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Abstract

For any partition A let w(\) denote the four parameter weight

w(\) = aiz1[A2i=1/21 3005 [X2im1/2] 32550 [A2i /2] 130,51 (A2 /2] 7

and let £(\) be the length of A. We show that the generating function > w(\)z/¥ | where the
sum runs over all ordinary (resp. strict) partitions with parts each < N, can be expressed
by the Al-Salam-Chihara polynomials. As a corollary we derive G.E. Andrews’ result by
specializing some parameters and C. Boulet’s results by letting N — +o00. In the last section
we prove a Pfaffian formula for the weighted sum > w(\)2* Py () where Py(z) is Schur’s
P-function and the sum runs over all strict partitions.

Keywords: Andrews-Stanley partition function; basic hypergeometric series; Al-Salam-
Chihara polynomials; minor summation formula of Pfaffians; Schur’s @-functions.

1 Introduction

For any integer partition A, denote by A’ its conjugate and £(\) the number of its parts. Let
O(A) denote the number of odd parts of A and |A| the sum of its parts. R. Stanley ([16]) has
shown that if £(n) denotes the number of partitions A of n for which O(A) = O(X) (mod 4),

then .
t(n) = 5 (pn) + [(n)

where p(n) is the total number of partitions of n, and f(n) is defined by
N n (1+e*"
n)q" = , —
T;O‘f( )q H (1 _ q4z)(1 + q4z—2)

i>1
Motivated by Stanley’s problem, G.E. Andrews [1] assigned the weight zO(A)yO()‘l)qp“ to
each partition A\ and computed the corresponding generating function of all partitions with
parts each less than or equal to N (see Corollary 4.4). The following more general weight




first appeared in Stanley’s paper [17]. Let a, b, ¢ and d be commuting indeterminates. For
each partition A, define the Andrews-Stanley partition functions w(\) by

w(\) = aiz1[A2i-1/21 30050 A2im1/2) (32550 [A2i /2] 130551 A2i/2] 7 (1.1)

where [z] (resp. |z]) stands for the smallest (resp. largest) integer greater (resp. less)
than or equal to z for a given real number z. Actually it is more convenient to define the
above weight through the Ferrers diagram of \: one fills the ith row of the Ferrers diagram
alternatively by a and b (resp. c and d) if ¢ is odd (resp. even), the weight w(\) is then equal
to the product of all the entries in the diagram. For example, if A = (5,4,4, 1) then w(\) is
the product of the entries in the following diagram for .

& d c d
Qa b a b
[

In [2] C. Boulet has obtained results for the generating functions of all ordinary partitions
and all strict partitions with respect to the weight (1.1) (see Corollary 3.6 and Corollary 4.5).
On the other hand, A. Sills [15] has given a combinatorial proof of Andrews’ result, which
has been further generalized by A. Yee [19] by restricting the sum over partitions with parts
each < N and length < M.

In this paper we shall generalize Boulet’s results by summing the weight function w(\)z/®)
over all the ordinary (resp. strict) partitions with parts each < N. It turns out that the
corresponding generating functions are related to the basic hypergeometric series, namely
the Al-Salam-Chihara polynomials and the associated Al-Salam-Chihara polynomials (see
Corollary 3.4 and Corollary 4.3).

This paper can be regarded as a succession of [6], in which one of the authors gave a
Pfaffian formula for the weighted sum Z w(A)sx(x) of the Schur functions sy (), where the
sum runs over all ordinary partitions A, and settled an open problem by Richard Stanley.
Though it is not possible to specialize the Schur functions to z‘»)| we show in this paper
that this approach still works, i.e., we can evaluate the weighted sum Zw()\)ze()‘) by using
Pfaffians and minor summation formulas as tools ([8], [9]), but, as an after thought, we also
provide alternative combinatorial proofs.

In the last section we show the weighted sum Zw(,u)zz(“)PH(x) of Schur’s P-functions
P,(x) (when z = 2, this equals the weighted sum )" w(p)@,,(x) of Schur’s Q-functions Q,(x))

can be expressed by a Pfaffian where p runs over all strict partitions (with parts each < N).
2 Preliminaries
A g¢-shifted factorial is defined by

(a;9)0 =1, (a;¢)n = (1 —a)(1 —aq)--- (1 —aq" "), n=12,....

We also define (a;¢)sc = [[peo(1 — aq®). Since products of g-shifted factorials occur very
often, to simplify them we shall use the compact notations

((11, .- -aam§Q)n = (al;Q)n ce (am;Q)na

(a17 sy A Q)oo = (a1§ Q)oo T (am; Q)oo-



We define an ,.;1¢, basic hypergeometric series by

00

a1,a2,...,0r41 (a17a27"'7a/’r+1;q)n n
+1¢ 1¢,2 ) = z".
" T( bl,...,br ) 7;) (q,bl,...,br;q)n

The Al-Salam-Chihara polynomial Q,,(z) = Q,(z; a, 8|q) is, by definition (cf. [11, p.80]),

. —-n —1
Quaian pla) = 28D g (TR )

_ g " But _
= (au;q)nu~" 201 (a_lq_n+1u_1;q,a Yqu ),

" oau

- n q o
= (Bu™ "5 q)nu" 261 (5_1q_n+1u;q,ﬂ Yqu 1>,

where 2 = “F%_  This is a specialization of the Askey-Wilson polynomials (see [3]), and

satisfies the three-term recurrence relation
22Qn(2) = Qni1(z) + (0 + B)¢"Qn(z) + (1 — ¢")(1 — aB¢" ") Qn_1(x), (2.1)

with Q_1(2) = 0, Qo(x) = 1.
We also consider a more general recurrence relation:

20Qn(x) = Qur1(z) + (@ + B)tq" Qu(w) + (1 — tq")(1 — taBg" " )Qn1 (), (2.2)

which we call the associated Al-Salam-Chihara recurrence relation. Put

~ . g, But -

QY (z) = u" (tau; q)n 261 <t—1a—1q—"+1u_1; o qu ), (2.3)
. . n+1 —1

520y _ oo G0 Dn(taB; @)n tg"t a " qu o4

) = g, 2P\ it ) 24)

where x = %“71 In [10], Ismail and Rahman have presented two linearly independent
solutions of the associated Askey-Wilson recurrence equation (see also [4, 5]). By specializing
the parameters, we conclude that @%1)(37) and @%2)(56) are two linearly independent solutions
of the associated Al-Salam-Chihara equation (2.2) (see [10, p.203]). Here, we use this fact

and omit the proof. The series (2.3) and (2.4) are convergent if we assume |u| < 1 and
lg] < |a] <1 (see [10, p.204]).
Let

W, = QP (@)QP  (z) — Q1 (2)QP () (2.5)

denote the Casorati determinant of the equation (2.2). Since QY (x) and QP (x) both satisfy
the recurrence equation (2.2), it is easy to see that W,, satisfies the recurrence equation

Wi = (1 —tg™)(1 — tafq" HW,.
Using this equation recursively, we obtain
Wit1 = (tg, taf; ¢)n Wi,

which implies
_ hmnaoo WnJrl

1= -
(tg, taf; q) oo



Using (2.3) and (2.4), we obtain

“tau,tq, tas, Bu; q)
l~ W — b b b ) o0
nioe (tBug, ou; @)oo

(for the detail, see [10]). Thus we conclude that

(au, tfug; q)so

Wy = (2.6)

In the following sections we need to find a polynomial solution of the recurrence equation
(2.2) which satisfies a given initial condition, say Qo(z) = Qo and Q1 () = Q. Since @%1)(1)
and é%z)(x) are linearly independent solutions of (2.2), this Q,(z) can be written as a linear
combination of these functions, say

Qn(z) = C1 QW (z) + C2 QP ().

If we substitute the initial condition Qvo(x) = Qp and @1(x) = @ into this equation and
solve the linear equation, then we obtain

€1 = - {@10P @) - QP (@)}
0y = Wl{QoQP( )= Q10 (@)}

By (2.6), we obtain

Gula) = "I Dox [15,50)(2) —~ Qo ()} AV )

(tau, Bu; q) oo
+{@@"(2) - 210" ()} QP (x)] (2.7)
with
~ 1, By ~
(()1)(55) =2¢1 (t—la—ﬂlz—lq; q, 1“‘]) ;
~ “1,-1 g, -1
le) (CL’) = uil(l - atu) 2¢1 <tt 104_’16111 ) Q7a Uq)
QY (x) = 20 (tq;;uquq 4 au)
52,y _ w(l —tg)(1 —taf) (tq o~ lug )
1 (x) = (0 t3ug) 201 tBug? ;q, o
Since
. n A t aﬂ ; 0
lim u" QY (2) = W,
le u” @f)(x) =0,
if we take the limit lim u"Q,, (x), then we have
s u(tPug, ou;q) oo ~(2) 5(2)
Jim " Qnw) = =R {0100 (@) - QR @) (2:8)



In the later half of this section, we briefly recall our tools, i.e. partitions and Pfaffians.
We follow the notation in [14] concerning partitions and the symmetric functions. For more
information about the general theory of determinants and Pfaffians, the reader can consult
[12], [13] and [9] since, in this paper, we sometimes omit the details and give sketches of

proofs.
Let n be a non-negative integer and assume we are given a 2n by 2n skew-symmetric
matrix A = (ai;)1<ij<2n, (€. aj; = —a;;), whose entries a;; are in a commutative ring.

The Pfaffian of A is, by definition,

Pf(A4) = Ze(al, 09,y e ey 020—1,021) Qoyo - - - Qogyy 1090 -

where the summation is over all partitions {{o1,02}<,...,{o2n—1,02,}<} of [2n] into 2-
elements blocks, and where €(o1,09,...,02,-1,02,) denotes the sign of the permutation

1 2 - 2n

o1 02 o O2)
We call a partition 0 = {{o1,02}<,...,{02n—1,02n}<} of [2n] into 2-elements blocks a

perfect matching or 1-factor of [2n], and let F,, denote the set of all perfect matchings of
[2n]. We represent a perfect matching o graphically by embedding the points i € [2n] along
the x-axis in the coordinate plane and representing each block {o2;_1,02;}< by the curve
connecting oy;_1 to o9; in the upper half plane. For instance, the graphical representation
of o = {{1,4},{2,5},{3,6}} is the Figure 1 bellow. If we write wt(c) = €(0) [T/ Goa: 104
for each perfect matching o, then we can restate our definition as

Pf(A) = > wt(o). (2.9)

o€Fn

A skew-symmetric matrix A = (a;5)1<i,j<n is uniquely determined by its upper triangular
entries (aij)i<i<j<n. S0 we sometimes define a skew-symmetric matrix by describing its
upper triangular entries. One of the most important formulas for Pfaffians is the expansion
formula by minors. While the Laplacian determinant expansion formula by minors should
be well-known to everybody, the reader might be not so familiar with the Pfaffian expansion
formula by minors so that we cite the formula here. For 1 <1i < j < 2n, let (A4;{4,;},{i,7})
demote the (2n — 2) x (2n — 2) skew-symmetric matrix obtained by removing both the ith
and jth rows and both the ith and jth columns of A. Let us defined (i, j) by

Vi, j) = (=1~ PE(A; {4, 5}, i, 4))- (2.10)

Then the following identities are called the Laplacian Pfaffian expansions by minors:

2n
815 PE(A) = aryy(k, 1), (2.11)
k=1
2n
8i; PE(A) =D aiy(j, k). (2.12)
k=1
1 2 3 4 5 6

Figure 1: A perfect matching



(See [8, 9]). We call the formula (2.11) the Pfaffian expansion along the jth column, and the
formula (2.12) the Pfaffian expansion along the ith row. Especially, if we put ¢ = 1 in (2.12),
then we obtain the expansion formula along the first row:
2n
Pf(A) = (=1)*ay 5 PE(A; {1k}, {1, k}). (2.13)
k=2
Let O, denote the m x n zero matrix and let E,, denote the identity matrix (61"]')19-}]-3“
of size n. Here §; ; denotes the Kronecker delta. We use the abbreviation O,, for O, .
For any finite set S and any nonnegative integer r, let (f) denote the set of all r-element

subsets of S. For example, ([TTL]) stands for the set of all multi-indices {71, ...,%,} such that

1<i4 <+ <. <n. Let m, n and r be integers such that r < m,n and let T be an m by
n matrix. For any index sets I = {i1,...,4,} € ([T]) and J = {j1,...,4r} € ( ) let AL(A)
denote the submatrix obtained by selecting the rows indexed by I and the columns indexed
by J. If r = m and I = [m], we simply write A;(A) for A[;n] (A). Similarly, if » = n and
J = [n], we write AT(A) for A[I 1(A). It is essential that the weight w(A) can be expressed
by a Pfaffian, which is a fact proved in [6]:

Theorem 2.1. Let n be a non-negative integer. Let A = (A1,..., A2,,) be a partition such
that £(\) < 2n, and put I = (I1,...,l2,) = A+ 2, where 6,, = (m —1,m —2,...,1,0) for
non-negative integer m. Define a skew-symmetric matrix A = (a;;): ;>0 by

;= alG=D/21plG=1)/2] /2] 4li/2]
for i < j. Then we have

I(A) _ n
Pf [Am) (A)] r<im = (abed) (B w(N),
where T(A) = {lap, ..., 11}

A variation of this theorem for strict partitions is as follows.

Theorem 2.2. Let n be a nonnegative integer. Let p = (u1,...,u,) be a strict partition
such that pq > -+ > p, > 0. Let K(u) = {un,...,n1}. Define a skew-symmetric matrix

B = (Bij)ij>—1 by

1, ifi=—-1and j =0,
Bij =\ Jir2plisz), ifi=0, (219

ali/2plir2l li/2lglirzl 2 gt > 0,

for -1 <i <.

(i) If n is even, then we have

Pf [Aﬁggg (B)] = w(p)2" W, (2.15)
(ii) If n is odd, then we have
K
PrATHEKE (B)] = w(w)='®). o (2.16)

These theorems are easy consequences of the following Lemma which has been proved in
[8, Section 4, Lemma 7].

Lemma 2.3. Let x; and y; be indeterminates, and let n is a non-negative integer. Then

Pf[ zyj 1<i<j<2n = H9€2z 1H:l/21



3 Strict Partitions

A partition p is strict if all its parts are distinct. One represents the associated shifted
diagram of p as a diagram in which the ¢th row from the top has been shifted to the
right by 4 places so that the first column becomes a diagonal. A strict partition can be
written uniquely in the form p = (u1,...,He,) where n is an non-negative integer and
1 > po > -+- > pon > 0. The length () is, by definition, the number of nonzero parts
of . We define the weight function w(u) exactly the same as in (1.1). For example, if
p=(8,5,3), then (1) = 3, w(u) = a®°c*d? and its shifted diagram is as follows.

Let
Uy =Uy(a,b,c,d;z) = w(p)z" ™, (3.1)

where the sum is over all strict partitions p such that each part of u is less than or equal to
N. For example, we have

Yo =1,

¥, =1+az,

Uy =1+ a(l + b)z + abcz?,

Uy =1+ a(l+b+ab)z + abe(l + a + ad)z® 4 a®bedz®.

In fact, the only strict partition such that £(u) = 0 is ), the strict partitions p such that
£(p) =1 and pq < 3 are the following three:

[o] [alt] [afb]e],

the strict partitions p such that £(u) = 2 and py < 3 are the following three:

[a]b [alb]al] lalb]a
c c cld

— — )

and the strict partition u such that £(u) = 3 and p; < 3 is the following one:

[a]b

C

BHEE

The sum of the weights of these strict partitions is equal to W3. In this section we always
assume |al,|b],|c|,|d| < 1. One of the main results of this section is that the even terms
and the odd terms of W respectively satisfy the associated Al-Salam-Chihara recurrence
relation:

Theorem 3.1. Set g = abed. Let Uy = Up(a,b,c,d;2z) be as in (3.1) and put Xy = Uap
and YN = \I’2N+1~ Then XN and YN satisfy

XNt = {1 +ab+a(l +bc)z2qN}XN

—ab(1 = 22¢™M)(1 — acz?¢" HXn_1, (3.2)
Y41 = {1+ ab+ abc(1 + ad)quN} Yn
— ab(1 — 2*¢"V)(1 - acz’¢") Yy, (3.3)



where Xg =1, Yo = 1 +az, X1 = 1+ a(1 + b)z + abcz? and
Y1 =1+ a(l+b+ab)z+ abe(l + a + ad)z* + a®bedz>.
Especially, if we put X = (ab)~2 Xy and Y}, = (ab)~ 2 Yy, then X}, and Y}, satisfy

{(ab)% + (ab)~? } Xiy = Xioy —a2b 3 (1 +bo)22g¥ X}y

+ (1= 22¢M A = acz?¢VH XN, (3.4)
{(ab)% + (ab)~® } Y =Yt — a?bic(l + ad)z2¢N Y,
+ (1 = 22¢M)(1 — a®bc2d22 ¢V HYE (3.5)

where X5 =1, Y] =1+az, X} = (ab)"2 + a2b™ 2 (1 + b)z + (ab)2cz* and
Y{ = (ab)"? +azb 2 (1+b+ab)z+a?b?c(l + a+ ad)z> + a3 b? cdz®.
Thus (3.4) agrees with the associated Al-Salam-Chihara recurrence relation (2.2) where
w=a2b?, a =—a2bic, f=—a2b"2 and t = 22, and (3.5) also agrees with (2.2) where u =
atb?, a = —azbie, 3= —a3bied and t = z2. One concludes that, when |lal, [b], €], |d] < 1,

the solutions of (3.2) and (3.3) are expressed by the linear combinations of (2.3) and (2.4)
as follows.

Theorem 3.2. Assume |al, |b], |c|,|d] < 1 and set ¢ = abed. Let Uy = U (a,b,c,d;z) be as
in (3.1).

(i) Put Xy = ¥yy. Then we have

(_az2Q7 —abc; Q)oo

X =
N (Ca, —abez? q) o
X X 2 g N2 bt 1
X {(50 Xy — 57 Xo)(—abez"; q)n 201 (—(abc)lq,N+1z2; q,—c” q)
2 2, N+1,2 —1
X X N (qz ,aCz aQ)N q z7,—=Cc °q
Xo—15 X by ——— ¢, —ab
+(7ﬁ1 0 To 1)(0, ) (_aqzz’q)N 2¢)1 ( _an+122 4, —a C) }a
(3.6)
where

-2 —1
X _ z 77b . _ -1
TO - 2¢1 <_(abc)_1z_2q7 q,—¢C q> 9

2 -1
z —C
58( 2¢1 < q’ qa q, abc> )

—az3q
Zﬁzqil, _bfl B
rf( - (]‘ + abczz) 2¢1 < —(abc)_12_2 ; q) —C 1Q> i
v ab(l1—22¢)(1 — acz?) 22¢%, —c1q
— i q,—abc | .
51 1+ az2q 201 —a?q® q, —abc

(ii) Put Yy = Uon 1. Then we have

Y = (_an'zza —abc; q)oo
N (—agq, —abez?; q) oo

_N_-2
q NVz7%, —acd _
X {(Sole — 51 Yp)(—abez?; q)n 261 <—(abc)1qN+1zz; q,—c 1q>

N+1,2

2 2 —1
Y y ~ (2%, acqz®; q)n gVt g,
+ (7“1 Yo — 15 Y1)(ab) W 201 ( —agN+222 5 q, —abc) }, (37)



where

—2
2z~ %, —acd _
T()Y—2¢1<( L, 1q)7

—abe)~1qz
—1,-2
q 274, —acd _
T}/ = (1 + CLbCZ2) 2(7251 <—(abc),_12—2 y g, —¢C 1Q> )
2 -1
z7q,—¢c q
83/ = 2(151 < _anZQ y q, abc) )
ab(1 — 22¢)(1 — acqz? 22¢%, —c!
57 = ( all 1 )2¢1 “ 9: q,—abc) .
1+ aqg?22 —ag3z2

If we take the limit N — oo in (3.6) and (3.7), then by using (2.8), we obtain the following
generalization of Boulet’s result (see Corollary 3.6).

Corollary 3.3. Assume |al, |b],|c|,|d| < 1 and set ¢ = abed. Let sX, s, X;, Y; (i =0,1) be
as in the above theorem. Then we have

—abe, —az’q; q
Sl ) = E D (g, ¥ X)

o
(—abe, —az’q?; q)
— (@b ) e (sé/Yl — 3}/%), (3.8)

where the sum runs over all strict partitions and the first terms are as follows:

a(l+b) abe(l1+a+ad+abd) 5 a?q(1+b)(1+ be+ abe+bqg) 4

4
et T—ab)(l-q) 1—ab)(1—q)(1 —abg) +0(z%).

On the other hand, by plugging z = 1 into (3.6) and (3.7), we conclude that the solutions
of the recurrence relations (3.4) and (3.5) with the above initial condition are exactly the
Al-Salam-Chihara polynomials, which give two finite versions of Boulet’s result.

Corollary 3.4. Put u = Vab, x = %“_1 and ¢ = abed. Let Uy (a,b,c,d; z) be as in (3.1).
(i) The polynomial ¥ox(a,b,c,d;1) is given by
Uon(a,b,c,d;1) = (ab)%QN(x; —a%b%c, —azb 2 l9),

—-N

q , —C
e (1, s at). (39
(ii) The polynomial ¥on11(a,b,c,d;1) is given by
Waon1(a,b,c,d; 1) = (1+ a)(ab)* Q(x; —a?bic, —a2b? cdlg)
g N, —c
= (—a;9)N 11201 (al’qN; q, —b> : (3.10)

Substituting a = 2yq, b = 27 1yq, c = 2y 'q and d = 2~ 1y~ 1q into Corollary 3.4(see [2]),
then we immediately obtain the strict version of Andrews’ result (see Corollary 4.4).

Corollary 3.5.

N
/ N _ wy
> 20Uy O glul =3~ [J} (—2yq;¢");j(—2y " a4 ) Nv—;(ya)* ™, (3.11)
) S — 4
" stn:; 221}\tjmzon> 7=0 q



and

N

! N — J— y
> 2Oy O gkl —Z[ } (—2ya; ") j+1(—2y a3 ¢ ) n—i(ya)*" ¥, (3.12)
p strict partitions 7=0 J q4
p1<2N+1
where

) (1-¢?)(1—¢7=1)--(1-q) 7
J

{N} (g g e 2D for 0<j <N,
q 0, ifj<0and j>N.

Letting N — oo in Corollary 3.4 or setting z = 1 in (3.8), we obtain the following result
of Boulet (cf. [2, Corollary 2]).

Corollary 3.6. (Boulet) Let ¢ = abed, then

Zw(u) _ (_a;q)oo(_abc; q)OO7 (313)

- (ab; q)o

where the sum runs over all strict partitions.

To prove Theorem 3.1, we need several steps. Our strategy is as follows: write the weight
w(p)z*™) as a Pfaffian (Theorem 2.2) and apply the minor summation formula (Lemma 3.7)
to make the sum of the weights into a single Pfaffian (Theorem 3.8). Then we make use of
the Pfaffian to derive a recurrence relation (Proposition 3.9). We also give another proof of
the recurrence relation by a combinatorial argument (Remark 3.10).

Let J,, denote the square matrix of size n whose (¢,7)th entry is 6; ,4+1—;. We simply
write J for J, when there is no fear of confusion on the size n. We need the following result
on a sum of Pfaffians [18, Theorem of Section 4].

Lemma 3.7. Let n be a positive integer. Let A = (a;;)1<ij<n and B = (b;;)1<i j<n be
skew symmetric matrices of size n. Then

[n/2] t
S+ 3 eraa)pr(adm) = MR B e

re(y)
where ‘I‘ = Zie]i and C' = (Cij)lgi,jgn is given by Cij = ’}/i+jbij2.

This lemma is a special case of Lemma 5.4, so a proof will be given later.

Let S,, denote the n xn skew-symmetric matrix whose (4, j)th entry is 1 for 0 <i < j < n.
As a corollary of Lemma 3.7, we obtain the following expression of the sum of the weight
w(u) by a single Pfaffian.

Theorem 3.8. Let IV be a nonnegative integer.

Un(a,b,c,d;z) =Pt Sn i1 JNH, (3.15)
-Jnvy1 B

where B = (8;)o<i<j<n is the (N +1) x (N +1) skew-symmetric matrix whose (i, j)th entry
Bi; is defined as in (2.14).

Proof. Here we assume the row/column indices start at 0. Note that any strict partition
w is written uniquely as u = (u1, ..., por) with pg > -+ > poy > 0. Here 2t = £(p) if £(p)

10



is even, and 2t = ¢(u) + 1 and po, = 0 if £(p) is odd. Thus, using Theorem 2.2 (2.15), we
obtain

L(N+1)/2]
Un(a,b,cd;z) = Z w(p)zt W = Z Z w(p)z" ™
w strict t=0 n=(p1,--s H2t)
n1<N NZpp>->p2420
L(N+1)/2] K() L(N+1)/2]
I
= Y X E(agpm)= X Y Pi(al®).
t=0 p=(1150512¢) t=0 [e([OVN])
NZ>py>->pe >0 2t

Ifweputn=N+1,z=7=1and A= Sy4; into (3.14), then we obtain

L(N+1)/2]

t
> pr(afm) =pr [ v Tl
t=0 IG([OéiV]) N1

since Pf (Af(Sn41)) = 1 holds for any subset I C [0, N] of even cardinality. (For detailed
arguments on sub-pfaffians, see [9]). In this case, C' = (C;;) in Lemma 3.7 is equal to B =
(bij) in (2.14) because of z = = 1. It is also easy to check that Jyi1Sni1n41 = Snt1.
Thus we easily obtain the desired formula (3.15) from these identities. This completes the
proof. O

For example, if N = 3, then the skew-symmetric matrix in the right-hand side of (3.15) is

0 1 1 1 0 0 0 1

-1 0 1 1 0 0 1 0

-1 -1 0 1 0 1 0 0

-1 -1 -1 0 1 0 0 0
0 0 0 -1 0 az abz a’bz ’ (3.16)
0 0O -1 0 —az 0 abez? a?bez?
0 -1 0 0 —abz  —abcz? 0 a?bedz?

| -1 0 0 0 | —a?bz —a%bcz? —a’bedz? 0 ]

whose Pfaffian equals W3 = 1+ a(1 + b+ ab)z + abe(1 + a + ad)z? + a3bedz3.
By performing elementary transformations on rows and columns of the matrix, we obtain
the following recurrence relation:

Proposition 3.9. Let U = ¥y (a,b, ¢, d; z) be as above. Then we have

Ton = (14+0)Ton_1 + (V6N NaV 7122 — b)Won o, (3.17)
Uont1 = (1 + a)\Ing + (aN+1bNCNdNZ2 — a/)\]iIQNfl, (318)

for any positive integer INV.

Proof. Let A denote the 2(N 4 1) x 2(N + 1) skew symmetric matrix { S}V"'l JNB'H}
—JN+1

in the right-hand side of (3.15). Here we assume row/column indices start at 0. So, for
example, the row indices for the upper (N + 1) rows are ¢, 4 =0, ..., N, and the row indices
for the lower (N + 1) rows are i + N +1,¢=0,...,N. If N = 3, then A is as in (3.16),
and the row/column indices are 0,..., 7 in which 0,..., 3 are called upper and 4,..., 7 are
called lower. Now, subtract a times (j + N)th column from (j + N + 1)th column if j is
odd, or subtract b times (j + N)th column from (j + N + 1)th column if j is even, for
j=N,N—1,...,1. To make our matrix skew-symmetric, subtract a times (i + N)th row
from (i + N + 1)th row if 7 is odd, or subtract b times (i + N)th row from (i + N + 1)th row
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if 4 is even, for i = N, N —1,...,1. To make things clear, we take N = 3 case as an example.
If N = 3, then we first subtract a times 6th column from 7th column of the matrix (3.16),
then we subtract b times 5th column from 6th column of the resulting matrix, and lastly we
subtract a times 4th column from 5th column of the resulting matrix. Thus we obtain the
skew-matrix

0 1 1 1 0 0 0 1
-1 0 1 1 0 0 1 —a
-1 -1 0 1 0 1 —b 0
-1 -1 -1 0 1 —a 0 0

0 0 0o -1 0 az 0 0

0 0 -1 0 —az a’z abcz? 0

0O -1 0 0 —abz  a%bz — abcz? ab®cz? a’bedz?

| -1 0 0 0 | —a?bz aBbz —aPbez®  a?b?cz? — a?bedz?  albedz?

(3.19)

Next we perform the same operations on rows to make the matrix skew-symmetric, i.e.,
subtracting a times 6th row from 7th row of the matrix (3.19), then subtracting b times 5th
row from 6th row of the resulting matrix, and so on. Then we obtain

In the next step, we subtract (j + 1)th column from jth column for j =0,1,...
then we also subtract (i + 1)th row from ith row for ¢ = 0,1, ...

0 1 1 1 0 0 0 1
-1 0 1 1 0 0 1 —a
-1 -1 0 1 0 1 -b 0
-1 -1 =1 0 1 —a 0 0

0 0 0o -1 0 az 0 0

0 0 -1 a | —az 0 abez? 0

0o -1 b 0 0 —abez? 0 a?bedz?
-1 a 0 0 0 0 —a2bedz? 0

(3.20)

7N_17

,N — 1. If N = 3, then this

step is as follows. First, we subtract 1st column from Oth column of the matrix (3.20), then
we subtract 2nd column from 1st column of the resulting matrix, and finally we subtract 3rd
column from 2nd column of the resulting matrix. We perform the same operations on rows.
Then the resulting matrix looks as follows:

0 0 0 0 0 —1 1+a

-1 1 0 0 -1 1+0 —a

0 -1 0 1 -1 1+a —b 0

0 -1 0 1 —a 0 0

0 1 -1 0 az 0 0

0 —1—a a | —az 0 abez? 0

1 —-1-b b 0 0 —abez? 0 a?bedz?
| —1-a 0 0 0 0 —a2bedz? 0

(3.21)

Let A’ denote the resulting matrix after these transformations. Then, in general, the resulting
skew symmetric matrix A’ is written as

|

P Q
—tQR

|

(3.22)

with the (N + 1) x (N + 1) matrices P = (§;41 j)o<i<j<n, @ = (¢ij)o<i<j<n and R =
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(rij)o<i<j<n whose entries are given by

-1

ifi4j=N-—1,

1 ifi=N and j =0,
qij = { 1+ aXUisoddpx(iiseven) if j 15— N and j > 1,
—ClX(j is odd)bx(j is even) if 4 +j= N +1,
0 otherwise,
B {azél,j if i =0,
"7\ alGD/ 2L 20 Fi21 glif2) 26, ;ifi>o0.

Here x(A) stands for 1 if the statement A is true and 0 otherwise. If we apply the expansion
formula (2.13) to Pf(A’), then we easily obtain the desired formula, i.e. (3.17) if NV is even,
and (3.18) if N is odd. We illustrate this expansion by the above example. If we expand the
Pfaffian of the skew-symmetric matrix (3.21) along the first line, then we obtain

0 1 -1 14+a —b 0
-1 0 1 —a 0 0
1 -1 0 az 0 0
Vs = Pf —1—-a a | —az 0 abez? 0
b 0 0 —abez? 0 a?bedz?
0 0 0 0 —a?bedz? 0
0 1 0 0 -1 —a
—1 0 1 -1 1+a O
0 -1 0 1 —a 0
B B R ——
1 —-1—-a a |—az 0 0
a 0 0 0 0 0
0 1 0 0 -1 1+
-1 0 1 -1 1+4+a —b
0 -1 0 1 —a 0
+(1+a) Pl | — T —1] 0  a 0
1 —1—a a | —az 0 abez?
—-1-b b 0 0 —abez? 0

By expanding the first Pfaffian along the last column, we obtain that this Pfaffian equals
a’bedz? V. Similarly, by expanding the second Pfaffian along the last column, we also obtain
that this Pfaffian equals —aW;. The third Pfafian is evidently equal to ¥5. Thus we obtain
U3 = (a?bedz? —a) Wy +(14+a)¥y. The general argument is similar from the above expression
of (3.22). The details are left to the reader. This completes the proof. O

Remark 3.10. Proposition 3.9 can be also proved by a combinatorial argument as follows.

Combinatorial proof of Proposition 3.9. By definition, the generating function for strict
partitions g = (1, o, - .. ) such that g3 = 2N and py < 2N — 2 is equal to

b(Won—1 — Von_2).
That for strict partitions such that u; = 2N and ps = 2N — 1 is equal to
aV N N AN T2 W N .

Finally the generating function of strict partitions such that u; < 2N —1 is equal to Yoy _;.
Summing up we get (3.17). The same argument works to prove (3.18). O
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Note that one can immediately derive Theorem 3.1 from Proposition 3.9 by substitution.
Thus, if one use (2.7), then he immediately derive Theorem 3.2 by a simple computation.

Proof of Theorem 3.2. Let u = Vab, t = 2% and ¢ = abed. By (3.4), X} satisfies the
associated Al-Salam-Chihara recurrence relation (2.2) with o = —azbicand f = —azb 2.
Note that |u| < 1 and |¢| < |&| < 1 hold. Thus, by (2.7), we conclude that Xy is given by
(3.6). A similar argument shows that Y}, satisfies (2.2) with « = —a?b2c and § = —a2b2cd,
which implies Yy is given by (3.7). O

Proof of Corollary 3.4. First, substituting z by 1 in (3.6), we have

X _
ry =1,

St 1 n+ly/_ .—1,. n
sg‘:z( +ag"")(=¢""¢;q) (—abe)",
= (—agq; @)nt

X =14 abc+ a(l+b),

o~ (L= ¢ (=c"'g59)
sX =ab(l — ac ( L2 (—abe)™.
' ( )nz:% (—agq; @)n+1 ( )

Since Xo =1 and X7 = 1+ a(1 +b) + abe for z = 1, we derive r{* X — rf X1 = 0 and

o~ (—c'a;9)
s X) — 55 Xo = (1+a) 7n( abc)™{a + abc + a(1 + b)g" ™'}
' ; a%‘])n+1
- B - —Cc q q n+1 n+1
(1 be) b
0 {35 oo - 3 Gl e

=1+4a.

Therefore, when z = 1, equation (3.6) reduces to

N, —bt -1
XN = (—abc; q)n 201 —(abe)-1g-N+13 D TE )

This establishes (3.9). A similar computation shows that we can derive (3.10) from (3.7) by
specializing z to 1. The details are left to the reader. O

Proof of Corollary 3.5. We first claim that

N

Favta,bedi ) = V] (can-aayor@ (3.23)

k=0 q
Then (3.11) is an easy consequence of (3.23) by substituting a « zyq, b < 27 1yq, ¢ — 2y~ !q

and d « 2z~ 'y~ 1q. In fact, using (¢~V;q)r = (;%%(—1)'%1(2)_1%, we have

2 ( R ) _im CGONE (5N =) (g N
201 _afquNJrl’q’ q _kzo k q(—afquNH;q)kaq q .

Substitute (—a~tq Nt g vk = %a‘l\/‘*kq_(g)‘F@) into this identity to show that
the right-hand side equals




Finally, use (3.9) to obtain (3.23). The proof of (3.12) reduces to

N

Yonti(a,b,c,d;1) = Z [JZ] (—a; Qrs1(—c; Q) n—r(ab) N F, (3.24)
k=0 q

which is derived from (3.10) similarly. O
Proof of Corollary 3.6. By replacing k by N — k and letting N to +oo in (3.23), we get

: — (-
lim Woy(a,b,c,d;1) = (=05 )00 Y
N=—o0 = (@

GOk, ok (—05¢) 00 (—abc; @)oo
S )k (ab)” = (ab; @)

where the last equality follows from the g-binomial formula (see [3]). Similarly we can derive
the limit from (3.24).

Note that we can also derive (3.13) from (3.8) by the same argument as in the proof of
Corollary 3.4. O

4 Ordinary Partitions
First we present a generalization of Andrews’ result in [1]. Let us consider
Oy =On(a,be,d;z) = Y w(N)z'W, (4.1)
M;N

where the sum runs over all partitions A such that each part of A is less than or equal to N.
For example, the first few terms can be computed directly as follows:

(I)O - 17
1+4+az
@ =
YT 1 acs?
B — 1+ a(l +b)z + abcz?
2T (1= ac®)(1—qz?)
o 1+ a(l + b+ ab)z + abe(1 + a + ad)z? + a3bedz3
3 =

(1 — 22ac)(1 — 22¢)(1 — 22acq) ’

where ¢ = abed as before. If one compares these with the first few terms of ¥, one can
easily guess the following theorem holds:

Theorem 4.1. For non-negative integer N, let &y = ®xn(a,b,c,d;z) be as in (4.1) and
q = abed. Then we have

Un(a,b, e d;z)
(22¢;9) | nvy2) (22ac; @) ny2)

dy(a,b,c,d;z) = (4.2)

where Uy = Uy(a,b,c,d;z) is the generating function defined in (3.1). Note that Uy is
explicitly given in terms of basic hypergeometric functions in Theorem 3.2.

In fact, the main purpose of this section is to prove this theorem. Here we give two
proofs, i.e. an algebraic proof (see Proposition 4.6 and Proposition 4.7) and a bijective proof
(see Remark 4.8). Before we proceed to the proofs of this theorem we state the corollaries
immediately obtained from this theorem and the results in Section 3. First of all, as an
immediate corollary of Theorem 4.1 and Corollary 3.3, we obtain the following generalization
of Boulet’s result (Corollary 4.5).

15



Corollary 4.2. Assume |al, |b|, |c|, |d| < 1 and set ¢ = abed. Let 53, s¥, X;, Y; (i =0,1) be
as in Theorem 3.2. Then we have

(—abc, _aZ2Q§Q)oo X X
E :w(/\)zlul = (@b, a2, 2.0) (s5 X1 — s7 Xo)
A ) ) b o0

(—abc, —a®bcdz%q; @)oo , y Y
T (ab, ac2?, 22¢; Q) (86 12 = 5 Yo), -

where the sum runs over all partitions .
Theorem 4.1 and Corollary 3.4 also give the following corollary:
Corollary 4.3. Put z = W and ¢ = abed. Let &5 = Py (a,b,c,d;2) be as in
(4.1).
(i) The generating function ®op(a, b, c,d; 1) is given by
(ab) % Qu (s —azbic, —ab~2|g)
(¢:9)n(aciq)n

(—a; -N _
- ((];11)1\0:(22;]\;)1\/ 201 (ZquCH; 4, _bQ) . (4.4)

Doy (a,b,c,d;1) =

(ii) The generating function ®oy(a,d,c,d;1) is given by

(14 a)(ab)= Qn(z; —azbzc, —a3b2cd|q)
(¢ a)n(ac;q)n+1

S o) B ( g N, —c b)_ (4.5)

201 1 N 9
(;¢)n(ac; @) N —a~tq=N

(I)2N+1(a7 ba ¢, d’ 1) =

Let Sy(n,r,s) denote the number of partitions m of n where each part of m is < N,
O(m) =r, O(x') = s. As before we immediately deduce the following result of Andrews (cf.
[1, Theorem 1]) from Corollary 4.3.

Corollary 4.4. (Andrews)

N B L
>0 Hb (—2ya;q")i(—2y 0" v—j (yq)*N =¥

Son(n,7,8)q"2"y® = , 4.6
nrz:zo ) (¢%¢*)n (2% q*) N (4.6)
and
>0 H[] L (zyasat) e (—2y g ) v (ya)* N
> Sanga(n,rs)g 2y = 1 .47

n,r,s>0 (q4;q4)N(22q4;q4)N+1

Similarly, as in the strict case, we obtain immediately Boulet’s corresponding result for
ordinary partitions (cf. [2, Theorem 1]).

Corollary 4.5. (Boulet) Let ¢ = abed, then

S w() = : (=03 q) oo (—abc; ) o (4.8)

S @5 @)oo (ab; @)oo (aC; @)oo’

where the sum runs over all partitions.

In order to prove Theorem 4.1 we first derive a recurrence formula for ®(a, b, ¢, d; 2).
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Proposition 4.6. Let &y = ®y(a,b, c,d; z) be as before and ¢ = abed. Then the following
recurrences hold for any positive integer N.

(1 — ZQqN)(I)QN = (1 + b)q)QNfl - b(I)QN,Q, (49)
(1 — 22acg™M)®oni1 = (1 + a)Poy — aPon_1. (4.10)
Proof. It suffices to prove that
Doy = Poy_1 + b(Pan_1 — Pon—2) + 2°¢" Pan, (4.11)
Doni1 = Pon + a(Pon — Pon—1) + 2%acg” Loy (4.12)

Let L denote the set of partitions A such that Ay < N. The generating function of Ly
with weight w(\)z‘W is & = ®y(a, b, ¢, d; z). We divide Ly into three disjoint subsets:

Ly =Ly 1 WMy Ny

where My denote the set of partitions A such that \; = N and Ay < N, and Ny denote
the set of partitions A such that \; = Ao = N. When N = 2r is even, it is easy to see
that the generating function of Ma, equals b(®a,_1 — Po,._2), and the generating function of
Na, equals 22¢"®,,.. This proves (4.11). When N = 2r + 1 is odd, the same division proves
(4.12). O

By simple computation, one can derive the following identities from (4.9) and (4.10).

Proposition 4.7. If we put

F b,c,d;
Dy (ab,c,d;z) = — (@, 62 ) , (4.13)
(22¢; q) | ny2) (22ac; @) )2
then,
FQN = (1+b)F2N_1 —b(l—ZQGCQN_l)FQN_Q, (414)
F2N+1 = (1 + a)FgN — a(l — quN)FQNfl. (415)

hold for any positive integer V.

Proof. Substitute (4.13) into (4.9) and (4.10), and compute directly to obtain (4.14) and
(4.15). O

Proof of Theorem 4.1. From (4.14) and (4.15), one easily sees that Fyy(a,b,c,d;z) and
Fonii1(a,b,c,d; z) satisfy exactly the same recurrence in Theorem 3.1. Further, from the
above example, we see

Fo =1,

Fi=1+az,

Fy =1+ a(1l +b)z + abcz?,

F3=1+a(l+b+ab)z + abc(l + a + ad)z?® + a*bed2?,

Fy=1+a(1+0b)(1+ ab)z+ abe(1 + a + ab + ad + abd + abed)2*

+ a®bed(1 4 b)(1 + be)2® + a®b3c3dz*.

Thus the first few terms of Fn(a,b, ¢, d; z) agree with those of ¥y(a,b, ¢, d; z). We immedi-
ately conclude that Fy(a,b,c,d;z) = ¥y (a,b,c,d; z) for all N. O
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Remark 4.8. Here we also give another proof of Theorem 4.1 by a bijection, which has
already been used by Boulet [2] in the infinite case.

Bijective proof of Theorem 4.1. Let Py (resp. Dy) denote the set of partitions (resp.
strict partitions) whose parts are less than or equal to N and let £y denote the set of
partitions whose parts appear an even number of times and are less than or equal to N. We
shall establish a bijection g : Pxy — Dy x En with g(A) = (i, v) defined as follows. Suppose
A has k parts equal to i. If k is even then v has k parts equal to ¢, and if k is odd then v
has k — 1 parts equal to i. The parts of A which were not removed to form v, at most one of
each cardinality, give p. It is clear that under this bijection, w(A\) = w(u)w(v). It is easy to
see that the generating function of £y is equal to

L

&

:1

e 1-— quJ _lilo - ZQCLC(]J

where g = abed. As |52 ] =[5 — 1, we obtain (4.13). O

At the end of this section we state another enumeration of the ordinary partitions, which
is not directly related to Andrews’ result, but obtained as an application of the minor sum-
mation formula of Pfaffians. Let

(bN,M = (I)N,M (aa ba ¢, d) = Z W(A)a
A <N, Ae(A)SM

where the sum runs over all partitions A such that A has at most M parts and each part of
A is less than or equal to N.
Again we use Lemma 3.7 and Theorem 2.1 to obtain the following theorem.

Theorem 4.9. Let N be a positive integer and set ¢ = abed. Then we have

IN/2) t G g
3 noseamla,b e d) gl =pr| PN A (4.16)
Pt ? —JN C

where § = (1)o<icjen—1 and C = (alG=D/21pLG=D/20 e[/ glir2) 5y v

Proof. As in the proof of Theorem 3.8, we take n = N, vy =1 and A = Sy in (3.14), then

we obtain
INSnIn T
LN P (aj(B) = pr |V SN ],

where C' = (bijz)ogz}jngl- If we take bij = a“j_l)/ﬂ bL(j_l)/2J Cl—i/ﬂ d\-i/2J 5 then Theorem 2.1

implies
t

P (Af(B)) = w(\)qgl2)

where I(\) = I. Thus, using Jy Sy Jy = Sx and the above formulas, we obtain

ks (f) Sy Jn
to\2 =
E z'q E ()\)—Pf[ Tn C’]
t=0 re(ON, 1)y

Now (4.16) follows since, when I runs over all 2¢t-subsets of [0, N —1], A runs over all partitions
with at most 2¢ parts and each part less than or equal to N — 2¢t. O
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For example, if N = 4, then the right-hand side of (4.16) becomes

0 1 1 1 0 0 0 1
-1 0 1 1 0 0 1 0
-1 -1 0 1 0 1 0 0
-1 -1 -1 o0 1 0 0 0
Pt 0 0 0 -1 0 z az abz
0 0 -1 0 —z 0 acz abcz
0 -1 0 0 —az —acz 0 abcdz
| -1 0 0 0 | —abz —abcz —abcdz 0

Let dy = @N(a, b,c,d;z) = Pf [ S J] denote the right-hand side of (4.16). For example,

-J C
we have &; =1, Dy =1+ 2, By = 1+ (1+a+ac)z and Oy =1+ (14 a+ ab+ ac+ abe +
abed)z + abedz?. Note that the partitions A such that £(\) < 2 and A\; < 2 are the following
six:

alb]| alp

a]
@@icd.

The sum of their weights is equal to [z]®4 = 1 + a + ab + ac + abe + abcd.
The same argument as in the proof of Proposition 3.9 can be used to prove the following
proposition.

Proposition 4.10. Let &y = éN(m b,c,d; z) be as above. Then we have
<i>2N = (1 + b)i’ngl + ((J,N_le_lcN_ldN_lz — b)‘i)QN,Q, (417)
&)2]\]4_1 = (1 + a)fng + (aNbN_lcNdN_lz — a)(i)QN_l, (418)
for any positive integer INV.
-J C

we did in the proof of Proposition 3.9, and expand it along the last row/column. The details
are left to the reader. O

Proof. Perform the same elementary transformations of rows and columns on [ s J] as

Remark 4.11. The recurrence equations (4.17) and (4.18) also can be proved combinatori-
ally.

Proof of Proposition 4.10. Consider the generating function of partitions:

Sowh= > w)+ D w). (4.19)

A A X
e(Ny<2t L(A)<2t L(N)<2t
A <2jF1-2¢ A <2j—2t Ap=2jF1-2¢t

Splitting the partitions A in the second sum of the right side into two subsets: A\a < A1, and
/\2 = /\1. Now

Yo wW=al| > wh- > wl|, (4.20)

X:A1 > Ao A N
e(N)<2t e(x)<2t (N <2t
A1=2jF1—2t A1 <2j—2t A <2j—1-2t
and
E w(A) = acg? ™" E w(A). (4.21)
XA =Ag ;N
(N <2t L(N)<2t—2
Ap=2j+1—2t A <2j+1-2t

Plugging (4.20) and (4.21) into (4.19) and then multiplying by th(;) and summing over ¢
we get (4.18). Similarly we can prove (4.17). O
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Proposition 4.12. Set Uy = oy and Vy = <i>2N+1, then, for N > 1,
Unt1={1+ab+ac(l+bd)g" 'z} Uy —a(b— 2¢" ") (1 — cz¢g" " Uy_1, (4.22)
Vg ={1+ab+ (14 ac)zq" } Viy — a(b — 2¢™) (1 — cz¢™ ")V _1, (4.23)

where Uy =1, Vo =1, U1 =1+2, Vi =1+ (14 a+ac)z.

Thus Uy and Vjy are also expressed by the solutions of the associated Al-Salam-Chihara
polynomials.

5 A weighted sum of Schur’s P-functions

We use the notation X = X,, = (x1,...,x,) for the finite set of variables x4, ..., z,,. The
aim of this section is to give some Pfaffian and determinantal formulas for the weighted sum
S w(w)z! ™ P, () where P,(z) is Schur’s P-function.

Let A,, denote the skew-symmetric matrix

=2
Ti+ 25 ) 1<45<n
and for each strict partition g = (u1,..., ) of length [ <n, let I',, denote the n x I matrix
(247). Let
J

(A, T.J
Aﬂ(xla'--7xn) = (_JIT;L 0, )
which is a skew-symmetric matrix of (n + [) rows and columns. Define Pf,(z1,...,2,) to

be Pf A, (x1,...,xy,) if n+ 1 is even, and to be Pf A, (z1,...,2,,0) if n+ [ is odd. By [14,
Ex.13, p.267], Schur’s P-function P,(z1,...,zy) is defined to be

Pl (x1.....2)
Ply(z1,...,2n)"

where it is well-known that Pfy(z1,...,2,) = [, j<, 5742 Meanwhile, by [14, (8.7),

Ti+T;
p.253], Schur’s Q-function @, (z1,...,2,) is defined to be ZZO‘)PM(xl, cey ).
In this section, we consider a weighted sum of Schur’s P-functions and @Q-functions, i.e.,

Enl(abye,d; X)) = Z w(p)Py(z1, ..., xp),

N
n1<N

77N(a, b7 C, da Xn) = Z W(M)Qu(xla s axn)7

n
H1SN

where the sums run over all strict partitions p such that each part of u is less than or equal
to N. More generally, we can unify these problems to finding the following sum:

(n(aybye,d;z; X)) = E w(,u)ze(“)Pu(xl, Cey ), (5.1)
m
n1<N

where the sum runs over all strict partitions p such that each part of u is less than or equal
to N. One of the main results of this section is that {y(a,b,c,d; z; X,,) can be expressed by
a Pfaffian (see Corollary 5.6). Further, let us put

Cla,b,e,d; z; X,) = ngnoo (n(a,bye,d;z; X,) = Zw(,u)zz(“)PM(Xn), (5.2)
m
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where the sum runs over all strict partitions y. We also write
g(av ba Cz da Xn) = C(av ba C7 da 17 Xn) = Z W(M)RL(X”)7
o
where the sum runs over all strict partitions u. Then we have the following theorem:

Theorem 5.1. Let n be a positive integer. Then

Clarb,e,d: 5 X) = Pf ('yij)ngan/Pf@(Xn) if n is even, (5.3)
A Pf(vij)ocicj<n / Plo(Xn) if nis odd,
where
Ty — T4
Yij = o T x; + Uiz + v 22 (5.4)
with
dot z; +br? 1 — abx?
ade xj—i-bz? l—abx? 5 5
i (1 —abz?)(1 —abz3) ’ (5:5)
berozs dot z;+azx? 1—a(b+d)z? — abdx3
aver;ry de zj+ax? 1—a(b+ d)x? — abdx? 56
Vi = (1 = abx?)(1 — abx3)(1 — abedx?x?) ’ (5.6)
if 1 <4,j <n, and
ax;(1 -+ bx;
J
if1<j<n.
Especially, when z = 1, we have
clabed X,) = 4 L Giiicyen/ Plo(Xa) i nis even, (5.8)
B Pf (Yi)ocicijcn / Plo(Xn)  if nis odd,
where
Ltaz; ifi=0
TR S with (5.9)
LUyEy, ifl1<i<j<n,
adet [T T bz? 1—b(a+ c)x? — abex?
~ xj+bx? 1—bla+ c)r? — aber?
Vij = (5.10)

(1 —abx?)(1 — abx?)(1 — abedx?x?)

We can generalize this result in the following theorem (Theorem 5.2) using the gen-
eralized Vandermonde determinant used in [7]. Let n be an non-negative integer, and
let X = (z1,...,220), ¥ = (y1,.--,%2n), A = (a1,...,a2,) and B = (by,...,bay,) be
2n-tuples of variables. Let V"(X,Y, A) denote the 2n x n matrix whose (4,j)th entry is
a7yl for 1 <i < 2n,1 < j <mn,and let U"(X,Y; A, B) denote the 2n x 2n matrix
(V"(X,Y,A) V™(X,Y,B)). For instance if n = 2 then U?(X,Y; A4, B) is

a1ry  ai1yi b1y b1y1
22  a2y2 boxo bez
asr3 asys bsrz b3ys
a4y agys bawy  bays
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Hereafter we use the following notation for n-tuples X = (z1, - - -
of variables:

,¥n) and Y = (y1,- -+, yn)

X+Y=@i+y, .., 2n+uyn), X -Y=(@101, ..., Tn¥n),
and, for integers k and [,

Xk = (:z:’f, :L'k)7 Xyl = (x’fyll,,xﬁyil)

rn
Let 1 denote the n-tuple (1,...,1). For any subset I = {i,...,i.} € ([7]), let X; denote
the r-tuple (z;,,...,;, ).
Theorem 5.2. Let ¢ = abed. If n is an even integer, then we have
n/2 2 qrq(s)
) 2 g q\? T;+ X,
donedin =5 3 D T =

r= OIE( n]) ZGI 'i%j<ejl Ti— xf)(l — 9Ty

x det UT(X7,14+qX7, X7 +bX31—b(a+c)X? — abeX3). (5.11)

If n is an odd integer, then we have

n (n—1)/2 |I\*(T+1) . (T)
1+ azx,, (-1) 2 Ja"q\2 T, + T4
g(aa b» C, d7 Xn) -
m2—21 — abx2, Z ([n]z\:{m}) [Tic/ (1 — aba?) ZI;II Tom — Ti
.1‘1 +x; - ) 5
N i 7y et U (XF L4 60 X 4 DXF, 1= b+ €)X — abeX]).
i,j€T

i<j

(5.12)

Theorem 5.3. Let ¢ = abed. If n is an even integer, then ((a, b, ¢, d; z; X,,) is equal to
2 (1 - (T
%er Z (71)|I\ ("3 )(abC) q(z) Hie]zi H x; + x;
x detU"(X7,1+qX}, X1+ aX%, 1—a(b+d)X? — abdX?})
n/2

+Z - Z Z 1= (5)=14rpr—1pr—1 ( ){14—@1;(;6-;64—1:5)+almkgcl}]_[lel,1:z
IG( ) k<l Hze]( z)

k,lerl

[Tiser (zi + ) - det U1 (X214 ¢X}, X +aX3,1 —a(b+d) X7 — abdX?},)

i<j
[Teser (i —25)(1 = qzizj)
i<j

X

, (5.13)

where I' = I'\ {k,1}.

Note that we can obtain a similar formula when n is odd by expanding the Pfaffian in
(5.3) along the first row/column.

To obtain the sum of this type we need a generalization of Lemma 3.7, in which the
row/column indices always contain say the set {1,2,...,n}, for some fixed n.

Lemma 5.4. Let n and N be nonnegative integers. Let A = (a;;) and B = (b;;) be skew
symmetric matrices of size (n+N). We divide the set of row/column indices into two subsets,
i.e. the first n indices Iy = [n] and the last N indices I; = [n+ 1,n + N]. Then

3 s 3 e (adeta)) pr (alh()

n+t even
— Pt (J71,+N tAJn+N Kn,N)

B o (5.14)
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where C' = (Cij)lgi,j7§n+N is given by Cij = ’7i+jbi]‘2 and Kn,N = JnJrN’Ev‘n’N with

= On On.N
En,N - (ON,TL EN ) .
Py P
—'Piy P
Py1, P12 and Poy are m x m matrices, then Pf P is the sum (2.9) over all perfect match-
ings on the vertices {1,2,...,m,m + 1,m + 2,...,2m}. Meanwhile, one easily sees that
Pt (Jrrz Pidy JnPro
—*Pradm Paa
over all perfect matchings on the vertices {m,m —1,...,I,m+1,m+2,...,2m}.
Let V.={(n+N)*,...,(n+1)*,n*,...;1%,1,...,n,n+1,...,n+ N} be vertices arranged
in this order on the z-axis. Put Vi = {n*,...,1*} and V}* = {(n + N)*,...,(n + 1)*},
Vo={1,...,n}and V; = {n+1,...,N}. A perfect matching ¢ € F(V) on the vertices V'
is unlquely ertten as o =01 Woy U o3 where o (resp 03) is the set of arcs in ¢ connecting
two vertices in Vi* WV (resp. Vo W V1) and o3 is the set of arcs in o connecting a vertex in
Vi WV and a vertex in Vo W V4. Thus the Pfaffian in the right-hand side of (5.14) equals

zg:sgno H H kij H Cij

(j*,i*)eal (z ,j)Eoa (i,7)€03

Proof. In general, if P = < ) is a 2m x 2m skew symmetric matrix where

) is equal to a similar sum as in (2.9), but the sum should be taken

summed over all perfect matching o € F(V) on V. Here k;; is the (4, j)th entry of K, y =
Jn+NEn ~. From the definition of En N, H(2 j)eos k;; vanishes unless o3 is a collection
of arcs (i*,4) (i = n+1,...,n+ N). Thus we can assume o7 is a perfect matching on
I*W Vg and o3 is a perfect matching on Vo W I where I is a subset V;. Here, if I =
{#1,...,4:} € V1, then we write I* = {i},... i} for convention. Thus n + t must be even,
and [[(; jyep, Cij = 2(n+8)/2 | Lol I1i j)co, bij- Note that oz composed of arcs (i,4). This
implies that sgn o = sgn o sgn o3 since the number of crossing between arcs in oy and arcs
in o9 equals the number of crossing between arcs in o7 and arcs in o5. Thus the above sum

sum is equal to
Zz(t+")/2 Z 'y”+|” Z SgN 01 SgN 03 H i H bij.
1€(’Y) (01,03) (i,j)€01  (i,5)€o0s
This is equal to the left-hand side of (5.14). O
For a nonnegative integer N, let u™ = (N,...,1,0), and let I',~ denote the n x (N +1)

. N—j
matrix (;vz j) . Let
1<i<n,0<j<N

A, T JInin
Ap N = iy
WN <_JN+1TNN OnN+1 >

which is a skew-symmetric matrix of size n + N 4+ 1. For example, if n = 4 and N = 3, then

T1—To r1—x3 T1—T4 2 3
voe, TG BT mEmo UL ML

L2—d1 2—T3 T2 —T4q
Tites Om zatas  Ta2tag 1 2 x22 $23

3—%1 3—T2 3—T4
;14‘;3 %2-‘-%3 . Ow Ta+x4 1 a3 $32 1‘33

4—X1 4 — L2 4—x3

Aygg = | zitza  z2tzs 23t Lozy oz T4
’ -1 -1 —1 -1 0 0 0 0
- —o —T3 —x4 0 O 0 0

2 2 a2 2
T1 Ta T3 z4c 0 O 0 0
—Il?’ —.’L‘23 —3?33 —.’1?43 0 0 0 0

Let §;; be as in (2.14). Let By denote the (IV + 1) x (N + 1) matrix (8;;)o<i j<n and let

B\ denote the (N 4 2) x (N + 2) matrix (8;;)—1<i j<N-
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Theorem 5.5. Let n and N be integers such that n > N > 0. Then
CN(a7b7 c, d; Z;XTL) =Pf (Cn,N)/PfQ)(Xn)a (5'15)

where

Ony1 Tundn  JIngr
Cn,N = _Jan,N JntAan OmNJrl ; (516)
—Jnt1 Onian By

if n is even, and

On41 Tundn Iy
Corw = | —Juln  JutAndn Onnia (5.17)
—Jyi1 Ongzn By

where Jy, | = (ON+171 JN+1) if n is odd.

Proof. Let B, y be the skew-symmetric matrix of size (n + N + 1) defined by

B N = Sn On,N+1
" Ont1mn  Bn

B, = < Sn—1 On,N+2)
" On+2.n Bl

if n is even, and

if n is odd. Fix a strict partition g = (u1,..., ) such that g3 > .-+ > g > 0, and let
K,(p) ={n+u,...,n+ p1}. From the definition of B, ny and Theorem 2.2, we have

n|Wwk, 7
PE (A (B ) = i) 29

if n+ 1 is even. Thus Lemma 5.4 immediately implies that Pfy(X,)(n(a,b, ¢, d; z; X)) is
equal to

Pf <Jn+N+1t-An,NJn+N+1 Kn7N+1) i (5.18)

t
- n,N+1 Bn,N

By simple elementary transformations on rows and columns, we obtain the desired results
(5.16) and (5.17). O

Corollary 5.6. Let n and N be integers such that n > N > 0. Then

¢nv(a,b,e,d; 2, X,) =Pt (D, N) [ Ply(X,), (5.19)
where
_ [ F Ty 1k
Dp N = P + ) Buzia) ; (5.20)
Ok IsN 1<i,j<n
if n is even, and
N
0 S5yt
D, N 5 k=0 , (5.21)
S et | HE T el
k=0 Ti T 0<k,I<N 0<i,j<n

if n is odd.
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For instance, if n =4 and N = 2, then Dy looks as follows:

0 0o 0 2 x3 3 x? 0 0 1
0 0 0 T4 I3 ) I 0 1 0
0 0 0 1 1 1 1 1 0 0
S n 10 mE om0 00
-y —wy —lofle 00 P Dl 0 0 0
o} -y -1 S ozmemo o0 dE 0 0 o
—af —a -1 PR PR PR 0 0 0 0
0 0 -1 0 0 0 0 0 az abz
0 -1 0 0 0 0 0 —az 0 abcz?
-1 0 0 0 0 0 0 —abz —abcz? 0

Proof of Corollary 5.6. When n is even, annihilate the entries in T, ~J, of (5.16) by
elementary transformation of columns, and annihilate the entries in —.J,I',~ of (5.16) by
elementary transformation of columns. Then expand the Pfaffian Pf (C, n) along the first
N + 1 rows. The case when n is similar. Perform the same operation on (5.17). O

Proof of Theorem 5.1. Perform the summations
k
"
> uder (31 31)
0<k<l J

and
oo
2 : k
ﬁfl,kirj ’
k=0

and apply Corollary 5.6. The details are left to the reader (cf. Proof of Theorem 2.1 in [6]).
O

To prove Theorems 5.2 and 5.3, we need to cite a lemma from [6]. (See Corollary 3.3 of
[6] and Theorem 3.2 of [7].)

Lemma 5.7. Let n be a non-negative integer. Let X = (x1,...,22,), A = (a1,...,a2,),
B=(b1,...,ba,), C=(c1,...,¢2,) and D = (dy,...,day) be 2n-tuples of variables. Then

(aibj — ajbi)(cidj — dei)

Pt
(I’i — x])(l — t.’Ein)

1<i<j<2n

VX, 1+tX% A, B)V(X,1+tX%C, D)

= , (5.22)
[licicjcon(@i — ;) (1 — tziz;)
where 1 +tX? = (1 + tz?,...,1+ tz?).
In particular, we have
b — a:b: wy () V(X X2 A B
- [azbj b} _ (c)®n) VXKL X AB) (5.23)
1 —txx; 1<i<j<2n H1§i<j§2n(1 — tw;x;)
Proof of Theorem 5.2. First, assume n is even. Using the formula
[n/2]
fA+B) =Y > (- piA])Pr(BL), (5.24)
=0 re(ln))
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where I denotes the complementary set of I, we see that £(a, b, ¢, d; X,,) is equal to

ln/2]

> X e I S P
7 J

=0 re()

Apply Lemma 5.7 to obtain (5.11). When n is odd, first expand the Pfaffian along the first
row/column and repeat the same argument. O

Proof of Theorem 5.3. Note that the rank of the matrix (u;;)1<;,j<n is at most two. Thus
we have

a(z1—z2){1+b(z1+z2)+abziza} ifn =2
Pf(u;i)i<ii<cn = (1—abx?)(1—abx3) ’
(wih<iss {O otherwise.
Using (5.24), we obtain
Pf(hii) . .. =Pf| =" 4y,
(ishiijen (T/HFT/J i )1<ij<n
— 1+5b b i — T
+ D (FDE vazlor Z (L by + o) b abrin} gy (xz s +vuz2>
\<hoi<n (1 —abz?)(1 — aba?) x; + 1<ig<n

Use (5.24) again to see that ((a, b, c,d; z; X,,) is equal to

L%%J D DECLEGN | [ O
T, — T ij )i g€l
=0 (R et
+ Y (=R 102(2k xl){1+2(xk +xl):abxk$l}
1<k<i<n (1 —abxf)(1 — abxy)
X L%%J 22 S (e I 2 pi(y)
r=1 2 — ij)ijer -

[n]—{k,1} i,jer’
re(y 1) 75

Put I =I' U{k,1} and apply Lemma 5.7 to obtain (5.13). O
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hara for his helpful comments and suggestions.

References

[1] G. E. Andrews, “On a partition function of Richard Stanley”, Electron. J. Combin.
11(2) (2004), #R1.

[2] C. Boulet, “A four parameter partition identity”, arXiv:math.C0/0308012, to appear
in Ramanujan J.

[3] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press,
Cambridge, Second edition, 2004.

[4] D.P. Gupta, M.E.H. Ismail and D.R. Masson, “Contiguous relations, basic hypergeo-
metric functions, and orthogonal polynomials, ITI, Associated continuous dual g-Hahn
polynomials”, arXiv:math.CA/9411226.

[5] D.P. Gupta and D.R. Masson, “Solutions to the associated g-Askey-Wilson polynomial
recurrence relation”, arXiv:math.CA/9312210.

26



(6]

M. Ishikawa, “Minor summation formula and a proof of Stanley’s open problem”,
arXiv:math.C0/0408204, to appear in Ramanujan J.

M. Ishikawa, S. Okada, H. Tagawa and J. Zeng, “Generalizations of Cauchy’s determi-
nant and Schur’s Pfaffian”, Adv. in Appl. Math. 36, (2006) 251 - 287.

M. Ishikawa and M. Wakayama, “Minor summation formula of Pfaffians”, Linear and
Multilinear Algebra 39 (1995), 285-305.

M. Ishikawa and M. Wakayama, “Applications of minor summation formula III, Pliicker
relations, lattice paths and Pfaffian identities”, J. Combin. Theory Ser.A. 113, (2006)
113-155.

M.E.H. Ismail and M. Rahman “The associated Askey-Wilson polynomials”, Trans.
Amer. Math. Soc. 328 (1991), 201 — 237.

R. Koelof and R.F.Swarttouw, The Askey-scheme of hypergeometric orthogonal polyno-
mials and its q-analogue Delft University of Technology, Report no. 98-17 (1998).

C. Krattenthaler, “Advanced determinant calculus”, Seminaire Lotharingien Combin.
42 (7?The Andrews Festschrift”) (1999), Article B42q, 67.

C. Krattenthaler, “Advanced determinant calculus : a complement”,
arXiv:math.C0/0503507.

1.G. Macdonald, Symmetric functions and Hall polynomials, 2nd Edition, Oxford Uni-
versity Press, (1995).

A. Sills, “A combinatorial proof of a partition identity of Andrews and Stanley”, Inter-
national Journal of Mathematics and Mathematical Sciences, 2004/47, 2495-2503.

R. P. Stanley, “Some remarks on sign-balance and maj-balanced posets”, Adv. in Appl.
Math. 34 (2005), 830 — 902.

R.P. Stanley, “Open problem”, International Conference on Formal Power Series
and Algebraic Combinatorics (Vadstena 2003), June 23 - 27, 2003, available from
http://www-math.mit.edu/ rstan/trans.html.

C.A. Tracy and H. Widom, “A limit theorem for shifted Schur measures” Duke Math.
J. 123 (2004), 171-208.

A. J. Yee, “On partition functions of Andrews and Stanley”, J. Combin. Theory Ser.A
13 (2004), 135-139.

27



