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Refined Enumerations of
Totally Symmetric Self-Complementary Plane Partitions

and Constant Term Identities

Masao Ishikawa

Abstract. In this paper we give Pfaffian or determinant expressions, and constant term iden-
tities for the conjectures in the paper “Self-complementary totally symmetric plane partitions”
(J. Combin. Theory Ser. A 42, 277–292) by Mills, Robbins and Rumsey. We also settle a
weak version of Conjecture 6 in the paper, i.e., the number of shifted plane partitions invariant
under a certain involution is equal to the number of alternating sign matrices invariant under
the vertical flip.

Résumé. Dans cet article nous donnons des expressions pfaffiennes ou déterminantales, et des
identidtés en termes constants pour les conjectures dans l’article “Self-complementary totally
symmetric plane partitions” (J. Combin. Theory Ser. A 42, 277–292) par Mills, Robbins and
Rumsey. Nous démontrons aussi une version faible de la Conjecture 6 de cet article, i.e., le
nombre de partitions planes décalées invariantes sous certaine involution est égal au nombre de
matrices à signes alternants invariantes sous la réflexion verticale.

1. Introduction

In the paper [31] Mills, Robbins and Rumsey presented several conjectures on the enumeration
of the totally symmetric self-complementary plane partitions. G.E. Andrews ([2]) settled the
conjecture ([31, Conjecture 1]) on the cardinality of the totally symmetric self-complementary
plane partitions of size n (see also [38]). D. Zeilberger gave a constant term identity of this
cardinality in [41]. The aim of this paper is to give Pfaffian or determinant expressions for the
other conjectures in [31]. We also generalize Zeilberger’s constant term identity in [41].

In [31] Mills, Robbins and Rumsey have introduced a class Bn of triangular shifted plane
partitions

b11 b12 . . . b1,n−1

b22 . . . b2,n−1

. . .
...

bn−1,n−1

whose parts are ≤ n, weakly decreasing along rows and columns, and all parts in row i are ≥ n− i.
For example, B3 consists of the following seven elements.

3 3
3

3 3
2

3 3
1

3 2
2

3 2
1

2 2
2

2 2
1

Let Tn denote the set of totally symmetric self-complementary plane partitions of size n (see
Section 3). They have established a bijection between Tn and Bn.

Mills, Robbins and Rumsey also defined the statistics Ur, r = 1, . . . , n, (see (3.1)), and conjec-
tured that Ur has the same distribution as the position of the 1 in the top row of an alternating
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sign matrix, and presented several conjectures related to the symmetry and the distribution of Ur.
The aim of this paper is to obtain the generating functions for the enumerations concerning these
conjectures. Here we briefly recall these conjectures by Mills, Robbins and Rumsey, and present
a Pfaffian or determinant expression for each problem. For the definition of the numbers An, Ak

n,
and etc. and the polynomials An(t) and etc., the reader shall refer to the Section 2. It seems that
these numbers and polynomials have the standard notation which have appeared concerning the
alternating sign matrices (see [27, 32, 35, 40]). First of all, Mills, Robbins and Rumsey presented
the following conjecture, which we call the refined enumeration of TSSCPPs:

Conjecture 1.1. ([31, pp.282, Conjecture 2]) Let n be a positive integer. Let 1 ≤ k ≤ n and
1 ≤ r ≤ n. Then the number of elements b of Bn such that Ur(b) = k − 1 would be Ak

n. Namely,∑
b∈Bn

tUr(b) = An(t) would hold.

Let n and N be positive integers, and let BN
n (t) = (bij(t))0≤i≤n−1, 0≤j≤n+N−1 be the n× (n+

N) matrix whose (i, j)th entry is

bij(t) =

{
δ0,j if i = 0,(
i−1
j−i

)
+

(
i−1

j−i−1

)
t otherwise.

Especially, when t = 1, we write BN
n for BN

n (1) whose (i, j)th entry is
(

i
j−i

)
. Let S̄n = (s̄ij)1≤i,j≤n

be the skew-symmetric matrix of size n whose (i, j)th entry s̄ij is equal to (−1)j−i−1 for 1 ≤ i <
j ≤ n, and let On denote the n × n zero matrix. Let Jn = (δi,n+1−j)1≤i,j≤n denote the anti-
diagonal matrix where δi,j stands for the Kronecker delta function. One of the results we obtain
for Conjecture 1.1 is the following:

Theorem 1.2. Let n be a positive integer and let N be an even integer such that N ≥ n− 1.
Then

(1.1)
∑

b∈Bn

tUr(b) = Pf
(

On JnBN
n (t)

−tBN
n (t)Jn S̄n+N

)
.

For example, if n = 3 and N = 2 then the above Pfaffian looks like as follows.

Pf




0 0 0 0 0 1 1 + t t
0 0 0 0 1 t 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 1 −1 1 −1
0 −1 0 −1 0 1 −1 1
−1 −t 0 1 −1 0 1 −1

−1− t 0 0 −1 1 −1 0 1
−t 0 0 1 −1 1 −1 0




.

In the same paper, they also presented the following conjecture which we call the doubly refined
enumeration of TSSCPPs:

Conjecture 1.3. ([31, pp.284, Conjecture 3]) Let n ≥ 2 and 1 ≤ k, l ≤ n be integers. Then
the number of elements b of Bn such that U1(b) = k − 1 and U2(b) = n− l would be Ak,l

n .

Let n and N be positive integers. Let BN
n (t, u) = (bij(t, u))0≤i≤n−1, 0≤j≤n+N−1 be the n ×

(n + N) matrix whose (i, j)th entry is

bij(t, u) =





δ0,j if i = 0,
δ0,j−i + δ0,j−i−1tu if i = 1,(
i−2
j−i

)
+

(
i−2

j−i−1

)
(t + u) +

(
i−2

j−i−2

)
tu otherwise.

Note that, when u = 1, BN
n (t, 1) is equal to BN

n (t). Then one form of the Pfaffian expressions for
Conjecture 1.3 which we obtain in this paper is following:

Theorem 1.4. Let n be a positive integer and let N be an even integer such that N ≥ n− 1.
If r is an integer such that 2 ≤ r ≤ n, then we have

(1.2)
∑

b∈Bn

tU1(b)uUr(b) = Pf
(

On JnBN
n (t, u)

−tBN
n (t, u)Jn S̄n+N

)
.
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The monotone triangles are known to be in one-to-one correspondence with the alternating
sign matrices ([5, 30]). Here we arrange our definition following the notation in [31]. A monotone
triangle of size n is, by definition, a triangular array of positive integers

mn,n

mn−1,n−1 mn−1,n

. .
. ...

...
m1,1 . . . m1,n−1 m1,n

subject to the constraints that
(M1) mij < mi,j+1 whenever both sides are defined,
(M2) mij ≥ mi+1,j whenever both sides are defined,
(M3) mij ≤ mi+1,j+1 whenever both sides are defined,
(M4) the bottom row (m1,1,m1,2, . . . , m1,n) is (1, 2, . . . , n).

Let Mn denote the set of monotone triangles of size n. Note that, if one removes the bottom row
of m ∈ Mn and turn it upside-down, then he get an array defined in [31].

For k = 0, 1, . . . , n− 1, let M k
n denote the set of monotone triangles with all entries mij in the

first n− k columns equal to their minimum values j − i + 1. For k = 0, 1, . . . , n− 1, let Bk
n be the

subset of those b in Bn such that all bij in the first n− 1− k columns are equal to their maximal
values n. Then they also presented the following conjecture:

Conjecture 1.5. ([31, pp.287, Conjecture 7]) For n ≥ 2 and k = 0, 1, . . . , n−1, the cardinality
of Bk

n is equal to the cardinality of M k
n .

Let m, n and k be integers such that 1 ≤ m ≤ n and 0 ≤ k ≤ n −m. We define the n × n

skew-symmetric matrix L̄
(m,k)
n (ε) = (l̄(m,k)

ij (ε))1≤i,j≤n as follows: if k is even, then

l̄
(m,k)
ij (ε) =

{
(−1)j−i−1ε if 1 ≤ i < j ≤ n and i ≤ m + k,
(−1)j−i−1 if m + k < i < j ≤ n,

else

l̄
(m,k)
ij (ε) =

{
(−1)j−i−1ε if 1 ≤ i < j ≤ m + k,
(−1)j−i−1 if 1 ≤ i < j ≤ n and m + k < j.

Then a Pfaffian expression for Conjecture 1.5 which we obtain in this paper is following:

Theorem 1.6. Let n be a positive integer and let k = 0, 1, . . . , n−1. Let N be an even integer
such that N ≥ k. The cardinality of Bk

n is equal to

(1.3) lim
ε→0

ε−b
k
2 cPf

(
On BN

n Jn+N

−Jn+N
tBN

n L̄
(n,k)
n+N (ε)

)

Here bxc stands for the floor function, i.e. the greatest integer less than or equal to x.

Mills, Robbins and Rumsey also have introduced two involutions ρ and γ of Bn onto itself,
and conjectured that they correspond to the half turn and the vertical flip of the alternating sign
matrices. Here we are mainly concerned with γ, which is defined as follows. Let b = (bij)1≤i≤j≤n−1

be an element of Bn and let bij be a part of b off the main diagonal. Then the flip of the part bij

is the operation of replacing bij by b′ij where

(1.4) b′ij + bij = min(bi−1,j , bi,j−1) + max(bi,j+1, bi+1,j).

When the part is in the main diagonal, the flip of a part bii is the operation replacing bii by b′ii
where

(1.5) b′ii + bii = bi−1,i + bi,i+1.

An operation πr is defined to be a map Bn → Bn where πr(b) is the result of flipping all the
bi,i+r−1, 1 ≤ i ≤ n− r. Let

γ = π1π3π5 · · · ,(1.6)

which is an involution since π1, π3, . . . commute each other (see ([31, pp.286])). Let Bγ
n denotes

the set of elements in Bn invariant under γ.
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Conjecture 1.7. ([31, pp.286, Conjecture 6]) Let n ≥ 0 be an integer and r, 1 ≤ r ≤ 2n− 1,
be an integer. Then the number of elements of B2n+1 with γ(b) = b and U2(b) = r − 1 would
be the same as the number of (2n + 1) × (2n + 1) alternating sign matrices with ar+1,1 = 1 and
invariant under the vertical flip. Namely,

∑
b∈Bγ

2n+1
tU2(b) = AVS

2n+1(t) would hold.

Here we show that Conjecture 1.7 reduce to the evaluation of the determinant in the following
theorem:

Theorem 1.8. Let n ≥ 2 be a positive integer. Let det Ro
n(t) = (Ro

i,j)0≤i,j≤n be the n × n
matrix where

Ro
i,j =

(
i + j − 1
2i− j

)
+

{(
i + j − 1
2i− j − 1

)
+

(
i + j − 1
2i− j + 1

)}
t +

(
i + j − 1
2i− j

)
t2

with the convention that Ro
0,0 = Ro

0,1 = 1. Then we obtain

(1.7)
∑

b∈Bγ
2n+1

tU2(b) = det Ro
n(t).

We are not able to evaluate this determinant in general at this point, but, if t = 1, then we
can reduce the evaluation of the determinant to the Andrews-Burge determinant [3] and prove the
weak version of Conjecture 1.7.

Theorem 1.9. Let n ≥ 2 be a positive integer. Then the number of elements of B2n+1 with
γ(b) = b is the same as the number of (2n− 1)× (2n− 1) alternating sign matrices invariant under
the vertical flip.

2. The numbers and polynomials

First we recall the numbers and polynomials related to the alternating sign matrices (cf.
[5, 27, 30, 32, 33, 35, 40, 42]). Let An denote the number defined by

(2.1) An =
n−1∏

i=0

(3i + 1)!
(n + i)!

.

This number is famous for the alternating sign matrix conjecture (cf. [5]). The number of totally
symmetric self-complementary plane partitions was conjectured to be An in [31, pp.282, Conjec-
ture 1], and settled in [38, p.p.127, Theorem 8.3] and [2] (see also [1, 3]), Another proof has
appeared in [22] to describe several determinant techniques have been developed in it. Let n be a
positive number and let 1 ≤ r ≤ n. Set Ar

n to be the number

(2.2) Ar
n =

(
n+r−2

n−1

)(
2n−r−1

n−1

)
(
2n−2
n−1

) An−1 =

(
n+r−2

n−1

)(
2n−1−r

n−1

)
(
3n−2
n−1

) An.

The number has appeared to describe the distribution of the position of the 1 in the top row
of an alternating sign matrix (see [25, 27, 32, 42]). We also define the polynomial An(t) =∑n

r=1 Ar
ntr−1. Let n be a positive integer and let ω = e2iπ/3. Let An(t, u) denote the polynomial

defined by

(2.3) An(t, u) =
{ω2(ω + t)(ω + u)}n−1

3n(n−1)/2
s
(2n)
δ(n−1,n−1)

(
1 + ωt

ω + t
,
1 + ωu

ω + u
, 1, . . . , 1

)

where s
(n)
λ (x1, . . . , xn) stands for the Schur function in the n variables x1, . . . , xn, corresponding

to the partition λ, and δ(n − 1, n − 1) = (n − 1, n − 1, n − 2, n − 2, . . . , 1, 1). Let Ak,l
n denote the

coefficient of tk−1un−l in An(t, u), i.e. An(t, u) =
∑n

k,l=1 tk−1un−l (See [9, 32, 40]).
Let AVS

2n+1 be the number defined by

(2.4) AVS
2n+1 = (−3)n2 ∏

1≤i,j≤2n+1
2|j

3(j − i) + 1
j − i + 2n + 1

=
1
2n

n∏

k=1

(6k − 2)!(2k − 1)!
(4k − 1)!(4k − 2)!

and let AVS, r
2n+1 be the number given by

(2.5) AVS, r
2n+1 =

AVS
2n−1

(4n− 2)!

r∑

k=1

(−1)r+k (2n + k − 2)!(4n− k − 1)!
(k − 1)!(2n− k)!

.
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This number AVS
2n+1 is equal to the number of vertically symmetric alternating sign matrices of size

2n + 1 (see [27, 32, 35]). For example, the first few terms of AVS
2n+1 are 1, 3, 26, 646 and 45885.

We also define the polynomial AVS
2n+1(t) by AVS

2n+1(t) =
∑2n

r=1 AVS, r
2n+1t

r−1.

3. Definitions and bijections

In this section we study three classes of (shifted) plane partitions which are denoted by Tn,m,
Bn,m and Pn,m, and we establish bijections between them. The set Bn,m is a generalization of
the set Bn defined in [31], and the set Pn,m is newly defined in this paper. First of all we have
to recall the basic definitions and notation concerning plane partitions. For the general theory of
plane partitions the reader may consult [5, 29, 36, 37, 38].

A plane partition is an array π = (πij)i,j≥1 of nonnegative integers such that π has finite
support (i.e. finitely many nonzero entries) and is weakly decreasing in rows and columns. If∑

i,j≥1 πij = n, then we write |π| = n and say that π is a plane partition of n, or π has weight

n. A part of a plane partition π = (πij)i,j≥1 is a positive entry πij > 0. The shape of π is the
ordinary partition λ for which π has λi nonzero parts in the ith row. We denote the shape of π by
sh(π).

Consider the elements of P3, regarded as the lattice points of R3 in the positive orthant. The
Ferrers graph F (π) of π is the set of all lattice points (i, j, k) ∈ P3 such that k ≤ πij . A subset F
of P3 is a Ferrers graph if and only if it satisfies

x1 ≤ x2, y1 ≤ y2, z1 ≤ z2 and (x2, y2, z2) ∈ F ⇒ (x1, y1, z1) ∈ F.

Hereafter we identify a plane partition and its Ferrers graph, and write π for F (π). The symmetric
group S3 is acting on P3 as permutations of the coordinate axes. A plane partition is said to be
totally symmetric if its Ferrers graph is mapped to itself under all 6 permutations in S3.

Definition 3.1. Let m and n ≥ 1 be nonnegative integers. Let Pn,m denote the set of plane
partitions c = (cij)1≤i,j subject to the constraints that

(C1) c has at most n columns;
(C2) c is column-strict and each part in the jth column does not exceed n + m− j.

We call an element of Pn,m a restricted column-strict plane partition (abbreviated to RCSPP).
When m = 0, we write Pn for Pn,0. If a part in the jth column of c is equal to n + m− j (that
can happen only in the first row, i.e. c1j = n + m− j), we call the part a saturated part.

Let µ be a strict partition. A shifted plane partition τ of shifted shape µ is an arbitrary filling
of the cells of µ with nonnegative integers such that each entry is weakly decreasing in rows and
columns. In this paper we allow parts to be zero for shifted plane partitions of a fixed shifted shape
µ.

Definition 3.2. (See [22, Theorem 1]). Let m and n ≥ 1 be nonnegative integers. Let Bn,m

denote the set of shifted plane partitions b = (bij)1≤i≤j subject to the constraints that
(B1) the shifted shape of b is (n + m− 1, n + m− 2, . . . , 2, 1);
(B2) max{n− i, 0} ≤ bij ≤ n for 1 ≤ i ≤ j ≤ n + m− 1.

When m = 0, we write Bn for Bn,0. In this paper we call an element of Bn,m a triangular shifted
plane partition (abbreviated to TSPP).

For a b = (bij)1≤i≤j≤n+m−1 in Bn,m and integers r = 1, . . . , n + m, let

(3.1) Ur(b) =
n+m−r∑

t=1

(bt,t+r−1 − bt,t+r) +
n+m−1∑

t=n+m−r+1

χ{bt,n+m−1 > n− t}.

Here {. . .} has value 1 when the statement “. . . ” is true and 0 otherwise, and we use the convention
that bi,n = n− i for all i and b0,j = n for all j. It is easy to check that each of these functions Ur

can vary between 0 and n + m− 1 as b varies over Bn,m. We put Ur(b) = n + m− 1− Ur(b).
A plane partition π ⊆ Xr,s,t := [r] × [s] × [t] is (r, s, t)-self-complementary if we have, for all

p ∈ Xr,s,t, p ∈ π if and only if σr,s,t(p) 6∈ π. Let Tn denote the set of all plane partitions which is
contained in the cube X2n, (2n, 2n, 2n)-self-complementary and totally symmetric. We can define
a subset Tn,m of Tn, and can construct a bijection between Tn,m and Pn and a bijection between
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Tn,m and Bn. But here we don’t mention the detail of Tn,m and the bijections, and only state
the bijection between Pn and Bn obtained as Corollary.

Let c = (cij)1≤i≤n+m,1≤j≤n be a RCSPP in Pn,m and let k be a positive integer. Let c≥k

denote the plane partition formed by the parts ≥ k. Let

(3.2) θi(c≥k) = ]{l : ci,l ≥ k}
denote the length of the ith row of c≥k, i.e. the rightmost column containing a letter ≥ k in the
ith row of c.

Theorem 3.3. Let m and n ≥ 1 be nonnegative integers and c = (cij)1≤i≤n+m,1≤j≤n be a
RCSPP in Pn,m. Associate to the array c = (cij)1≤i≤n+m,1≤j≤n the array b = (bij)1≤i≤j≤n+m−1

defined by

(3.3) n− bij = θn+m−j(c≥1−i+j)

with 1 ≤ i ≤ j ≤ n + m − 1. Then b is in Bn,m, and this mapping ϕn,m, which associate to a
RCSPP c the TSPP b = ϕn.m(c), is a bijection of Pn,m onto Bn,m.

Furthermore we identify each element in Pn,m and each element in Bn,m by the bijection
ϕn,m defined in Theorem 3.3, and we define Ur(c) = Ur(ϕn,m(c)) and Ur(c) = Ur(ϕn,m(c)) for
c ∈ Pn,m. The following theorem enable us to compute Ur(c) directly.

Theorem 3.4. Let m and n ≥ 1 be nonnegative integers and let c ∈ Pn,m. Then Ur(c) is the
number of parts equal to r plus the number of saturated parts less than r, i.e.

Ur(c) = ]{(i, j) : cij = r}+ ]{1 ≤ k < r : c1,n+m−k = k}.(3.4)

Especially U1(c) is the number of 1’s in c and Un+m(c) is the number of saturated parts in c. It
is also easy to see that Un+m−1(c) = Un+m(c) since, if a part of c ∈ Pn,m is equal to n + m− 1,
then it is saturated.

A classical method to prove that a Schur function is symmetric is to define involutions si on
tableaux which swaps the number of i’s and (i−1)’s, for each i. This is well-known as the Bender-
Knuth involution ([4]). We can define a twisted Bender-Knuth involution π̃r : Pn,m → Pn,m,
and show that it correspond to the involution πr of Bn,m. This involution π̃r is a “Bender-Knuth
involution”, which swaps r’s and unsaturated r−1’s. In fact, if it did convert a saturated r−1 of c
into r, the resulting plane partition would violate the axiom of Pn,m. We see the exact definition
and an example below.

In the following we use the convention that each row of c ∈ Pn,m is followed by the appropriate
number of 0’s as the ith row of c has n+m− i entries. Let 1 ≤ r ≤ n+m and c ∈ Pn,m. Consider
the parts of c equal to r or r − 1. Since c is column-strict, some columns of c will contain neither
r nor r− 1, while some others will contain one r and one r− 1. These columns we ignore. We also
ignore an r − 1 in column n + m − r + 1, i.e. we ignore a saturated part which is equal to r − 1
because a saturated r − 1 can’t be changed to r. The remaining parts equal to r or r − 1 occur
once in each column. Assume row i has a certain number k of r’s followed by a certain number l
of r − 1’s. Note that we don’t count an r − 1 if it is saturated so that a saturated r − 1 always
remains untouched. For example, the three consecutive rows i − 1, i and i + 1 of c could look as
above. In row i, convert the k r’s and l r − 1’s to l r’s and k r − 1’s. It is easy to see that the

i− 1
...

... r . . . r
i r . . . r r . . . r r − 1 . . . r − 1 r − 1 . . . r − 1

i + 1 r − 1 . . . r − 1

resulting array satisfies the axioms (C1) and (C2). Define an operation π̃r : Pn,m → Pn,m by
c 7→ π̃r(c) where π̃r(c) is the result of swapping r’s and r − 1’s in row i of c by this twisted rule
for 1 ≤ i ≤ n + m − r. For example, if n = 6, m = 0 and r = 2, then the left below RCSPP c
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corresponds to the right below RCSPP π̃2(c) by π̃2.

c = 555 3 1 1 111

3 2

2 1

π̃2(c) = 555 3 2 222 111

3 2

1 1

The involution π̃1 is well-defined when m = 0, 1, and the following theorem holds.

Theorem 3.5. Let m and n ≥ 1 be non-negative integers and let 1 ≤ r ≤ n + m. Assume
m = 0 or 1 if r = 1. Then we have

πr (ϕn,m (c)) = ϕn,m (π̃r(c)) .

Thus we define the corresponding involution γ̃ : Pn,m → Pn,m, m = 0, 1, by

(3.5) γ̃ = π̃1π̃3π̃5 · · ·
where the product is over all π̃i with i odd and ≤ n. Let Peγ

n,m denote the set of c in Pn,m

invariant under γ̃. Hereafter we assume m = 0 and we write Peγ
n for Peγ

n,0. For example, if n = 7,
the following RCSPP in P7 is invariant under γ̃.

5 5 3 2 1

4 4 1

3 3

2 2

1

4. The generating functions

From here we define several skew-symmetric matrices which play an important role in the
applications. Let n be a positive integer. Let Sn = (sij)1≤i,j≤n be the skew-symmetric matrix of
size n whose (i, j)th entry sij is 1 for 1 ≤ i < j ≤ n, and let S̄n be as defined in Section 1.

Let n and N be positive integers, and let m be a nonnegative integer. Let BN
n,m(t, u) =

(b(m)
ij (t, u))0≤i≤n−1, 0≤j≤n+N−1 be the n× (n + N) matrix whose (i, j)th entry is

(4.1) b
(m)
ij (t, u) =





δ0,j if i + m = 0,(
i+m−1

j−i

)
+

(
i+m−1
j−i−1

)
tu if i + m = 1,(

i+m−2
j−i

)
+

(
i+m−2
j−i−1

)
(t + u) +

(
i+m−2
j−i−2

)
tu otherwise.

For example,

B2
3,0(t, u) =




1 0 0 0 0
0 1 tu 0 0
0 0 1 t + u tu


 .

We define the n× (n + N) matrices BN
n,m(t) = BN

n,m(t, 1) and BN
n,m = BN

n,m(1). Then the (i, j)th
entry of BN

n,m(t) is

(4.2) b
(m)
ij (t) =

{
δ0,j if i + m = 0,(
i+m−1

j−i

)
+

(
i+m−1
j−i−1

)
t otherwise.

and the (i, j)th entry of BN
n,m is

(
i+m
j−i

)
where the row index runs 0 ≤ i ≤ n−1 and the column index

runs 0 ≤ j ≤ n + N − 1. When m = 0, these BN
n,m(t, u), BN

n,m(t) and BN
n,m agree with BN

n (t, u),
BN

n (t) and BN
n introduced in Section 1. The following corollary (i) gives a Pfaffian expression for

the doubly refined TSSCPP conjecture (Conjecture 1.3).
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Theorem 4.1. Let m and n ≥ 1 be non-negative integers, and let N be an even integer such
that N ≥ n + m− 1.
(i) If r is a positive integer such that 2 ≤ r ≤ n + m, then the generating function for all plane
partitions c ∈ Pn,m with the weight tU1(c)uUr(c) is

∑

c∈Pn,m

tU1(c)uUr(c) = Pf
(

On JnBN
n,m(t, u)

−tBN
n,m(t, u)Jn S̄n+N

)
.(4.3)

(ii) If r is a positive integer such that 1 ≤ r ≤ n + m, then the generating function for all plane
partitions c ∈ Pn,m with the weight tUr(c) is given by

∑

c∈Pn,m

tUr(c) = Pf
(

On JnBN
n,m(t)

−tBN
n,m(t)Jn S̄n+N

)
.(4.4)

(iii) If r is a positive integer such that 1 ≤ r ≤ n + m, then the generating function for all plane
partitions c ∈ Pn,m with the weight tUr(c) is given by

∑

c∈Pk
n,m

tUr(c) = lim
ε→0

ε−b
k
2 cPf

(
On JnBN

n,m(t)
−tBN

n,m(t)Jn L̄
(n,k)
n+N (ε)

)
.(4.5)

Especially, when t = 1, the number of elements of Pk
n,m is equal to

lim
ε→0

ε−b
k
2 cPf

(
On JnBN

n,m

−tBN
n,mJn L̄

(n,k)
n+N (ε)

)
.(4.6)

(iv) Let n ≥ 2 be a positive integer. Let det Ro
n(t) = (Ro

i,j)0≤i,j≤n be the n× n matrix where

(4.7) Ro
i,j =

(
i + j − 1
2i− j

)
+

{(
i + j − 1
2i− j − 1

)
+

(
i + j − 1
2i− j + 1

)}
t +

(
i + j − 1
2i− j

)
t2

with the convention that Ro
0,0 = Ro

0,1 = 1. Then we have

(4.8)
∑

b∈Bγ
2n+1

tU2(b) =
∑

c∈Peγ
2n+1

tU2(c) = det Ro
n(t).

Especially, when t = 1, this determinant reduces to

(4.9) det Ro
n(1) = det

0≤i,j≤n−1

((
i + j + 1
2i− j + 1

))
.

From the Andrews-Burge determinant [3], we obtain

det
0≤i,j≤n−1

((
i + j + 1
2i− j + 1

))
=

1
2n−1

n−1∏

k=1

(2k + 4)k

(
2k + 5

2

)
k−1

(k)k

(
k + 5

2

)
k−1

=
1
2n

n∏

k=1

(6k − 2)!(2k − 1)!
(4k − 1)!(4k − 2)!

,

where (A)j = A(A + 1) · · · (A + j − 1). This proves that the number of shifted plane partitions
b ∈ B2n+1 invariant under the involution γ equals AVS

2r+1 (i.e. Conjecture 6 in [31] is true when
t = 1).

5. Constant term identities

In [41], D. Zeilberger proved the following constant term identity. Let D be the sum of all the
n× n minors of the n× (2n + m− 1) matrix X given by

Xij =
(

m + i

j − i

)
, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 2n + m− 2,

and let C be the constant term of
∏

1≤i≤j≤n

(
1− xi

xj

) n∏

i=1

(
1 +

1
xi

)m+n−i n∏

i=1

1
1− xi

∏

1≤i≤j≤n

1
1− xixj

,

then D = C holds. The aim of this section is to give a generalization of this constant term identity,
which gives the constant term identities for the conjectures we treat.
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There are well-known identities called Littlewood’s identity and Cauchy’s identity which read

∑

λ

s
(n)
λ (xxx) =

n∏

i=1

1
1− xi

∏

1≤i<j≤n

1
1− xixj

,(5.1)

∑

λ even

s
(n)
λ (xxx)s(n)

λ (yyy) =
n∏

i=1

1
1− x2

i

∏

1≤i,j≤n

1
1− xiyj

,(5.2)

where s
(n)
λ (xxx) denotes the Schur function in the n variables xxx = (x1, . . . , xn) corresponding to the

partition λ (see [29, I, 5]). I.G. Macdonald obtained the bounded version of (5.1):

∑
λ

λ1≤k

s
(n)
λ (xxx) =

det(xj−1
i − xk+2n−j

i )1≤i,j≤n∏n
i=1(1− xi)

∏
1≤i<j≤n(xj − xi)(1− xixj)

,(5.3)

(see [29, I, 5, Ex.16]). In this section we give a surprising relation between these identities and
constant term identities enumerating the totally symmetric plane partitions.

Let us fix the notation. If we write h
(m)
i (t, u; x) =

∑
j≥0 b

(m)
ij (t, u)xj−i where b

(m)
ij (t) is as in

(4.1), then we have

(5.4) h
(m)
i (t, u;x) =





1 if m + i = 0,
1 + tux if m + i = 1,
(1 + x)m+i−2(1 + tx)(1 + ux) if m + i ≥ 2.

We also write h
(m)
i (t; x) for h

(m)
i (t, 1; x), and h

(m)
i (z) = h

(m)
i (1; x) = (1 + z)m+i. Let CTxf(x)

denote the constant term of a polynomial f(x) in the variable x = (x1, . . . , xn). The following
theorem gives the main results of this section.

Theorem 5.1. Let m and n ≥ 1 be non-negative integers.
(i) If r is an integer such that 2 ≤ r ≤ n + m, then

∑
c∈Pn,m

tU1(c)uUr(c) is equal to

CTxxx

∏

1≤i<j≤n

(
1− xi

xj

) n∏

i=1

h
(m)
i−1(t, u;x−1

i )
n∏

i=1

1
1− xi

∏

1≤i<j≤n

1
1− xixj

.(5.5)

(ii) If r is an integer such that 1 ≤ r ≤ n + m, then
∑

c∈Pn,m
tUr(c) is equal to

CTxxx

∏

1≤i<j≤n

(
1− xi

xj

) n∏

i=1

h
(m)
i−1(t; x

−1
i )

n∏

i=1

1
1− xi

∏

1≤i<j≤n

1
1− xixj

.(5.6)

(iii) If r is an integer such that 1 ≤ r ≤ n + m, then
∑

c∈Pk
n,m

tUr(c) is equal to

CTxxx

∏

1≤i<j≤n

(
1− xi

xj

) n∏

i=1

h
(m)
i−1(t; x

−1
i )

det(xj−1
i − xk+2n−j

i )1≤i,j≤n∏n
i=1(1− xi)

∏
1≤i<j≤n(xj − xi)(1− xixj)

.(5.7)

Especially, when t = 1, the number of elements of Pk
n,m is equal to

CTxxx

∏

1≤i<j≤n

(
1− xi

xj

) n∏

i=1

(
1 +

1
xi

)m+i−1 det(xj−1
i − xk+2n−j

i )1≤i,j≤n∏n
i=1(1− xi)

∏
1≤i<j≤n(xj − xi)(1− xixj)

.(5.8)

(iv) Then
∑

c∈Peγ
2n+1

tU2(c) is equal to

CTxxxCTyyy

∏

1≤i<j≤n

(
1− xi

xj

) ∏

1≤i<j≤n

(
1− yi

yj

) n∏

i=2

(
1 +

1
xi

)i−2 (
1 +

t

xi

)
(5.9)

×
n∏

j=2

(
1 +

1
yj

)j−2 (
1 +

t

yj

) n∏

j=1

(1 + yj)
n∏

i,j=1

1
1− xiyj

.
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Especially, when t = 1, the number of elements of Peγ
2n+1 is equal to

CTxxxCTyyy

∏

1≤i<j≤n

(
1− xi

xj

) ∏

1≤i<j≤n

(
1− yi

yj

)
(5.10)

×
n∏

i=1

(
1 +

1
xi

)i−1 n∏

j=1

(
1 +

1
yj

)j−1 n∏

j=1

(1 + yj)
n∏

i,j=1

1
1− xiyj

.

Christian Krattenthaler has obtained an equivalent result to (5.8) in [24] concerning Conjec-
ture 1.5 (i.e. Conjecture 7 of [31]).

Hereafter, we restrict our attention to the case where m = 0. Thus (5.5) reads

CTxxx

∏

1≤i<j≤n

(
1− xi

xj

)
×

(
1 +

tu

x2

) n∏

i=3

{(
1 +

t

xi

)(
1 +

u

xi

)(
1 +

1
xi

)i−3
}

(5.11)

×
n∏

i=1

1
1− xi

∏

1≤i<j≤n

1
1− xixj

when n ≥ 3, and (5.6) reads

CTxxx

∏

1≤i<j≤n

(
1− xi

xj

)
·

n∏

i=2

{(
1 +

t

xi

)(
1 +

1
xi

)i−2
}
·

n∏

i=1

1
1− xi

∏

1≤i<j≤n

1
1− xixj

(5.12)

when n ≥ 2. Here we regard
∏n

i=1
1

1−xi

∏
1≤i<j≤n

1
1−xixj

as a formal power series in the variable
x1, . . . , xn. Meanwhile, (5.7) reads

CTxxx

∏

1≤i<j≤n

(
1− xi

xj

)
·

n∏

i=2

{(
1 +

t

xi

)(
1 +

1
xi

)i−2
}

(5.13)

× det(xj−1
i − xk+2n−j

i )1≤i,j≤n∏n
i=1(1− xi)

∏
1≤i<j≤n(xj − xi)(1− xixj)

when n ≥ 2. Here det(xj−1
i −xk+2n−j

i )1≤i,j≤nQn
i=1(1−xi)

Q
1≤i<j≤n(xj−xi)(1−xixj)

is a polynomial in x1, . . . , xn since it is a
finite sum of the Schur polynomials. We conclude that Conjecture 1.1 reduce to the computation
of the constant term (5.12), Conjecture 1.3 reduce to the computation of the constant term (5.11),
Conjecture 1.5 reduce to the computation of the constant term (5.13), and Conjecture 1.7 reduce
to the computation of the constant term (5.9), respectively.

Now we illustrate these constant terms when n = 3. Put

F (t, u, x) =
(

1− x1

x2

)(
1− x1

x2

)(
1− x2

x3

)(
1 +

tu

x2

)(
1 +

t

x3

)(
1 +

u

x3

)

and

G(t, x) = F (t, 1,x) =
(

1− x1

x2

)(
1− x1

x2

) (
1− x2

x3

)(
1 +

t

x2

)(
1 +

t

x3

) (
1 +

1
x3

)
.

Then (5.11) becomes

CTxxxF (t, u, x)(1 + x1 + x2
1 + · · · )(1 + x2 + x2

2 + · · · )(1 + x3 + x2
3 + · · · )

× (1 + x1x2 + x2
1x

2
2 + · · · )(1 + x1x3 + x2

1x
2
3 + · · · )(1 + x2x3 + x2

2x
2
3 + · · · ),

which equals 1 + t + u + tu + t2u + tu2 + t2u2. Similarly, (5.12) becomes

CTxxxG(t,x)(1 + x1 + x2
1 + · · · )(1 + x2 + x2

2 + · · · )(1 + x3 + x2
3 + · · · )

× (1 + x1x2 + x2
1x

2
2 + · · · )(1 + x1x3 + x2

1x
2
3 + · · · )(1 + x2x3 + x2

2x
2
3 + · · · ),

which equals 2 + 3t + 2t2. If k = 1, then (5.13) reads

CTxxxG(t,x)
det(xj−1

i − x7−j
i )1≤i,j≤3∏3

i=1(1− xi)
∏

1≤i<j≤3(xj − xi)(1− xixj)
= CTxxxG(t, x)(1 + x1)(1 + x2)(1 + x3),



REFINED ENUMERATIONS OF TSSCPPS AND CONSTANT TERM IDENTITIES 11

which equals 2 + 2t + t2. Lastly, (5.9) reads

CTxxxCTyyyG(t,x)G(t,y)
3∏

j=1

(1 + yj)
3∏

i,j=1

1
1− xiyj

= CTxxxCTyyyG(t, x)G(t,y)(1 + y1)(1 + y2)(1 + y3)(1 + x1y1 + x2
1y

2
1 + · · · )(1 + x1y2 + x2

1y
2
2 + · · · ) . . .

which equals 3 + 6t + 8t2 + 6t3 + 3t4. Note that, to derive (5.9), we need a long argument. We
don’t have enough space to state the details (see [16]).

6. Concluding Remarks

Here we mainly present the definitions and results, and we don’t have enough space to present
the proofs. To prove the results, we need various techniques of plane partitions, lattice path
methods, symmetric functions, and combinatorics of tableaux. The interested reader can find the
proofs in [15, 16]. We also should note that the computations of the Pfaffians and determinants
are still open. As the reader may notice, the conjectures have so simple forms.

Acknowledgment: The author would like to express his deep gratitude to Prof. Soichi Okada
for his valuable comments and suggestions.
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