞
(u2; q)∞

,

lim
n→∞

un Q̃(2)
n (x) = 0,

if we take the limit lim
n→∞

unQ̃n(x), then we have

lim
n→∞

unQ̃n(x) =
u(tβuq, αu; q)∞

(u2; q)∞

{
Q̃1Q̃

(2)
0 (x)− Q̃0Q̃

(2)
1 (x)

}
. (2.8)

4



In the later half of this section, we briefly recall our tools, i.e. partitions and Pfaffians.
We follow the notation in [14] concerning partitions and the symmetric functions. For more
information about the general theory of determinants and Pfaffians, the reader can consult
[12], [13] and [9] since, in this paper, we sometimes omit the details and give sketches of
proofs.

Let n be a non-negative integer and assume we are given a 2n by 2n skew-symmetric
matrix A = (aij)1≤i,j≤2n, (i.e. aji = −aij), whose entries aij are in a commutative ring.
The Pfaffian of A is, by definition,

Pf(A) =
∑

ε(σ1, σ2, . . . , σ2n−1, σ2n) aσ1σ2 . . . aσ2n−1σ2n
.

where the summation is over all partitions {{σ1, σ2}<, . . . , {σ2n−1, σ2n}<} of [2n] into 2-
elements blocks, and where ε(σ1, σ2, . . . , σ2n−1, σ2n) denotes the sign of the permutation

(
1 2 · · · 2n
σ1 σ2 · · · σ2n

)
.

We call a partition σ = {{σ1, σ2}<, . . . , {σ2n−1, σ2n}<} of [2n] into 2-elements blocks a
perfect matching or 1-factor of [2n], and let Fn denote the set of all perfect matchings of
[2n]. We represent a perfect matching σ graphically by embedding the points i ∈ [2n] along
the x-axis in the coordinate plane and representing each block {σ2i−1, σ2i}< by the curve
connecting σ2i−1 to σ2i in the upper half plane. For instance, the graphical representation
of σ = {{1, 4}, {2, 5}, {3, 6}} is the Figure 1 bellow. If we write wt(σ) = ε(σ)

∏n
i=1 aσ2i−1σ2i

for each perfect matching σ, then we can restate our definition as

Pf(A) =
∑

σ∈Fn

wt(σ). (2.9)

A skew-symmetric matrix A = (aij)1≤i,j≤n is uniquely determined by its upper triangular
entries (aij)1≤i<j≤n. So we sometimes define a skew-symmetric matrix by describing its
upper triangular entries. One of the most important formulas for Pfaffians is the expansion
formula by minors. While the Laplacian determinant expansion formula by minors should
be well-known to everybody, the reader might be not so familiar with the Pfaffian expansion
formula by minors so that we cite the formula here. For 1 ≤ i < j ≤ 2n, let (A; {i, j}, {i, j})
demote the (2n − 2) × (2n − 2) skew-symmetric matrix obtained by removing both the ith
and jth rows and both the ith and jth columns of A. Let us defined γ(i, j) by

γ(i, j) = (−1)j−i−1 Pf(A; {i, j}, {i, j}). (2.10)

Then the following identities are called the Laplacian Pfaffian expansions by minors:

δi,j Pf (A) =
2n∑

k=1

akjγ(k, i), (2.11)

δi,j Pf (A) =
2n∑

k=1

aikγ(j, k). (2.12)

w w w w w w
1 2 3 4 5 6

Figure 1: A perfect matching
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(See [8, 9]). We call the formula (2.11) the Pfaffian expansion along the jth column, and the
formula (2.12) the Pfaffian expansion along the ith row. Especially, if we put i = 1 in (2.12),
then we obtain the expansion formula along the first row:

Pf (A) =
2n∑

k=2

(−1)ka1,k Pf(A; {1, k}, {1, k}). (2.13)

Let Om,n denote the m× n zero matrix and let En denote the identity matrix (δi,j)1≤i,j≤n

of size n. Here δi,j denotes the Kronecker delta. We use the abbreviation On for On,n.
For any finite set S and any nonnegative integer r, let

(
S
r

)
denote the set of all r-element

subsets of S. For example,
(
[n]
r

)
stands for the set of all multi-indices {i1, . . . , ir} such that

1 ≤ i1 < · · · < ir ≤ n. Let m, n and r be integers such that r ≤ m,n and let T be an m by
n matrix. For any index sets I = {i1, . . . , ir} ∈

(
[m]
r

)
and J = {j1, . . . , jr} ∈

(
[n]
r

)
, let ∆I

J(A)
denote the submatrix obtained by selecting the rows indexed by I and the columns indexed
by J . If r = m and I = [m], we simply write ∆J (A) for ∆[m]

J (A). Similarly, if r = n and
J = [n], we write ∆I(A) for ∆I

[n](A). It is essential that the weight ω(λ) can be expressed
by a Pfaffian, which is a fact proved in [6]:

Theorem 2.1. Let n be a non-negative integer. Let λ = (λ1, . . . , λ2n) be a partition such
that `(λ) ≤ 2n, and put l = (l1, . . . , l2n) = λ + δ2n, where δm = (m − 1,m − 2, . . . , 1, 0) for
non-negative integer m. Define a skew-symmetric matrix A = (αij)i,j≥0 by

αij = ad(j−1)/2ebb(j−1)/2ccdi/2edbi/2c

for i < j. Then we have

Pf
[
∆I(λ)

I(λ) (A)
]
1≤i,j≤2n

= (abcd)(
n
2)ω(λ),

where I(λ) = {l2n, . . . , l1}.
A variation of this theorem for strict partitions is as follows.

Theorem 2.2. Let n be a nonnegative integer. Let µ = (µ1, . . . , µn) be a strict partition
such that µ1 > · · · > µn ≥ 0. Let K(µ) = {µn, . . . , µ1}. Define a skew-symmetric matrix
B = (βij)i,j≥−1 by

βij =





1, if i = −1 and j = 0,
adj/2ebbj/2cz, if i = −1 and j ≥ 1,
adj/2ebbj/2cz if i = 0,
adj/2ebbj/2ccdi/2edbi/2cz2, if i > 0,

(2.14)

for −1 ≤ i < j.

(i) If n is even, then we have

Pf
[
∆K(µ)

K(µ) (B)
]

= ω(µ)z`(µ). (2.15)

(ii) If n is odd, then we have

Pf
[
∆{−1}]K(µ)
{−1}]K(µ) (B)

]
= ω(µ)z`(µ). 2 (2.16)

These theorems are easy consequences of the following Lemma which has been proved in
[8, Section 4, Lemma 7].

Lemma 2.3. Let xi and yj be indeterminates, and let n is a non-negative integer. Then

Pf[xiyj ]1≤i<j≤2n =
n∏

i=1

x2i−1

n∏

i=1

y2i. 2
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3 Strict Partitions

A partition µ is strict if all its parts are distinct. One represents the associated shifted
diagram of µ as a diagram in which the ith row from the top has been shifted to the
right by i places so that the first column becomes a diagonal. A strict partition can be
written uniquely in the form µ = (µ1, . . . , µ2n) where n is an non-negative integer and
µ1 > µ2 > · · · > µ2n ≥ 0. The length `(µ) is, by definition, the number of nonzero parts
of µ. We define the weight function ω(µ) exactly the same as in (1.1). For example, if
µ = (8, 5, 3), then `(µ) = 3, ω(µ) = a6b5c3d2 and its shifted diagram is as follows.

Let
ΨN = ΨN (a, b, c, d; z) =

∑
ω(µ)z`(µ), (3.1)

where the sum is over all strict partitions µ such that each part of µ is less than or equal to
N . For example, we have

Ψ0 = 1,

Ψ1 = 1 + az,

Ψ2 = 1 + a(1 + b)z + abcz2,

Ψ3 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3.

In fact, the only strict partition such that `(µ) = 0 is ∅, the strict partitions µ such that
`(µ) = 1 and µ1 ≤ 3 are the following three:

a a b a b a ,

the strict partitions µ such that `(µ) = 2 and µ1 ≤ 3 are the following three:

a b
c

a b a
c

a b a
c d ,

and the strict partition µ such that `(µ) = 3 and µ1 ≤ 3 is the following one:

a b a
c d

a .

The sum of the weights of these strict partitions is equal to Ψ3. In this section we always
assume |a|, |b|, |c|, |d| < 1. One of the main results of this section is that the even terms
and the odd terms of ΨN respectively satisfy the associated Al-Salam-Chihara recurrence
relation:

Theorem 3.1. Set q = abcd. Let ΨN = ΨN (a, b, c, d; z) be as in (3.1) and put XN = Ψ2N

and YN = Ψ2N+1. Then XN and YN satisfy

XN+1 =
{
1 + ab + a(1 + bc)z2qN

}
XN

− ab(1− z2qN )(1− acz2qN−1)XN−1, (3.2)

YN+1 =
{
1 + ab + abc(1 + ad)z2qN

}
YN

− ab(1− z2qN )(1− acz2qN )YN−1, (3.3)
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where X0 = 1, Y0 = 1 + az, X1 = 1 + a(1 + b)z + abcz2 and

Y1 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3.

Especially, if we put X ′
N = (ab)−

N
2 XN and Y ′

N = (ab)−
N
2 YN , then X ′

N and Y ′
N satisfy

{
(ab)

1
2 + (ab)−

1
2

}
X ′

N = X ′
N+1 − a

1
2 b−

1
2 (1 + bc)z2qNX ′

N

+ (1− z2qN )(1− acz2qN−1)X ′
N−1, (3.4){

(ab)
1
2 + (ab)−

1
2

}
Y ′

N = Y ′
N+1 − a

1
2 b

1
2 c(1 + ad)z2qNY ′

N

+ (1− z2qN )(1− a2bc2dz2qN−1)Y ′
N−1, (3.5)

where X ′
0 = 1, Y ′

0 = 1 + az, X ′
1 = (ab)−

1
2 + a

1
2 b−

1
2 (1 + b)z + (ab)

1
2 cz2 and

Y ′
1 = (ab)−

1
2 + a

1
2 b−

1
2 (1 + b + ab)z + a

1
2 b

1
2 c(1 + a + ad)z2 + a

5
2 b

1
2 cdz3.

Thus (3.4) agrees with the associated Al-Salam-Chihara recurrence relation (2.2) where
u = a

1
2 b

1
2 , α = −a

1
2 b

1
2 c, β = −a

1
2 b−

1
2 and t = z2, and (3.5) also agrees with (2.2) where u =

a
1
2 b

1
2 , α = −a

1
2 b

1
2 c, β = −a

3
2 b

1
2 cd and t = z2. One concludes that, when |a|, |b|, |c|, |d| < 1,

the solutions of (3.2) and (3.3) are expressed by the linear combinations of (2.3) and (2.4)
as follows.

Theorem 3.2. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let ΨN = ΨN (a, b, c, d; z) be as
in (3.1).

(i) Put XN = Ψ2N . Then we have

XN =
(−az2q,−abc; q)∞
(−a,−abcz2; q)∞

×
{

(sX
0 X1 − sX

1 X0)(−abcz2; q)N 2φ1

(
q−Nz−2,−b−1

−(abc)−1q−N+1z−2
; q,−c−1q

)

+(rX
1 X0 − rX

0 X1)(ab)N (qz2, acz2; q)N

(−aqz2; q)N
2φ1

(
qN+1z2,−c−1q

−aqN+1z2
; q,−abc

)}
,

(3.6)

where

rX
0 = 2φ1

(
z−2,−b−1

−(abc)−1z−2q
; q,−c−1q

)
,

sX
0 = 2φ1

(
z2q,−c−1q

−az2q
; q,−abc

)
,

rX
1 = (1 + abcz2) 2φ1

(
z−2q−1,−b−1

−(abc)−1z−2
; q,−c−1q

)
,

sX
1 =

ab(1− z2q)(1− acz2)
1 + az2q

2φ1

(
z2q2,−c−1q

−az2q2
; q,−abc

)
.

(ii) Put YN = Ψ2N+1. Then we have

YN =
(−aq2z2,−abc; q)∞
(−aq,−abcz2; q)∞

×
{

(sY
0 Y1 − sY

1 Y0)(−abcz2; q)N 2φ1

(
q−Nz−2,−acd

−(abc)−1q−N+1z−2
; q,−c−1q

)

+ (rY
1 Y0 − rY

0 Y1)(ab)N (qz2, acqz2; q)N

(−aq2z2; q)N
2φ1

(
qN+1z2,−c−1q

−aqN+2z2
; q,−abc

)}
, (3.7)
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where

rY
0 = 2φ1

(
z−2,−acd

(−abc)−1qz−2
; q,−c−1q

)
,

rY
1 = (1 + abcz2) 2φ1

(
q−1z−2,−acd

−(abc)−1z−2
; q,−c−1q

)
,

sY
0 = 2φ1

(
z2q,−c−1q

−aq2z2
; q,−abc

)
,

sY
1 =

ab(1− z2q)(1− acqz2)
1 + aq2z2 2φ1

(
z2q2,−c−1q

−aq3z2
; q,−abc

)
.

If we take the limit N →∞ in (3.6) and (3.7), then by using (2.8), we obtain the following
generalization of Boulet’s result (see Corollary 3.6).

Corollary 3.3. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let sX
i , sY

i , Xi, Yi (i = 0, 1) be
as in the above theorem. Then we have

∑
µ

ω(µ)z`(µ) =
(−abc,−az2q; q)∞

(ab; q)∞
(sX

0 X1 − sX
1 X0)

=
(−abc,−az2q2; q)∞

(ab; q)∞
(sY

0 Y1 − sY
1 Y0), (3.8)

where the sum runs over all strict partitions and the first terms are as follows:

1 +
a(1 + b)
1− ab

z +
abc(1 + a + ad + abd)

(1− ab)(1− q)
z2 +

a2q(1 + b)(1 + bc + abc + bq)
(1− ab)(1− q)(1− abq)

z3 + O(z4).

On the other hand, by plugging z = 1 into (3.6) and (3.7), we conclude that the solutions
of the recurrence relations (3.4) and (3.5) with the above initial condition are exactly the
Al-Salam-Chihara polynomials, which give two finite versions of Boulet’s result.

Corollary 3.4. Put u =
√

ab, x = u+u−1

2 and q = abcd. Let ΨN (a, b, c, d; z) be as in (3.1).

(i) The polynomial Ψ2N (a, b, c, d; 1) is given by

Ψ2N (a, b, c, d; 1) = (ab)
N
2 QN (x;−a

1
2 b

1
2 c,−a

1
2 b−

1
2 |q),

= (−a; q)N 2φ1

(
q−N ,−c

−a−1q−N+1
; q,−bq

)
. (3.9)

(ii) The polynomial Ψ2N+1(a, b, c, d; 1) is given by

Ψ2N+1(a, b, c, d; 1) = (1 + a)(ab)
N
2 QN (x;−a

1
2 b

1
2 c,−a

3
2 b

1
2 cd|q)

= (−a; q)N+1 2φ1

(
q−N ,−c

−a−1q−N
; q,−b

)
. (3.10)

Substituting a = zyq, b = z−1yq, c = zy−1q and d = z−1y−1q into Corollary 3.4(see [2]),
then we immediately obtain the strict version of Andrews’ result (see Corollary 4.4).

Corollary 3.5.

∑
µ strict partitions

µ1≤2N

zO(µ)yO(µ′)q|µ| =
N∑

j=0

[
N

j

]

q4

(−zyq; q4)j(−zy−1q; q4)N−j(yq)2N−2j , (3.11)
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and

∑
µ strict partitions

µ1≤2N+1

zO(µ)yO(µ′)q|µ| =
N∑

j=0

[
N

j

]

q4

(−zyq; q4)j+1(−zy−1q; q4)N−j(yq)2N−2j , (3.12)

where [
N

j

]

q

=

{
(1−qN )(1−qN−1)···(1−qN−j+1)

(1−qj)(1−qj−1)···(1−q) , for 0 ≤ j ≤ N ,

0, if j < 0 and j > N .

Letting N →∞ in Corollary 3.4 or setting z = 1 in (3.8), we obtain the following result
of Boulet (cf. [2, Corollary 2]).

Corollary 3.6. (Boulet) Let q = abcd, then

∑
µ

ω(µ) =
(−a; q)∞(−abc; q)∞

(ab; q)∞
, (3.13)

where the sum runs over all strict partitions.

To prove Theorem 3.1, we need several steps. Our strategy is as follows: write the weight
ω(µ)z`(µ) as a Pfaffian (Theorem 2.2) and apply the minor summation formula (Lemma 3.7)
to make the sum of the weights into a single Pfaffian (Theorem 3.8). Then we make use of
the Pfaffian to derive a recurrence relation (Proposition 3.9). We also give another proof of
the recurrence relation by a combinatorial argument (Remark 3.10).

Let Jn denote the square matrix of size n whose (i, j)th entry is δi,n+1−j . We simply
write J for Jn when there is no fear of confusion on the size n. We need the following result
on a sum of Pfaffians [18, Theorem of Section 4].

Lemma 3.7. Let n be a positive integer. Let A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n be
skew symmetric matrices of size n. Then

bn/2c∑
t=0

zt
∑

I∈([n]
2t)

γ|I| Pf
(
∆I

I(A)
)
Pf

(
∆I

I(B)
)

= Pf
[
Jn

tAJn Jn

−Jn C

]
, (3.14)

where |I| = ∑
i∈I i and C = (Cij)1≤i,j≤n is given by Cij = γi+jbijz.

This lemma is a special case of Lemma 5.4, so a proof will be given later.

Let Sn denote the n×n skew-symmetric matrix whose (i, j)th entry is 1 for 0 ≤ i < j ≤ n.
As a corollary of Lemma 3.7, we obtain the following expression of the sum of the weight
ω(µ) by a single Pfaffian.

Theorem 3.8. Let N be a nonnegative integer.

ΨN (a, b, c, d; z) = Pf
[

SN+1 JN+1

−JN+1 B

]
, (3.15)

where B = (βij)0≤i<j≤N is the (N +1)×(N +1) skew-symmetric matrix whose (i, j)th entry
βij is defined as in (2.14).

Proof. Here we assume the row/column indices start at 0. Note that any strict partition
µ is written uniquely as µ = (µ1, . . . , µ2t) with µ1 > · · · > µ2t ≥ 0. Here 2t = `(µ) if `(µ)
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is even, and 2t = `(µ) + 1 and µ2t = 0 if `(µ) is odd. Thus, using Theorem 2.2 (2.15), we
obtain

ΨN (a, b, c, d; z) =
∑

µ strict
µ1≤N

ω(µ)z`(µ) =
b(N+1)/2c∑

t=0

∑
µ=(µ1,...,µ2t)

N≥µ1>···>µ2t≥0

ω(µ)z`(µ)

=
b(N+1)/2c∑

t=0

∑
µ=(µ1,...,µ2t)

N≥µ1>···>µ2t≥0

Pf
(
∆K(µ)

K(µ) (B)
)

=
b(N+1)/2c∑

t=0

∑

I∈([0,N]
2t )

Pf
(
∆I

I (B)
)
.

If we put n = N + 1, z = γ = 1 and A = SN+1 into (3.14), then we obtain

b(N+1)/2c∑
t=0

∑

I∈([0,N]
2t )

Pf
(
∆I

I(B)
)

= Pf
[
JN+1

tSN+1JN+1 JN+1

−JN+1 C

]
,

since Pf
(
∆I

I(SN+1)
)

= 1 holds for any subset I ⊆ [0, N ] of even cardinality. (For detailed
arguments on sub-pfaffians, see [9]). In this case, C = (Cij) in Lemma 3.7 is equal to B =
(bij) in (2.14) because of z = γ = 1. It is also easy to check that JN+1

tSN+1JN+1 = SN+1.
Thus we easily obtain the desired formula (3.15) from these identities. This completes the
proof. 2

For example, if N = 3, then the skew-symmetric matrix in the right-hand side of (3.15) is



0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 0
−1 −1 0 1 0 1 0 0
−1 −1 −1 0 1 0 0 0
0 0 0 −1 0 az abz a2bz
0 0 −1 0 −az 0 abcz2 a2bcz2

0 −1 0 0 −abz −abcz2 0 a2bcdz2

−1 0 0 0 −a2bz −a2bcz2 −a2bcdz2 0




, (3.16)

whose Pfaffian equals Ψ3 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3.
By performing elementary transformations on rows and columns of the matrix, we obtain

the following recurrence relation:

Proposition 3.9. Let ΨN = ΨN (a, b, c, d; z) be as above. Then we have

Ψ2N = (1 + b)Ψ2N−1 + (aNbNcNdN−1z2 − b)Ψ2N−2, (3.17)

Ψ2N+1 = (1 + a)Ψ2N + (aN+1bNcNdNz2 − a)Ψ2N−1, (3.18)

for any positive integer N .

Proof. Let A denote the 2(N + 1) × 2(N + 1) skew symmetric matrix
[

SN+1 JN+1

−JN+1 B

]

in the right-hand side of (3.15). Here we assume row/column indices start at 0. So, for
example, the row indices for the upper (N + 1) rows are i, i = 0, . . . , N , and the row indices
for the lower (N + 1) rows are i + N + 1, i = 0, . . . , N . If N = 3, then A is as in (3.16),
and the row/column indices are 0,. . . , 7 in which 0,. . . , 3 are called upper and 4,. . . , 7 are
called lower. Now, subtract a times (j + N)th column from (j + N + 1)th column if j is
odd, or subtract b times (j + N)th column from (j + N + 1)th column if j is even, for
j = N, N − 1, . . . , 1. To make our matrix skew-symmetric, subtract a times (i + N)th row
from (i + N + 1)th row if i is odd, or subtract b times (i + N)th row from (i + N + 1)th row
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if i is even, for i = N, N −1, . . . , 1. To make things clear, we take N = 3 case as an example.
If N = 3, then we first subtract a times 6th column from 7th column of the matrix (3.16),
then we subtract b times 5th column from 6th column of the resulting matrix, and lastly we
subtract a times 4th column from 5th column of the resulting matrix. Thus we obtain the
skew-matrix




0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 −a
−1 −1 0 1 0 1 −b 0
−1 −1 −1 0 1 −a 0 0
0 0 0 −1 0 az 0 0
0 0 −1 0 −az a2z abcz2 0
0 −1 0 0 −abz a2bz − abcz2 ab2cz2 a2bcdz2

−1 0 0 0 −a2bz a3bz − a2bcz2 a2b2cz2 − a2bcdz2 a3bcdz2




. (3.19)

Next we perform the same operations on rows to make the matrix skew-symmetric, i.e.,
subtracting a times 6th row from 7th row of the matrix (3.19), then subtracting b times 5th
row from 6th row of the resulting matrix, and so on. Then we obtain




0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 −a
−1 −1 0 1 0 1 −b 0
−1 −1 −1 0 1 −a 0 0
0 0 0 −1 0 az 0 0
0 0 −1 a −az 0 abcz2 0
0 −1 b 0 0 −abcz2 0 a2bcdz2

−1 a 0 0 0 0 −a2bcdz2 0




. (3.20)

In the next step, we subtract (j + 1)th column from jth column for j = 0, 1, . . . , N − 1,
then we also subtract (i + 1)th row from ith row for i = 0, 1, . . . , N − 1. If N = 3, then this
step is as follows. First, we subtract 1st column from 0th column of the matrix (3.20), then
we subtract 2nd column from 1st column of the resulting matrix, and finally we subtract 3rd
column from 2nd column of the resulting matrix. We perform the same operations on rows.
Then the resulting matrix looks as follows:




0 1 0 0 0 0 −1 1 + a
−1 0 1 0 0 −1 1 + b −a
0 −1 0 1 −1 1 + a −b 0
0 0 −1 0 1 −a 0 0
0 0 1 −1 0 az 0 0
0 1 −1− a a −az 0 abcz2 0
1 −1− b b 0 0 −abcz2 0 a2bcdz2

−1− a a 0 0 0 0 −a2bcdz2 0




. (3.21)

Let A′ denote the resulting matrix after these transformations. Then, in general, the resulting
skew symmetric matrix A′ is written as

A′ =
[

P Q
−tQ R

]
(3.22)

with the (N + 1) × (N + 1) matrices P = (δi+1,j)0≤i<j≤N , Q = (qij)0≤i<j≤N and R =
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(rij)0≤i<j≤N whose entries are given by

qij =





−1 if i + j = N − 1,
1 if i = N and j = 0,
1 + aχ(j is odd)bχ(j is even) if i + j = N and j ≥ 1,
−aχ(j is odd)bχ(j is even) if i + j = N + 1,
0 otherwise,

rij =

{
azδ1,j if i = 0,
ad(i+1)/2ebb(i+1)/2ccdi/2edbi/2cz2δi+1,j if i > 0.

Here χ(A) stands for 1 if the statement A is true and 0 otherwise. If we apply the expansion
formula (2.13) to Pf(A′), then we easily obtain the desired formula, i.e. (3.17) if N is even,
and (3.18) if N is odd. We illustrate this expansion by the above example. If we expand the
Pfaffian of the skew-symmetric matrix (3.21) along the first line, then we obtain

Ψ3 = Pf




0 1 −1 1 + a −b 0
−1 0 1 −a 0 0
1 −1 0 az 0 0

−1− a a −az 0 abcz2 0
b 0 0 −abcz2 0 a2bcdz2

0 0 0 0 −a2bcdz2 0




+ Pf




0 1 0 0 −1 −a
−1 0 1 −1 1 + a 0
0 −1 0 1 −a 0
0 1 −1 0 az 0
1 −1− a a −az 0 0
a 0 0 0 0 0




+ (1 + a) Pf




0 1 0 0 −1 1 + b
−1 0 1 −1 1 + a −b
0 −1 0 1 −a 0
0 1 −1 0 az 0
1 −1− a a −az 0 abcz2

−1− b b 0 0 −abcz2 0




By expanding the first Pfaffian along the last column, we obtain that this Pfaffian equals
a2bcdz2Ψ1. Similarly, by expanding the second Pfaffian along the last column, we also obtain
that this Pfaffian equals −aΨ1. The third Pfaffian is evidently equal to Ψ2. Thus we obtain
Ψ3 = (a2bcdz2−a)Ψ1+(1+a)Ψ2. The general argument is similar from the above expression
of (3.22). The details are left to the reader. This completes the proof. 2

Remark 3.10. Proposition 3.9 can be also proved by a combinatorial argument as follows.

Combinatorial proof of Proposition 3.9. By definition, the generating function for strict
partitions µ = (µ1, µ2, . . . ) such that µ1 = 2N and µ2 ≤ 2N − 2 is equal to

b(Ψ2N−1 −Ψ2N−2).

That for strict partitions such that µ1 = 2N and µ2 = 2N − 1 is equal to

aNbNcNdN−1z2Ψ2N−2.

Finally the generating function of strict partitions such that µ1 ≤ 2N − 1 is equal to Ψ2N−1.
Summing up we get (3.17). The same argument works to prove (3.18). 2
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Note that one can immediately derive Theorem 3.1 from Proposition 3.9 by substitution.
Thus, if one use (2.7), then he immediately derive Theorem 3.2 by a simple computation.

Proof of Theorem 3.2. Let u =
√

ab, t = z2 and q = abcd. By (3.4), X ′
N satisfies the

associated Al-Salam-Chihara recurrence relation (2.2) with α = −a
1
2 b

1
2 c and β = −a

1
2 b−

1
2 .

Note that |u| < 1 and |q| < |α| < 1 hold. Thus, by (2.7), we conclude that XN is given by
(3.6). A similar argument shows that Y ′

N satisfies (2.2) with α = −a
3
2 b

1
2 c and β = −a

1
2 b

1
2 cd,

which implies YN is given by (3.7). 2

Proof of Corollary 3.4. First, substituting z by 1 in (3.6), we have

rX
0 = 1,

sX
0 =

∞∑
n=0

(1 + aqn+1)(−c−1q; q)n

(−aq; q)n+1
(−abc)n,

rX
1 = 1 + abc + a(1 + b),

sX
1 = ab(1− ac)

∞∑
n=0

(1− qn+1)(−c−1q; q)n

(−aq; q)n+1
(−abc)n.

Since X0 = 1 and X1 = 1 + a(1 + b) + abc for z = 1, we derive rX
1 X0 − rX

0 X1 = 0 and

sX
0 X1 − sX

1 X0 = (1 + a)
∞∑

n=0

(−c−1q; q)n

(−aq; q)n+1
(−abc)n{a + abc + a(1 + b)qn+1}

= (1 + a)

{ ∞∑
n=0

(−c−1q; q)n

(−aq; q)n
(−abc)n −

∞∑
n=0

(−c−1q; q)n+1

(−aq; q)n+1
(−abc)n+1

}

= 1 + a.

Therefore, when z = 1, equation (3.6) reduces to

XN = (−abc; q)N 2φ1

(
q−N ,−b−1

−(abc)−1q−N+1
; q,−c−1q

)
.

This establishes (3.9). A similar computation shows that we can derive (3.10) from (3.7) by
specializing z to 1. The details are left to the reader. 2

Proof of Corollary 3.5. We first claim that

Ψ2N (a, b, c, d; 1) =
N∑

k=0

[
N

k

]

q

(−a; q)k(−c; q)N−k(ab)N−k. (3.23)

Then (3.11) is an easy consequence of (3.23) by substituting a ← zyq, b ← z−1yq, c ← zy−1q

and d ← z−1y−1q. In fact, using (q−N ; q)k = (q;q)N

(q;q)N−k
(−1)kq(

k
2)−Nk, we have

2φ1

(
q−N ,−c

−a−1q−N+1
; q,−bq

)
=

N∑

k=0

[
N

k

]

q

(−c; q)N−k

(−a−1q−N+1; q)N−k
q(

N−k
2 )−N(N−k)(bq)N−k.

Substitute (−a−1q−N+1; q)N−k = (−a;q)N

(−a;q)k
a−N+kq−(N

2 )+(k
2) into this identity to show that

the right-hand side equals

N∑

k=0

[
N

k

]

q

(−a; q)k(−c; q)N−k

(−a; q)N
(ab)N−k.
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Finally, use (3.9) to obtain (3.23). The proof of (3.12) reduces to

Ψ2N+1(a, b, c, d; 1) =
N∑

k=0

[
N

k

]

q

(−a; q)k+1(−c; q)N−k(ab)N−k, (3.24)

which is derived from (3.10) similarly. 2

Proof of Corollary 3.6. By replacing k by N − k and letting N to +∞ in (3.23), we get

lim
N→∞

Ψ2N (a, b, c, d; 1) = (−a; q)∞
∞∑

k=0

(−c; q)k

(q; q)k
(ab)k =

(−a; q)∞(−abc; q)∞
(ab; q)∞

where the last equality follows from the q-binomial formula (see [3]). Similarly we can derive
the limit from (3.24).

Note that we can also derive (3.13) from (3.8) by the same argument as in the proof of
Corollary 3.4. 2

4 Ordinary Partitions

First we present a generalization of Andrews’ result in [1]. Let us consider

ΦN = ΦN (a, b, c, d; z) =
∑

λ
λ1≤N

ω(λ)z`(λ), (4.1)

where the sum runs over all partitions λ such that each part of λ is less than or equal to N .
For example, the first few terms can be computed directly as follows:

Φ0 = 1,

Φ1 =
1 + az

1− acz2
,

Φ2 =
1 + a(1 + b)z + abcz2

(1− acz2)(1− qz2)
,

Φ3 =
1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3

(1− z2ac)(1− z2q)(1− z2acq)
,

where q = abcd as before. If one compares these with the first few terms of ΨN , one can
easily guess the following theorem holds:

Theorem 4.1. For non-negative integer N , let ΦN = ΦN (a, b, c, d; z) be as in (4.1) and
q = abcd. Then we have

ΦN (a, b, c, d; z) =
ΨN (a, b, c, d; z)

(z2q; q)bN/2c(z2ac; q)dN/2e
, (4.2)

where ΨN = ΨN (a, b, c, d; z) is the generating function defined in (3.1). Note that ΨN is
explicitly given in terms of basic hypergeometric functions in Theorem 3.2.

In fact, the main purpose of this section is to prove this theorem. Here we give two
proofs, i.e. an algebraic proof (see Proposition 4.6 and Proposition 4.7) and a bijective proof
(see Remark 4.8). Before we proceed to the proofs of this theorem we state the corollaries
immediately obtained from this theorem and the results in Section 3. First of all, as an
immediate corollary of Theorem 4.1 and Corollary 3.3, we obtain the following generalization
of Boulet’s result (Corollary 4.5).

15



Corollary 4.2. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let sX
i , sY

i , Xi, Yi (i = 0, 1) be
as in Theorem 3.2. Then we have

∑

λ

ω(λ)z|µ| =
(−abc,−az2q; q)∞
(ab, acz2, z2q; q)∞

(sX
0 X1 − sX

1 X0)

=
(−abc,−a2bcdz2q; q)∞

(ab, acz2, z2q; q)∞
(sY

0 Y1 − sY
1 Y0), (4.3)

where the sum runs over all partitions λ.

Theorem 4.1 and Corollary 3.4 also give the following corollary:

Corollary 4.3. Put x = (ab)
1
2 +(ab)−

1
2

2 and q = abcd. Let ΦN = ΦN (a, b, c, d; z) be as in
(4.1).

(i) The generating function Φ2N (a, b, c, d; 1) is given by

Φ2N (a, b, c, d; 1) =
(ab)

N
2 QN (x;−a

1
2 b

1
2 c,−a

1
2 b−

1
2 |q)

(q; q)N (ac; q)N

=
(−a; q)N

(q; q)N (ac; q)N
2φ1

(
q−N ,−c

−a−1q−N+1
; q,−bq

)
. (4.4)

(ii) The generating function Φ2N (a, b, c, d; 1) is given by

Φ2N+1(a, b, c, d; 1) =
(1 + a)(ab)

N
2 QN (x;−a

1
2 b

1
2 c,−a

3
2 b

1
2 cd|q)

(q; q)N (ac; q)N+1

=
(−a; q)N+1

(q; q)N (ac; q)N+1
2φ1

(
q−N ,−c

−a−1q−N
; q,−b

)
. (4.5)

Let SN (n, r, s) denote the number of partitions π of n where each part of π is ≤ N ,
O(π) = r, O(π′) = s. As before we immediately deduce the following result of Andrews (cf.
[1, Theorem 1]) from Corollary 4.3.

Corollary 4.4. (Andrews)

∑

n,r,s≥0

S2N (n, r, s)qnzrys =

∑N
j=0

[
N
j

]
q4

(−zyq; q4)j(−zy−1q; q4)N−j(yq)2N−2j

(q4; q4)N (z2q4; q4)N
, (4.6)

and

∑

n,r,s≥0

S2N+1(n, r, s)qnzrys =

∑N
j=0

[
N
j

]
q4

(−zyq; q4)j+1(−zy−1q; q4)N−j(yq)2N−2j

(q4; q4)N (z2q4; q4)N+1
. (4.7)

Similarly, as in the strict case, we obtain immediately Boulet’s corresponding result for
ordinary partitions (cf. [2, Theorem 1]).

Corollary 4.5. (Boulet) Let q = abcd, then

∑

λ

ω(λ) =
(−a; q)∞(−abc; q)∞

(q; q)∞(ab; q)∞(ac; q)∞
, (4.8)

where the sum runs over all partitions.

In order to prove Theorem 4.1 we first derive a recurrence formula for ΦN (a, b, c, d; z).
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Proposition 4.6. Let ΦN = ΦN (a, b, c, d; z) be as before and q = abcd. Then the following
recurrences hold for any positive integer N .

(1− z2qN )Φ2N = (1 + b)Φ2N−1 − bΦ2N−2, (4.9)

(1− z2acqN )Φ2N+1 = (1 + a)Φ2N − aΦ2N−1. (4.10)

Proof. It suffices to prove that

Φ2N = Φ2N−1 + b(Φ2N−1 − Φ2N−2) + z2qNΦ2N , (4.11)

Φ2N+1 = Φ2N + a(Φ2N − Φ2N−1) + z2acqNΦ2N+1. (4.12)

Let LN denote the set of partitions λ such that λ1 ≤ N . The generating function of LN

with weight ω(λ)z`(λ) is ΦN = ΦN (a, b, c, d; z). We divide LN into three disjoint subsets:

LN = LN−1 ]MN ]NN

where MN denote the set of partitions λ such that λ1 = N and λ2 < N , and NN denote
the set of partitions λ such that λ1 = λ2 = N . When N = 2r is even, it is easy to see
that the generating function of M2r equals b(Φ2r−1−Φ2r−2), and the generating function of
N2r equals z2qrΦ2r. This proves (4.11). When N = 2r + 1 is odd, the same division proves
(4.12). 2

By simple computation, one can derive the following identities from (4.9) and (4.10).

Proposition 4.7. If we put

ΦN (a, b, c, d; z) =
FN (a, b, c, d; z)

(z2q; q)bN/2c(z2ac; q)dN/2e
, (4.13)

then,

F2N = (1 + b)F2N−1 − b(1− z2acqN−1)F2N−2, (4.14)

F2N+1 = (1 + a)F2N − a(1− z2qN )F2N−1. (4.15)

hold for any positive integer N .

Proof. Substitute (4.13) into (4.9) and (4.10), and compute directly to obtain (4.14) and
(4.15). 2

Proof of Theorem 4.1. From (4.14) and (4.15), one easily sees that F2N (a, b, c, d; z) and
F2N+1(a, b, c, d; z) satisfy exactly the same recurrence in Theorem 3.1. Further, from the
above example, we see

F0 = 1,

F1 = 1 + az,

F2 = 1 + a(1 + b)z + abcz2,

F3 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3,

F4 = 1 + a(1 + b)(1 + ab)z + abc(1 + a + ab + ad + abd + abcd)z2

+ a3bcd(1 + b)(1 + bc)z3 + a3b3c3dz4.

Thus the first few terms of FN (a, b, c, d; z) agree with those of ΨN (a, b, c, d; z). We immedi-
ately conclude that FN (a, b, c, d; z) = ΨN (a, b, c, d; z) for all N . 2
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Remark 4.8. Here we also give another proof of Theorem 4.1 by a bijection, which has
already been used by Boulet [2] in the infinite case.

Bijective proof of Theorem 4.1. Let PN (resp. DN ) denote the set of partitions (resp.
strict partitions) whose parts are less than or equal to N and let EN denote the set of
partitions whose parts appear an even number of times and are less than or equal to N . We
shall establish a bijection g : PN −→ DN×EN with g(λ) = (µ, ν) defined as follows. Suppose
λ has k parts equal to i. If k is even then ν has k parts equal to i, and if k is odd then ν
has k− 1 parts equal to i. The parts of λ which were not removed to form ν, at most one of
each cardinality, give µ. It is clear that under this bijection, ω(λ) = ω(µ)ω(ν). It is easy to
see that the generating function of EN is equal to

bN
2 c∏

j=1

1
1− z2qj

×
bN−1

2 c∏

j=0

1
1− z2acqj

,

where q = abcd. As bN−1
2 c = dN

2 e − 1, we obtain (4.13). 2

At the end of this section we state another enumeration of the ordinary partitions, which
is not directly related to Andrews’ result, but obtained as an application of the minor sum-
mation formula of Pfaffians. Let

ΦN,M = ΦN,M (a, b, c, d) =
∑

λ
λ1≤N, `(λ)≤M

ω(λ),

where the sum runs over all partitions λ such that λ has at most M parts and each part of
λ is less than or equal to N .

Again we use Lemma 3.7 and Theorem 2.1 to obtain the following theorem.

Theorem 4.9. Let N be a positive integer and set q = abcd. Then we have

bN/2c∑
t=0

ΦN−2t,2t(a, b, c, d) ztq(
t
2) = Pf

[
SN JN

−JN C

]
, (4.16)

where S = (1)0≤i<j≤N−1 and C = (ad(j−1)/2ebb(j−1)/2ccdi/2edbi/2cz)0≤i<j≤N−1.

Proof. As in the proof of Theorem 3.8, we take n = N , γ = 1 and A = SN in (3.14), then
we obtain

bN/2c∑
t=0

zt
∑

I∈([0,N−1]
2t )

Pf
(
∆I

I(B)
)

= Pf
[
JN

tSNJN JN

−JN C

]
,

where C = (bijz)0≤i,j≤N−1. If we take bij = ad(j−1)/2ebb(j−1)/2ccdi/2edbi/2c, then Theorem 2.1
implies

Pf
(
∆I

I(B)
)

= ω(λ)q(
t
2)

where I(λ) = I. Thus, using JN
tSNJN = SN and the above formulas, we obtain

bN/2c∑
t=0

ztq(
t
2)

∑

I∈([0,N−1]
2t )

ω(λ) = Pf
[

SN JN

−JN C

]
.

Now (4.16) follows since, when I runs over all 2t-subsets of [0, N−1], λ runs over all partitions
with at most 2t parts and each part less than or equal to N − 2t. 2
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For example, if N = 4, then the right-hand side of (4.16) becomes

Pf




0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 0
−1 −1 0 1 0 1 0 0
−1 −1 −1 0 1 0 0 0
0 0 0 −1 0 z az abz
0 0 −1 0 −z 0 acz abcz
0 −1 0 0 −az −acz 0 abcdz
−1 0 0 0 −abz −abcz −abcdz 0




.

Let Φ̃N = Φ̃N (a, b, c, d; z) = Pf
[

S J
−J C

]
denote the right-hand side of (4.16). For example,

we have Φ̃1 = 1, Φ̃2 = 1 + z, Φ̃3 = 1 + (1 + a + ac)z and Φ̃4 = 1 + (1 + a + ab + ac + abc +
abcd)z + abcdz2. Note that the partitions λ such that `(λ) ≤ 2 and λ1 ≤ 2 are the following
six:

∅ a a b

a
c

a b
c

a b
c d .

The sum of their weights is equal to [z]Φ̃4 = 1 + a + ab + ac + abc + abcd.
The same argument as in the proof of Proposition 3.9 can be used to prove the following

proposition.

Proposition 4.10. Let Φ̃N = Φ̃N (a, b, c, d; z) be as above. Then we have

Φ̃2N = (1 + b)Φ̃2N−1 + (aN−1bN−1cN−1dN−1z − b)Φ̃2N−2, (4.17)

Φ̃2N+1 = (1 + a)Φ̃2N + (aNbN−1cNdN−1z − a)Φ̃2N−1, (4.18)

for any positive integer N .

Proof. Perform the same elementary transformations of rows and columns on
[

S J
−J C

]
as

we did in the proof of Proposition 3.9, and expand it along the last row/column. The details
are left to the reader. 2

Remark 4.11. The recurrence equations (4.17) and (4.18) also can be proved combinatori-
ally.

Proof of Proposition 4.10. Consider the generating function of partitions:
∑

λ
`(λ)≤2t

λ1≤2j+1−2t

w(λ) =
∑

λ
`(λ)≤2t

λ1≤2j−2t

w(λ) +
∑

λ
`(λ)≤2t

λ1=2j+1−2t

w(λ). (4.19)

Splitting the partitions λ in the second sum of the right side into two subsets: λ2 < λ1, and
λ2 = λ1. Now

∑
λ:λ1>λ2
`(λ)≤2t

λ1=2j+1−2t

w(λ) = a




∑
λ

`(λ)≤2t
λ1≤2j−2t

w(λ)−
∑

λ
`(λ)≤2t

λ1≤2j−1−2t

w(λ)


 , (4.20)

and ∑
λ:λ1=λ2
`(λ)≤2t

λ1=2j+1−2t

w(λ) = acqj−t
∑

λ
`(λ)≤2t−2

λ1≤2j+1−2t

w(λ). (4.21)

Plugging (4.20) and (4.21) into (4.19) and then multiplying by ztq(
t
2) and summing over t

we get (4.18). Similarly we can prove (4.17). 2
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Proposition 4.12. Set UN = Φ̃2N and VN = Φ̃2N+1, then, for N ≥ 1,

UN+1 =
{
1 + ab + ac(1 + bd)qN−1z

}
UN − a(b− zqN−1)(1− czqN−1)UN−1, (4.22)

VN+1 =
{
1 + ab + (1 + ac)zqN

}
VN − a(b− zqN )(1− czqN−1)VN−1, (4.23)

where U0 = 1, V0 = 1, U1 = 1 + z, V1 = 1 + (1 + a + ac)z.

Thus UN and VN are also expressed by the solutions of the associated Al-Salam-Chihara
polynomials.

5 A weighted sum of Schur’s P -functions

We use the notation X = Xn = (x1, . . . , xn) for the finite set of variables x1, . . . , xn. The
aim of this section is to give some Pfaffian and determinantal formulas for the weighted sum∑

ω(µ)z`(µ)Pµ(x) where Pµ(x) is Schur’s P -function.
Let An denote the skew-symmetric matrix

(
xi − xj

xi + xj

)

1≤i,j≤n

and for each strict partition µ = (µ1, . . . , µl) of length l ≤ n, let Γµ denote the n× l matrix(
xµi

j

)
. Let

Aµ(x1, . . . , xn) =
(

An ΓµJl

−Jl
tΓµ Ol

)

which is a skew-symmetric matrix of (n + l) rows and columns. Define Pfµ(x1, . . . , xn) to
be Pf Aµ(x1, . . . , xn) if n + l is even, and to be Pf Aµ(x1, . . . , xn, 0) if n + l is odd. By [14,
Ex.13, p.267], Schur’s P -function Pµ(x1, . . . , xn) is defined to be

Pfµ(x1, . . . , xn)
Pf∅(x1, . . . , xn)

,

where it is well-known that Pf∅(x1, . . . , xn) =
∏

1≤i<j≤n
xi−xj

xi+xj
. Meanwhile, by [14, (8.7),

p.253], Schur’s Q-function Qµ(x1, . . . , xn) is defined to be 2`(λ)Pµ(x1, . . . , xn).
In this section, we consider a weighted sum of Schur’s P -functions and Q-functions, i.e.,

ξN (a, b, c, d; Xn) =
∑

µ
µ1≤N

ω(µ)Pµ(x1, . . . , xn),

ηN (a, b, c, d; Xn) =
∑

µ
µ1≤N

ω(µ)Qµ(x1, . . . , xn),

where the sums run over all strict partitions µ such that each part of µ is less than or equal
to N . More generally, we can unify these problems to finding the following sum:

ζN (a, b, c, d; z; Xn) =
∑

µ
µ1≤N

ω(µ)z`(µ)Pµ(x1, . . . , xn), (5.1)

where the sum runs over all strict partitions µ such that each part of µ is less than or equal
to N . One of the main results of this section is that ζN (a, b, c, d; z; Xn) can be expressed by
a Pfaffian (see Corollary 5.6). Further, let us put

ζ(a, b, c, d; z;Xn) = lim
N→∞

ζN (a, b, c, d; z; Xn) =
∑

µ

ω(µ)z`(µ)Pµ(Xn), (5.2)
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where the sum runs over all strict partitions µ. We also write

ξ(a, b, c, d;Xn) = ζ(a, b, c, d; 1; Xn) =
∑

µ

ω(µ)Pµ(Xn),

where the sum runs over all strict partitions µ. Then we have the following theorem:

Theorem 5.1. Let n be a positive integer. Then

ζ(a, b, c, d; z;Xn) =

{
Pf (γij)1≤i<j≤n / Pf∅(Xn) if n is even,
Pf (γij)0≤i<j≤n / Pf∅(Xn) if n is odd,

(5.3)

where

γij =
xi − xj

xi + xj
+ uijz + vijz

2 (5.4)

with

uij =
a det

(
xi + bx2

i 1− abx2
i

xj + bx2
j 1− abx2

j

)

(1− abx2
i )(1− abx2

j )
, (5.5)

vij =
abcxixj det

(
xi + ax2

i 1− a(b + d)x2
i − abdx3

i

xj + ax2
j 1− a(b + d)x2

j − abdx3
j

)

(1− abx2
i )(1− abx2

j )(1− abcdx2
i x

2
j )

, (5.6)

if 1 ≤ i, j ≤ n, and

γ0j = 1 +
axj(1 + bxj)

1− abx2
j

z (5.7)

if 1 ≤ j ≤ n.
Especially, when z = 1, we have

ξ(a, b, c, d; Xn) =

{
Pf (γ̃ij)1≤i<j≤n / Pf∅(Xn) if n is even,
Pf (γ̃ij)0≤i<j≤n / Pf∅(Xn) if n is odd,

(5.8)

where

γ̃ij =

{ 1+axj

1−abx2
j

if i = 0,
xi−xj

xi+xj
+ ṽij if 1 ≤ i < j ≤ n,

with (5.9)

ṽij =
a det

(
xi + bx2

i 1− b(a + c)x2
i − abcx3

i

xj + bx2
j 1− b(a + c)x2

j − abcx3
j

)

(1− abx2
i )(1− abx2

j )(1− abcdx2
i x

2
j )

. (5.10)

We can generalize this result in the following theorem (Theorem 5.2) using the gen-
eralized Vandermonde determinant used in [7]. Let n be an non-negative integer, and
let X = (x1, . . . , x2n), Y = (y1, . . . , y2n), A = (a1, . . . , a2n) and B = (b1, . . . , b2n) be
2n-tuples of variables. Let V n(X,Y, A) denote the 2n × n matrix whose (i, j)th entry is
aix

n−j
i yj−1

i for 1 ≤ i ≤ 2n, 1 ≤ j ≤ n, and let Un(X, Y ;A,B) denote the 2n × 2n matrix(
V n(X, Y, A) V n(X, Y, B)

)
. For instance if n = 2 then U2(X, Y ; A,B) is




a1x1 a1y1 b1x1 b1y1

a2x2 a2y2 b2x2 b2y2

a3x3 a3y3 b3x3 b3y3

a4x4 a4y4 b4x4 b4y4


 .
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Hereafter we use the following notation for n-tuples X = (x1, · · · , xn) and Y = (y1, · · · , yn)
of variables:

X + Y = (x1 + y1, . . . , xn + yn), X · Y = (x1y1, . . . , xnyn),

and, for integers k and l,

Xk = (xk
1 , . . . , xk

n), XkY l = (xk
1yl

1, . . . , x
k
nyl

n).

Let 111 denote the n-tuple (1, . . . , 1). For any subset I = {i1, . . . , ir} ∈
(
[n]
r

)
, let XI denote

the r-tuple (xi1 , . . . , xir ).

Theorem 5.2. Let q = abcd. If n is an even integer, then we have

ξ(a, b, c, d; Xn) =
n/2∑
r=0

∑

I∈([n]
2r)

(−1)|I|−(r+1
2 )arq(

r
2)∏

i∈I(1− abx2
i )

∏
i,j∈I
i<j

xi + xj

(xi − xj)(1− qx2
i x

2
j )

× detUr(X2
I ,111 + qX4

I , XI + bX2
I ,111− b(a + c)X2

I − abcX3
I ). (5.11)

If n is an odd integer, then we have

ξ(a, b, c, d; Xn) =
n∑

m=1

1 + axm

1− abx2
m

(n−1)/2∑
r=0

∑

I∈([n]\{m}
2r )

(−1)|I|−(r+1
2 )arq(

r
2)∏

i∈I(1− abx2
i )

∏

i∈I

xm + xi

xm − xi

×
∏

i,j∈I
i<j

xi + xj

(xi − xj)(1− qx2
i x

2
j )
· detUr(X2

I ,111 + qX4
I , XI + bX2

I ,111− b(a + c)X2
I − abcX3

I ).

(5.12)

Theorem 5.3. Let q = abcd. If n is an even integer, then ζ(a, b, c, d; z;Xn) is equal to

n/2∑
r=0

z2r
∑

I∈([n]
2r)

(−1)|I|−(r+1
2 )(abc)rq(

r
2) ∏

i∈I xi∏
i∈I(1− abx2

i )

∏
i,j∈I
i<j

xi + xj

(xi − xj)(1− qx2
i x

2
j )

× detUr(X2
I ,111 + qX4

I , XI + aX2
I ,111− a(b + d)X2

I − abdX3
I )

+
n/2∑
r=0

z2r−1
∑

I∈([n]
2r)

∑
k<l

k,l∈I

(−1)|I|−(r
2)−1arbr−1cr−1q(

r−1
2 ){1 + b(xk + xl) + abxkxl}

∏
i∈I′ xi∏

i∈I(1− abx2
i )

×
∏

i,j∈I
i<j

(xi + xj) · detUr−1(X2
I′ ,111 + qX4

I′ , XI′ + aX2
I′ ,111− a(b + d)X2

I′ − abdX3
I′)∏

i,j∈I′
i<j

(xi − xj)(1− qx2
i x

2
j )

, (5.13)

where I ′ = I \ {k, l}.
Note that we can obtain a similar formula when n is odd by expanding the Pfaffian in

(5.3) along the first row/column.
To obtain the sum of this type we need a generalization of Lemma 3.7, in which the

row/column indices always contain say the set {1, 2, ..., n}, for some fixed n.

Lemma 5.4. Let n and N be nonnegative integers. Let A = (aij) and B = (bij) be skew
symmetric matrices of size (n+N). We divide the set of row/column indices into two subsets,
i.e. the first n indices I0 = [n] and the last N indices I1 = [n + 1, n + N ]. Then

∑
t≥0

n+t even

z(n+t)/2
∑

I∈(I1
t )

γ|I0]I| Pf
(
∆I0]I

I0]I(A)
)

Pf
(
∆I0]I

I0]I(B)
)

= Pf
(

Jn+N
tAJn+N Kn,N

−tKn,N C

)
, (5.14)
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where C = (Cij)1≤i,j,≤n+N is given by Cij = γi+jbijz and Kn,N = Jn+N Ẽn,N with

Ẽn,N =
(

On On,N

ON,n EN

)
.

Proof. In general, if P =
(

P11 P12

−tP12 P22

)
is a 2m × 2m skew symmetric matrix where

P11, P12 and P22 are m × m matrices, then Pf P is the sum (2.9) over all perfect match-
ings on the vertices {1, 2, . . . ,m, m + 1,m + 2, . . . , 2m}. Meanwhile, one easily sees that

Pf
(

Jm P11Jm JmP12

−tP12Jm P22

)
is equal to a similar sum as in (2.9), but the sum should be taken

over all perfect matchings on the vertices {m,m− 1, . . . , 1,m + 1, m + 2, . . . , 2m}.
Let V = {(n+N)∗, . . . , (n+1)∗, n∗, . . . , 1∗, 1, . . . , n, n+1, . . . , n+N} be vertices arranged

in this order on the x-axis. Put V ∗
0 = {n∗, . . . , 1∗} and V ∗

1 = {(n + N)∗, . . . , (n + 1)∗},
V0 = {1, . . . , n} and V1 = {n + 1, . . . , N}. A perfect matching σ ∈ F(V ) on the vertices V
is uniquely written as σ = σ1 ] σ2 ] σ3 where σ1 (resp. σ3) is the set of arcs in σ connecting
two vertices in V ∗

1 ] V ∗
0 (resp. V0 ] V1) and σ2 is the set of arcs in σ connecting a vertex in

V ∗
1 ] V ∗

0 and a vertex in V0 ] V1. Thus the Pfaffian in the right-hand side of (5.14) equals
∑

σ

sgnσ
∏

(j∗,i∗)∈σ1

aij

∏

(i∗,j)∈σ2

kij

∏

(i,j)∈σ3

Cij

summed over all perfect matching σ ∈ F(V ) on V . Here kij is the (i, j)th entry of Kn,N =
Jn+N Ẽn,N . From the definition of Ẽn,N ,

∏
(i∗,j)∈σ2

kij vanishes unless σ2 is a collection
of arcs (i∗, i) (i = n + 1, . . . , n + N). Thus we can assume σ1 is a perfect matching on
I∗ ] V ∗

0 and σ3 is a perfect matching on V0 ] I where I is a subset V1. Here, if I =
{i1, . . . , it} ∈ V1, then we write I∗ = {i∗t , . . . , i∗1} for convention. Thus n + t must be even,
and

∏
(i,j)∈σ3

Cij = z(n+t)/2γ|I0]I|∏
(i,j)∈σ3

bij . Note that σ2 composed of arcs (i, i). This
implies that sgn σ = sgn σ1 sgnσ3 since the number of crossing between arcs in σ1 and arcs
in σ2 equals the number of crossing between arcs in σ1 and arcs in σ2. Thus the above sum
sum is equal to

∑
t

z(t+n)/2
∑

I∈(I1
t )

γn+|I| ∑

(σ1,σ3)

sgnσ1 sgnσ3

∏

(i,j)∈σ1

aij

∏

(i,j)∈σ3

bij .

This is equal to the left-hand side of (5.14). 2

For a nonnegative integer N , let µN = (N, . . . , 1, 0), and let ΓµN denote the n× (N + 1)

matrix
(
xN−j

i

)
1≤i≤n,0≤j≤N

. Let

An,N =
(

An ΓµN JN+1

−JN+1
tΓµN ON+1

)

which is a skew-symmetric matrix of size n + N + 1. For example, if n = 4 and N = 3, then

A4,3 =




0 x1−x2
x1+x2

x1−x3
x1+x3

x1−x4
x1+x4

1 x1 x1
2 x1

3

x2−x1
x1+x2

0 x2−x3
x2+x3

x2−x4
x2+x4

1 x2 x2
2 x2

3

x3−x1
x1+x3

x3−x2
x2+x3

0 x3−x4
x3+x4

1 x3 x3
2 x3

3

x4−x1
x1+x4

x4−x2
x2+x4

x4−x3
x3+x4

0 1 x4 x4
2 x4

3

−1 −1 −1 −1 0 0 0 0
−x1 −x2 −x3 −x4 0 0 0 0
−x1

2 −x2
2 −x3

2 −x4
2 0 0 0 0

−x1
3 −x2

3 −x3
3 −x4

3 0 0 0 0




.

Let βij be as in (2.14). Let BN denote the (N + 1) × (N + 1) matrix (βij)0≤i,j≤N and let
B′

N denote the (N + 2)× (N + 2) matrix (βij)−1≤i,j≤N .
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Theorem 5.5. Let n and N be integers such that n ≥ N ≥ 0. Then

ζN (a, b, c, d; z; Xn) = Pf (Cn,N ) / Pf∅(Xn), (5.15)

where

Cn,N =




ON+1
tΓµN Jn JN+1

−JnΓµN Jn
tAnJn On,N+1

−JN+1 ON+1,n BN


 , (5.16)

if n is even, and

Cn,N =




ON+1
tΓµN Jn J ′N+1

−JnΓµN Jn
tAnJn On,N+2

−tJ ′N+1 ON+2,n B′
N


 (5.17)

where J ′N+1 =
(
ON+1,1 JN+1

)
if n is odd.

Proof. Let Bn,N be the skew-symmetric matrix of size (n + N + 1) defined by

Bn,N =
(

Sn On,N+1

ON+1.n BN

)

if n is even, and

Bn,N =
(

Sn−1 On,N+2

ON+2.n B′
N

)

if n is odd. Fix a strict partition µ = (µ1, . . . , µl) such that µ1 > · · · > µl ≥ 0, and let
Kn(µ) = {n + µl, . . . , n + µ1}. From the definition of Bn,N and Theorem 2.2, we have

Pf
(
∆[n]]Kn(µ)

[n]]Kn(µ) (Bn,N )
)

= ω(µ) z`(µ)

if n + l is even. Thus Lemma 5.4 immediately implies that Pf∅(Xn)ζN (a, b, c, d; z; Xn) is
equal to

Pf
(

Jn+N+1
tAn,NJn+N+1 Kn,N+1

−tKn,N+1 Bn,N

)
. (5.18)

By simple elementary transformations on rows and columns, we obtain the desired results
(5.16) and (5.17). 2

Corollary 5.6. Let n and N be integers such that n ≥ N ≥ 0. Then

ζN (a, b, c, d; z; Xn) = Pf (Dn,N ) / Pf∅(Xn), (5.19)

where

Dn,N =


xi − xj

xi + xj
+

∑

0≤k,l≤N

βklx
l
ix

k
j




1≤i,j≤n

, (5.20)

if n is even, and

Dn,N =




0
N∑

k=0

β−1,kxk
j

N∑

k=0

βk,−1x
k
i

xi − xj

xi + xj
+

∑

0≤k,l≤N

βklx
l
ix

k
j




0≤i,j≤n

, (5.21)

if n is odd.
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For instance, if n = 4 and N = 2, then D4,2 looks as follows:




0 0 0 x2
4 x2

3 x2
2 x2

1 0 0 1
0 0 0 x4 x3 x2 x1 0 1 0
0 0 0 1 1 1 1 1 0 0
−x2

4 −x4 −1 0 x3−x4
x3+x4

x2−x4
x2+x4

x1−x4
x1+x4

0 0 0
−x2

3 −x3 −1 x4−x3
x4+x3

0 x2−x3
x2+x3

x1−x3
x1+x3

0 0 0
−x2

2 −x2 −1 x4−x2
x4+x2

x3−x2
x3+x2

0 x1−x2
x1+x2

0 0 0
−x2

1 −x1 −1 x4−x1
x4+x1

x3−x1
x3+x1

x2−x1
x2+x1

0 0 0 0
0 0 −1 0 0 0 0 0 az abz
0 −1 0 0 0 0 0 −az 0 abcz2

−1 0 0 0 0 0 0 −abz −abcz2 0




Proof of Corollary 5.6. When n is even, annihilate the entries in tΓµN Jn of (5.16) by
elementary transformation of columns, and annihilate the entries in −JnΓµN of (5.16) by
elementary transformation of columns. Then expand the Pfaffian Pf (Cn,N ) along the first
N + 1 rows. The case when n is similar. Perform the same operation on (5.17). 2

Proof of Theorem 5.1. Perform the summations

∑

0≤k<l

βkl det
(

xl
i xk

i

xl
j xk

j

)

and ∞∑

k=0

β−1,kxk
j ,

and apply Corollary 5.6. The details are left to the reader (cf. Proof of Theorem 2.1 in [6]).
2

To prove Theorems 5.2 and 5.3, we need to cite a lemma from [6]. (See Corollary 3.3 of
[6] and Theorem 3.2 of [7].)

Lemma 5.7. Let n be a non-negative integer. Let X = (x1, . . . , x2n), A = (a1, . . . , a2n),
B = (b1, . . . , b2n), C = (c1, . . . , c2n) and D = (d1, . . . , d2n) be 2n-tuples of variables. Then

Pf
[
(aibj − ajbi)(cidj − cjdi)

(xi − xj)(1− txixj)

]

1≤i<j≤2n

=
V n(X,111 + tX2; A,B)V n(X,111 + tX2; C, D)∏

1≤i<j≤2n(xi − xj)(1− txixj)
, (5.22)

where 111 + tX2 = (1 + tx2
1, . . . , 1 + tx2

n).
In particular, we have

Pf
[
aibj − ajbi

1− txixj

]

1≤i<j≤2n

= (−1)(
n
2)t(

n
2) V n(X,111 + tX2;A,B)∏

1≤i<j≤2n(1− txixj)
. 2 (5.23)

Proof of Theorem 5.2. First, assume n is even. Using the formula

Pf(A + B) =
bn/2c∑
r=0

∑

I∈([n]
2r)

(−1)|I|−r Pf(AI
I) Pf(BI

I
), (5.24)
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where I denotes the complementary set of I, we see that ξ(a, b, c, d; Xn) is equal to

bn/2c∑
r=0

∑

I∈([n]
2r)

(−1)|I|−r
∏

i,j∈I
i<j

xi + xj

xi − xj
Pf(ṽij)i,j∈I .

Apply Lemma 5.7 to obtain (5.11). When n is odd, first expand the Pfaffian along the first
row/column and repeat the same argument. 2

Proof of Theorem 5.3. Note that the rank of the matrix (uij)1≤i,j≤n is at most two. Thus
we have

Pf(uij)1≤i,j≤n =

{
a(x1−x2){1+b(x1+x2)+abx1x2}

(1−abx2
1)(1−abx2

2)
if n = 2,

0 otherwise.

Using (5.24), we obtain

Pf (γij)1≤i,j≤n = Pf
(

xi − xj

xi + xj
+ vijz

2

)

1≤i,j≤n

+
∑

1≤k<l≤n

(−1)k+l−1 az(xk − xl){1 + b(xk + xl) + abxkxl}
(1− abx2

k)(1− abx2
l )

Pf
(

xi − xj

xi + xj
+ vijz

2

)
1≤i,j≤n
i,j 6=k,l

.

Use (5.24) again to see that ζ(a, b, c, d; z; Xn) is equal to

bn/2c∑
r=0

z2r
∑

I∈([n]
2r)

(−1)|I|−r
∏

i,j∈I
i<j

xi + xj

xi − xj
· Pf(vij)i,j∈I

+
∑

1≤k<l≤n

(−1)k+l−1 az(xk − xl){1 + b(xk + xl) + abxkxl}
(1− abx2

k)(1− abx2
l )

×
bn/2c∑
r=1

z2r−2
∑

I′∈([n]−{k,l}
2r−2 )

(−1)|I
′|−r+1

∏
i,j∈I′

i<j

xi + xj

xi − xj
· Pf(vij)i,j∈I′ .

Put I = I ′ ∪ {k, l} and apply Lemma 5.7 to obtain (5.13). 2
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