## Refined Enumerations of Totally Symmetric Self-Complementary Plane Partitions and Lattice Path Combinatorics

Masao Ishikawa Faculty of Education, Tottori University Koyama, Tottori, Japan ishikawa@fed.tottori-u.ac.jp

Mathematics Subject Classifications: Primary 05A15; Secondary 05A17, 05E05, 05E10.

*Keywords*: totally symmetric self-complementary plane partitions, Pfaffian formulae, constant term identities, alternating sign matrices.

## Abstract

This article is a short explanation of some of the results obtained in my papers "On refined enumerations of totally symmetric self-complementary plane partitions I, II". We give Pfaffian expressions for some of the conjectures in the paper "Self-complementary totally symmetric plane partitions" (*J. Combin. Theory Ser. A* **42**, 277–292) by Mills, Robbins and Rumsey, using the lattice path method.

## 1 Introduction

In the paper [8] Mills, Robbins and Rumsey presented several conjectures on the enumeration of the totally symmetric self-complementary plane partitions. The aim of this article is to obtain a Pfaffian expressions for the refined enumeration and doubly refined enumeration of the totally symmetric self-complementary plane partitions (see Theorem 1.4). In [4, 5], we obtain more Pfaffian or determinant expressions, and certain constant term identities for the conjectures.

A plane partition is an array  $\pi = (\pi_{ij})_{i,j\geq 1}$  of nonnegative integers such that  $\pi$  has finite support (i.e. finitely many nonzero entries) and is weakly decreasing in rows and columns. If  $\sum_{i,j\geq 1}\pi_{ij} = n$ , then we write  $|\pi| = n$  and say that  $\pi$  is a plane partition of n, or  $\pi$  has weight n. A part of a plane partition  $\pi = (\pi_{ij})_{i,j\geq 1}$  is a positive entry  $\pi_{ij} > 0$ . The shape of  $\pi$  is the ordinary partition  $\lambda$  for which  $\pi$  has  $\lambda_i$  nonzero parts in the *i*th row. Consider the elements of  $\mathbb{P}^3$ , regarded as the lattice points of  $\mathbb{R}^3$  in the positive orthant. The Ferrers graph  $F(\pi)$  of  $\pi$  is the set of all lattice points  $(i, j, k) \in \mathbb{P}^3$  such that  $k \leq \pi_{ij}$ . A subset F of  $\mathbb{P}^3$  is a Ferrers graph if and only if it satisfies

$$x_1 \leq x_2, y_1 \leq y_2, z_1 \leq z_2$$
 and  $(x_2, y_2, z_2) \in F \Rightarrow (x_1, y_1, z_1) \in F$ .

Hereafter we identify a plane partition and its Ferrers graph, and write  $\pi$  for  $F(\pi)$ . The symmetric group  $S_3$  is acting on  $\mathbb{P}^3$  as permutations of the coordinate axes. A plane partition is said to be totally symmetric if its Ferrers graph is mapped to itself under all 6 permutations in  $S_3$ .

A plane partition  $\pi \subseteq X_{r,s,t} := [r] \times [s] \times [t]$  is (r, s, t)-self-complementary if we have, for all  $p \in X_{r,s,t}$ ,  $p \in \pi$  if and only if  $\sigma_{r,s,t}(p) \notin \pi$ . Let  $\mathscr{T}_n$  denote the set of all plane partitions which is contained in the cube  $X_{2n}$ , (2n, 2n, 2n)-self-complementary and totally symmetric.

In [8] Mills, Robbins and Rumsey have introduced a class  $\mathscr{B}_n$  of triangular shifted plane partitions  $b_{11} \quad b_{12} \quad \dots \quad b_{1n-1}$ 

whose parts are  $\leq n$ , weakly decreasing along rows and columns, and all parts in row i are  $\geq n-i$ . For example,  $\mathscr{B}_3$  consists of the following seven elements.

They have established an bijection between  $\mathscr{T}_n$  and  $\mathscr{B}_n$ .

Let  $\mu$  be a strict partition. A shifted plane partition  $\tau$  of shifted shape  $\mu$  is an arbitrary filling of the cells of  $\mu$  with nonnegative integers such that each entry is weakly decreasing in rows and columns. In this article we allow parts to be zero for shifted plane partitions of a fixed shifted shape  $\mu$ . Here we consider a more general set  $\mathscr{B}_{n,m}$  of shifted plane partitions which appeared in [7, Theorem 1].

**Definition 1.1.** Let m and  $n \ge 1$  be nonnegative integers. Let  $\mathscr{B}_{n,m}$  denote the set of shifted plane partitions  $b = (b_{ij})_{1 \le i \le j}$  subject to the constraints that

- (B1) the shifted shape of b is (n + m 1, n + m 2, ..., 2, 1);
- (B2)  $\max\{n-i, 0\} \le b_{ij} \le n \text{ for } 1 \le i \le j \le n+m-1.$

The main object we study in this article is the following set  $\mathscr{P}_{n,m}$ , which is bijective with the set  $\mathscr{B}_{n,m}$  defined above.

**Definition 1.2.** Let m and  $n \ge 1$  be nonnegative integers. Let  $\mathscr{P}_{n,m}$  denote the set of plane partitions  $c = (c_{ij})_{1 \le i,j}$  subject to the constraints that

(C1) c has at most n columns;

(C2) c is column-strict and each part in the *j*th column does not exceed n + m - j.

If a part in the *j*th column of *c* is equal to n + m - j (that can happen only in the first row, i.e.  $c_{1j} = n + m - j$ ), we call the part a saturated part.

The important fact is that we construct a bijection between  $\mathscr{B}_{n,m}$  and  $\mathscr{P}_{n,m}$  in [4]. By this bijection, the statistics on  $\mathscr{B}_{n,m}$  defined by Mills, Robbins and Rumsey in [8] correspond to the following statistics  $\overline{U}_r(c)$  on  $\mathscr{P}_{n,m}$ .

**Definition 1.3.** For  $c \in \mathscr{P}_{n,m}$ , let  $\overline{U}_r(c)$  be the number of parts equal to r plus the number of saturated parts less than r, i.e.

$$\overline{U}_r(c) = \#\{(i,j) : c_{ij} = r\} + \#\{1 \le k < r : c_{1,n+m-k} = k\}.$$
(1.1)

Especially  $\overline{U}_1(c)$  is the number of 1's in c and  $\overline{U}_{n+m}(c)$  is the number of saturated parts in c. It is also easy to see that  $\overline{U}_{n+m-1}(c) = \overline{U}_{n+m}(c)$  since, if a part of  $c \in \mathscr{P}_{n,m}$  is equal to n+m-1, then it is saturated.

Let  $\bar{S}_n = (\bar{s}_{ij})_{1 \leq i,j \leq n}$  be the skew-symmetric matrix of size n whose (i, j)th entry  $\bar{s}_{ij}$  is  $(-1)^{j-i-1}$  for  $1 \leq i < j \leq n$ . Let  $B_{n,m}^N(t, u) = (b_{ij}^{(m)}(t, u))_{0 \leq i \leq n-1, 0 \leq j \leq n+N-1}$  be the  $n \times (n+N)$  matrix whose (i, j)th entry is

$$b_{ij}^{(m)}(t,u) = \begin{cases} \delta_{0,j} & \text{if } i+m=0, \\ \binom{i+m-1}{j-i} + \binom{i+m-1}{j-i-1} t u & \text{if } i+m=1, \\ \binom{i+m-2}{j-i} + \binom{i+m-2}{j-i-1} (t+u) + \binom{i+m-2}{j-i-2} t u & \text{otherwise.} \end{cases}$$
(1.2)

For example,

$$B_{3,0}^2(t,u) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & tu & 0 & 0 \\ 0 & 0 & 1 & t+u & tu \end{pmatrix}.$$

We define the  $n \times (n + N)$  matrices  $B_{n,m}^N(t) = B_{n,m}^N(t, 1)$  and  $B_{n,m}^N = B_{n,m}^N(1)$ . The results of this article is the following theorem.

**Theorem 1.4.** Let *m* and  $n \ge 1$  be non-negative integers, and let *N* be an even integer such that  $N \ge n + m - 1$ .

(i) If r is a positive integer such that  $2 \le r \le n + m$ , then the generating function for all plane partitions  $c \in \mathscr{P}_{n,m}$  with the weight  $t^{\overline{U}_1(c)} u^{\overline{U}_r(c)}$  is

$$\sum_{c \in \mathscr{P}_{n,m}} t^{\overline{U}_1(c)} u^{\overline{U}_r(c)} = \operatorname{Pf} \begin{pmatrix} O_n & J_n B_{n,m}^N(t,u) \\ -{}^t B_{n,m}^N(t,u) J_n & \overline{S}_{n+N} \end{pmatrix}.$$
 (1.3)

(ii) If r is a positive integer such that  $1 \le r \le n+m$ , then the generating function for all plane partitions  $c \in \mathscr{P}_{n,m}$  with the weight  $t^{\overline{U}_r(c)}$  is given by

$$\sum_{c \in \mathscr{P}_{n,m}} t^{\overline{U}_r(c)} = \Pr \begin{pmatrix} O_n & J_n B_{n,m}^N(t) \\ -{}^t B_{n,m}^N(t) J_n & \overline{S}_{n+N} \end{pmatrix}.$$
 (1.4)

Now we assign weight

$$m{t}^{\overline{U}(c)}m{x}^c = \prod_{k=1}^{m+n} t_k^{\overline{U}_k(c)} \prod_{i\geq 1} x_i^{\sharp i$$
's in  $c$ 

to each  $c \in \mathscr{P}_{n,m}$ . We prove Theorem 1.4 from the minor summation formula [6] and the following thorem, which can be proved with the lattice path method.

**Theorem 1.5.** Let m and  $n \geq 1$  be non-negative integers, and put N = n + m. Let  $\lambda$  be a partition with  $\ell(\lambda) \leq n$ . Then the generating function of all plane partitions  $c \in \mathscr{P}_{n,m}$  of shape  $\lambda'$  with the weight  $t^{\overline{U}(c)} \boldsymbol{x}^c$  is given by

$$\sum_{\substack{c \in \mathscr{P}_{n,m} \\ \operatorname{sh}(c) = \lambda'}} \boldsymbol{t}^{\overline{U}(c)} \boldsymbol{x}^{c} = \det \left( e_{\lambda_{j}-j+i}^{(N-i)}(t_{1}x_{1},\ldots,t_{N-i-1}x_{N-i-1},T_{N-i}x_{N-i}) \right)_{1 \le i,j \le n},$$
(1.5)

where  $T_i = \prod_{k=i}^N t_k$ .

In fact, we give a lattice path realization of each  $c \in \mathscr{P}_{n,m}$ . Let  $V = \{(x, y) \in \mathbb{N}^2 : 0 \le y \le x\}$  be the vertex set, and direct an edge from u to v whenever v - u = (1, -1) or (0, -1).

(i) We assign the weight

$$\begin{cases} \prod_{k=j}^{N} t_k \cdot x_j & \text{ if } j = i, \\ t_j x_j & \text{ if } j < i, \end{cases}$$

to the horizontal edge from u = (i, j) to v = (i + 1, j - 1).

(ii) We assign the weight 1 to the vertical edge from u = (i, j) to v = (i, j - 1).

Let  $u_j = (N - j, N - j)$  and  $v_j = (\lambda_j + N - j, 0)$  for j = 1, ..., n, and let  $\boldsymbol{u} = (u_1, ..., u_n)$ and  $\boldsymbol{v} = (v_1, ..., v_n)$ . We claim that the  $c \in \mathscr{P}_{n,m}$  of shape  $\lambda'$  can be identified as *n*-tuples of nonintersecting *D*-paths in  $\mathscr{P}(\boldsymbol{u}, \boldsymbol{v})$ . For example, the plane partition

|   | 8 | 8 | 7 | 5 | 5 | 3 | 3 |
|---|---|---|---|---|---|---|---|
|   | 7 | 7 | 6 | 3 | 3 | 2 |   |
|   | 5 | 5 | 5 | 2 | 2 |   | - |
|   | 3 | 2 | 2 | 1 | 1 |   |   |
| ĺ | 2 | 1 | 1 |   |   |   |   |
|   | 1 |   |   | • |   |   |   |

corresponds the lattice paths illustrated in Figure 1.



Figure 1: Lattice Paths  $(n = 7, m = 3, \lambda' = (65^2 4^2 21), T_i = \prod_{k=i}^{n+m} t_k)$ 

## References

- [1] G.E. Andrews and W.H. Burge, "Determinant identities", Pacific J. Math. 158 (1993), 1–14.
- [2] D.M. Bressound, Proofs and Confirmations, Cambridge U.P.
- [3] I. Gessel and G. Viennot, Determinants, Paths, and Plane Partitions, preprint (1989).
- [4] M. Ishikawa, "On refined enumerations of totally symmetric self-complementary plane partitions I", arXiv:math.CO/0602068.
- [5] M. Ishikawa, "On refined enumerations of totally symmetric self-complementary plane partitions II", arXiv:math.CO/0606082.
- [6] M. Ishikawa and M. Wakayama, "Applications of the minor summation formula III: Plücker relations, lattice pathes and Pfaffians", arXiv:math.CO/0312358, J. Combin. Theory Ser. A 113 (2006) 113-155.
- [7] C. Krattenthaler, "Determinant identities and a generalization of the number of totally symmetric self-complementary plane partitions", *Electron. J. Combin.* **4(1)** (1997), #R27.
- [8] W.H. Mills, D.P. Robbins and H. Rumsey, "Self-complementary totally symmetric plane partitions", J. Combin. Theory Ser. A 42, (1986), 277–292.
- [9] R.P. Stanley, "Symmetries of plane partitions", J. Combin. Theory Ser. A 43, (1986), 103–113.
- [10] J.R. Stembridge, "Nonintersecting paths, Pfaffians, and plane partitions" Adv. math., 83 (1990), 96–131.
- [11] D. Zeilberger, "A constant term identity featuring the ubiquitous (and mysterious) Andrews-Mills-Robbins-Rumsey numbers", J. Combin. Theory Ser. A 66 (1994), 17–27.