Refined Enumerations of Totally Symmetric Self-Complementary Plane Partitions and Lattice Path Combinatorics

Masao Ishikawa
Faculty of Education, Tottori University
Koyama, Tottori, Japan
ishikawa@fed.tottori-u.ac.jp
Mathematics Subject Classifications: Primary 05A15; Secondary 05A17, 05E05, 05E10.

Keywords: totally symmetric self-complementary plane partitions, Pfaffian formulae, constant term identities, alternating sign matrices.

Abstract

This article is a short explanation of some of the results obtained in my papers "On refined enumerations of totally symmetric self-complementary plane partitions I, II". We give Pfaffian expressions for some of the conjectures in the paper "Self-complementary totally symmetric plane partitions" (J. Combin. Theory Ser. A 42, 277-292) by Mills, Robbins and Rumsey, using the lattice path method.

1 Introduction

In the paper [8] Mills, Robbins and Rumsey presented several conjectures on the enumeration of the totally symmetric self-complementary plane partitions. The aim of this article is to obtain a Pfaffian expressions for the refined enumeration and doubly refined enumeration of the totally symmetric self-complementary plane partitions (see Theorem 1.4). In [4, 5], we obtain more Pfaffian or determinant expressions, and certain constant term identities for the conjectures.

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e. finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i, j \geq 1} \pi_{i j}=n$, then we write $|\pi|=n$ and say that π is a plane partition of n, or π has weight n. A part of a plane partition $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ is a positive entry $\pi_{i j}>0$. The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the i th row. Consider the elements of \mathbb{P}^{3}, regarded as the lattice points of \mathbb{R}^{3} in the positive orthant. The Ferrers graph $F(\pi)$ of π is the set of all lattice points $(i, j, k) \in \mathbb{P}^{3}$ such that $k \leq \pi_{i j}$. A subset F of \mathbb{P}^{3} is a Ferrers graph if and only if it satisfies

$$
x_{1} \leq x_{2}, y_{1} \leq y_{2}, z_{1} \leq z_{2} \text { and }\left(x_{2}, y_{2}, z_{2}\right) \in F \Rightarrow\left(x_{1}, y_{1}, z_{1}\right) \in F
$$

Hereafter we identify a plane partition and its Ferrers graph, and write π for $F(\pi)$. The symmetric group S_{3} is acting on \mathbb{P}^{3} as permutations of the coordinate axes. A plane partition is said to be totally symmetric if its Ferrers graph is mapped to itself under all 6 permutations in S_{3}.

A plane partition $\pi \subseteq X_{r, s, t}:=[r] \times[s] \times[t]$ is (r, s, t)-self-complementary if we have, for all $p \in X_{r, s, t}, p \in \pi$ if and only if $\sigma_{r, s, t}(p) \notin \pi$. Let \mathscr{T}_{n} denote the set of all plane partitions which is contained in the cube $X_{2 n},(2 n, 2 n, 2 n)$-self-complementary and totally symmetric.

In [8] Mills, Robbins and Rumsey have introduced a class \mathscr{B}_{n} of triangular shifted plane partitions

$$
\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1, n-1} \\
& b_{22} & \cdots & b_{2, n-1} \\
& & \ddots & \vdots \\
& & & b_{n-1, n-1}
\end{array}
$$

whose parts are $\leq n$, weakly decreasing along rows and columns, and all parts in row i are $\geq n-i$. For example, \mathscr{B}_{3} consists of the following seven elements.

$$
\begin{array}{llllllllllllll}
3 & 3 & & 3 & 3 & & 3 & 3 & & 3 & 2 & & 3 & 2 \\
& 2 & 2 & & 2 & 2 \\
& 3 & & 2 & & 1 & & 2 & & 1 & & 2 & & \\
1
\end{array}
$$

They have established an bijection between \mathscr{T}_{n} and \mathscr{B}_{n}.
Let μ be a strict partition. A shifted plane partition τ of shifted shape μ is an arbitrary filling of the cells of μ with nonnegative integers such that each entry is weakly decreasing in rows and columns. In this article we allow parts to be zero for shifted plane partitions of a fixed shifted shape μ. Here we consider a more general set $\mathscr{B}_{n, m}$ of shifted plane partitions which appeared in [7, Theorem 1].
Definition 1.1. Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{B}_{n, m}$ denote the set of shifted plane partitions $b=\left(b_{i j}\right)_{1 \leq i \leq j}$ subject to the constraints that
(B1) the shifted shape of b is $(n+m-1, n+m-2, \ldots, 2,1)$;
(B2) $\max \{n-i, 0\} \leq b_{i j} \leq n$ for $1 \leq i \leq j \leq n+m-1$.
The main object we study in this article is the following set $\mathscr{P}_{n, m}$, which is bijective with the set $\mathscr{B}_{n, m}$ defined above.

Definition 1.2. Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n, m}$ denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c has at most n columns;
(C2) c is column-strict and each part in the j th column does not exceed $n+m-j$.
If a part in the j th column of c is equal to $n+m-j$ (that can happen only in the first row, i.e. $c_{1 j}=n+m-j$), we call the part a saturated part.

The important fact is that we construct a bijection between $\mathscr{B}_{n, m}$ and $\mathscr{P}_{n, m}$ in [4]. By this bijection, the statistics on $\mathscr{B}_{n, m}$ defined by Mills, Robbins and Rumsey in [8] correspond to the following statistics $\bar{U}_{r}(c)$ on $\mathscr{P}_{n, m}$.

Definition 1.3. For $c \in \mathscr{P}_{n, m}$, let $\bar{U}_{r}(c)$ be the number of parts equal to r plus the number of saturated parts less than r, i.e.

$$
\begin{equation*}
\bar{U}_{r}(c)=\sharp\left\{(i, j): c_{i j}=r\right\}+\sharp\left\{1 \leq k<r: c_{1, n+m-k}=k\right\} . \tag{1.1}
\end{equation*}
$$

Especially $\bar{U}_{1}(c)$ is the number of 1 's in c and $\bar{U}_{n+m}(c)$ is the number of saturated parts in c. It is also easy to see that $\bar{U}_{n+m-1}(c)=\bar{U}_{n+m}(c)$ since, if a part of $c \in \mathscr{P}_{n, m}$ is equal to $n+m-1$, then it is saturated.

Let $\bar{S}_{n}=\left(\bar{s}_{i j}\right)_{1 \leq i, j \leq n}$ be the skew-symmetric matrix of size n whose (i, j) th entry $\bar{s}_{i j}$ is $(-1)^{j-i-1}$ for $1 \leq i<j \leq n$. Let $B_{n, m}^{N}(t, u)=\left(b_{i j}^{(m)}(t, u)\right)_{0 \leq i \leq n-1,0 \leq j \leq n+N-1}$ be the $n \times(n+N)$ matrix whose (i, j) th entry is

$$
b_{i j}^{(m)}(t, u)= \begin{cases}\delta_{0, j} & \text { if } i+m=0 \tag{1.2}\\ \binom{i+m-1}{j-i}+\binom{i+m-1}{j-i-1} t u & \text { if } i+m=1, \\ \binom{i+m-2}{j-i}+\binom{i+m-2}{j-i-1}(t+u)+\binom{i+m-2}{j-i-2} t u & \text { otherwise. }\end{cases}
$$

For example,

$$
B_{3,0}^{2}(t, u)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & t u & 0 & 0 \\
0 & 0 & 1 & t+u & t u
\end{array}\right)
$$

We define the $n \times(n+N)$ matrices $B_{n, m}^{N}(t)=B_{n, m}^{N}(t, 1)$ and $B_{n, m}^{N}=B_{n, m}^{N}(1)$. The results of this article is the following theorem.

Theorem 1.4. Let m and $n \geq 1$ be non-negative integers, and let N be an even integer such that $N \geq n+m-1$.
(i) If r is a positive integer such that $2 \leq r \leq n+m$, then the generating function for all plane partitions $c \in \mathscr{P}_{n, m}$ with the weight $t^{\bar{U}_{1}(c)} u^{\bar{U}_{r}(c)}$ is

$$
\sum_{c \in \mathscr{P}_{n, m}} t^{\bar{U}_{1}(c)} u^{\bar{U}_{r}(c)}=\operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n, m}^{N}(t, u) \tag{1.3}\\
-B_{n, m}^{N}(t, u) J_{n} & \bar{S}_{n+N}
\end{array}\right) .
$$

(ii) If r is a positive integer such that $1 \leq r \leq n+m$, then the generating function for all plane partitions $c \in \mathscr{P}_{n, m}$ with the weight $t^{\bar{U}_{r}(c)}$ is given by

$$
\sum_{c \in \mathscr{P}_{n, m}} t^{\bar{U}_{r}(c)}=\operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n, m}^{N}(t) \tag{1.4}\\
-{ }^{t} B_{n, m}^{N}(t) J_{n} & \bar{S}_{n+N}
\end{array}\right) .
$$

Now we assign weight

$$
\boldsymbol{t}^{\bar{U}(c)} \boldsymbol{x}^{c}=\prod_{k=1}^{m+n} t_{k}^{\bar{U}_{k}(c)} \prod_{i \geq 1} x_{i}^{\sharp i \prime \sin c}
$$

to each $c \in \mathscr{P}_{n, m}$. We prove Theorem 1.4 from the minor summation formula [6] and the following thorem, which can be proved with the lattice path method.

Theorem 1.5. Let m and $n \geq 1$ be non-negative integers, and put $N=n+m$. Let λ be a partition with $\ell(\lambda) \leq n$. Then the generating function of all plane partitions $c \in \mathscr{P}_{n, m}$ of shape λ^{\prime} with the weight $\boldsymbol{t}^{\bar{U}(c)} \boldsymbol{x}^{c}$ is given by

$$
\begin{equation*}
\sum_{\substack{c \in \mathscr{P}_{n, m} \\ \operatorname{sh}(c)=\lambda^{\prime}}} \boldsymbol{t}^{\bar{U}(c)} \boldsymbol{x}^{c}=\operatorname{det}\left(e_{\lambda_{j}-j+i}^{(N-i)}\left(t_{1} x_{1}, \ldots, t_{N-i-1} x_{N-i-1}, T_{N-i} x_{N-i}\right)\right)_{1 \leq i, j \leq n} \tag{1.5}
\end{equation*}
$$

where $T_{i}=\prod_{k=i}^{N} t_{k}$.
In fact, we give a lattice path realization of each $c \in \mathscr{P}_{n, m}$. Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
(i) We assign the weight

$$
\begin{cases}\prod_{k=j}^{N} t_{k} \cdot x_{j} & \text { if } j=i \\ t_{j} x_{j} & \text { if } j<i\end{cases}
$$

to the horizontal edge from $u=(i, j)$ to $v=(i+1, j-1)$.
(ii) We assign the weight 1 to the vertical edge from $u=(i, j)$ to $v=(i, j-1)$.

Let $u_{j}=(N-j, N-j)$ and $v_{j}=\left(\lambda_{j}+N-j, 0\right)$ for $j=1, \ldots, n$, and let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$. We claim that the $c \in \mathscr{P}_{n, m}$ of shape λ^{\prime} can be identified as n-tuples of nonintersecting D-paths in $\mathscr{P}(\boldsymbol{u}, \boldsymbol{v})$. For example, the plane partition

corresponds the lattice paths illustrated in Figure 1.

Figure 1: Lattice Paths ($\left.n=7, m=3, \lambda^{\prime}=\left(65^{2} 4^{2} 21\right), T_{i}=\prod_{k=i}^{n+m} t_{k}.\right)$

References

[1] G.E. Andrews and W.H. Burge, "Determinant identities", Pacific J. Math. 158 (1993), 1-14.
[2] D.M. Bressound, Proofs and Confirmations, Cambridge U.P.
[3] I. Gessel and G. Viennot, Determinants, Paths, and Plane Partitions, preprint (1989).
[4] M. Ishikawa, "On refined enumerations of totally symmetric self-complementary plane partitions I", arXiv:math.CD/0602068.
[5] M. Ishikawa, "On refined enumerations of totally symmetric self-complementary plane partitions II", arXiv:math.CO/0606082.
[6] M. Ishikawa and M. Wakayama, "Applications of the minor summation formula III: Plücker relations, lattice pathes and Pfaffians", arXiv:math.C0/0312358, J. Combin. Theory Ser. A 113 (2006) 113-155.
[7] C. Krattenthaler, "Determinant identities and a generalization of the number of totally symmetric self-complementary plane partitions", Electron. J. Combin. 4(1) (1997), \#R27.
[8] W.H. Mills, D.P. Robbins and H. Rumsey, "Self-complementary totally symmetric plane partitions", J. Combin. Theory Ser. A 42, (1986), 277-292.
[9] R.P. Stanley, "Symmetries of plane partitions", J. Combin. Theory Ser. A 43, (1986), 103-113.
[10] J.R. Stembridge, "Nonintersecting paths, Pfaffians, and plane partitions" Adv. math., 83 (1990), 96-131.
[11] D. Zeilberger, "A constant term identity featuring the ubiquitous (and mysterious) Andrews-Mills-Robbins-Rumsey numbers", J. Combin. Theory Ser. A 66 (1994), 17-27.

