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Abstract. In this paper we find new classes of posets which generalize the d-complete posets. In fact
the d-complete posets are classified into 15 irreducible classes in the paper “Dynkin diagram classification
of λ-minuscule Bruhat lattices and of d-complete posets” (J. Algebraic Combin. 9 (1999), 61 – 94) by
R. A. Proctor. Here we present six new classes of posets of hook-length property which generalize the
15 irreducible classes. Our method to prove the hook-length property is based on R. P. Stanley’s (P, ω)-
partitions and Schur function identities.

Résumé. Dans cet article nous trouvons des nouvelles classes de posets qui généralisent les posets d-
complets. En fait, les posets d-completes sont classés en 15 classes irréducibles dans l’article “Dynkin
diagram classification of λ-minuscule Bruhat lattices and of d-complete posets” (J. Algebraic Combin. 9
(1999), 61 – 94) par R. A. Proctor. Dans cet article nous présentons six nouvelles classes de posets ayant la
propriété de longueur de crochet, qui généralisent les 15 classes irréductibles. Notre méthode pour prover la
propriété de longueur de crochet est basée sur les (P, ω)-partitions de R. P. Stanley et identités de fonctions
de Schur.

1. Introduction

In [18] R. A. Proctor defined d-complete posets, which include shapes, shifted shapes and trees, by
certain local structural conditions and showed that arbitrary connected d-complete poset is decomposed into
a slant sum of irreducible ones. He also classified 15 exhaustive classes of irreducible d-complete components
and described all of the members of each class. In this paper we define six types of posets as subposets
of the posets of lattice points in the plane, and these six types generalize the 15 types of irreducible d-
complete posets. First we enumerate eight product formulas involving the Schur functions in Section 2,
which will be applied to obtain the hook formulas of the new posets, which we call “leaf posets”. Then,
in Section 3, we define certain subposets of the lattice points, which we call “pre-leaf posets”. In fact, a
pre-leaf posets is defined by gluing components of lattice points along the main diagonal. Although we can
give the one-variable generating function of (P, ω)-partitions for any pre-leaf poset by the theory of Stanley’s
(P, ω)-partitions, the generating function is not always a product. Thus we specify six special cases, which
we call “leaf-posets”, and in these cases we can show the generating function becomes a product by the
Schur function identities. We present these six types of leaf-posets and the hook formulas. Our definition is
not based on local structural conditions, and our proof of the product formulas are based on determinant or
Pfaffian expressions of the generating functions, but we don’t have enough space to state the proofs.

Throughout this paper, let Z, N and Z>0 denote the set of integers, non-negative integers and positive
integers, respectively. For a set S, we denote the cardinality of S by |S|. From now on, P is a partially
ordered set (poset) and is assumed to be finite. Let P be a finite poset. If x, y ∈ P , then we say y covers x

if x < y and no z ∈ P satisfies x < z < y. When y covers x, we denote y >. x. A tree T is a finite connected
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poset with a maximum element such that every element except the maximum element is covered by exactly
one element.

Let ω be a labeling of P , i.e. ω is a bijection from P to {1, 2, . . . , |P |}. If xl y is an edge in the diagram
of P and ω(x) > ω(y), we say x l y is a strict edge. Otherwise, we say x l y is a weak edge. In [22],
R. P. Stanley defined the (P, ω)-partitions and obtained the several results on their generating functions.

Definition 1.1. A (P, ω)-partition is a map ϕ from P to N satisfying the following conditions:

(i) ϕ(x) ≥ ϕ(y) if x < y in P , i.e. ϕ is order reversing.
(ii) ϕ(x) > ϕ(y) if x < y and ω(x) > ω(y).

When a labeling ω is natural, a (P, ω)-partition is simply called a P -partition. We can easily see that ϕ is a
P -partition if and only if ϕ is an order-reversing map from P to N. We denote the set of all (P, ω)-partitions
by A (P, ω), and the set of all P -partitions by A (P ).

As one can easily see, A (P, ω) depends only on which edges are strict and which edges are weak. Let
E = {(x, y) : x, y ∈ P, xl y} denote the set of edges in P . We call a map ε : E → {0, 1} an orientation, and
we regard the edges assigned 1 are the strict edges and the edges assigned 0 are the weak edges. We refer to
(P, ε) an oriented poset. A labeling ω gives rise to an orientation, but not all orientation can come from a
labeling (see [13]).

If P is a finite poset and ω is a labeling of P , then

F (P, ω; q) : =
∑

ϕ∈A (P,ω)

q|ϕ|(1.1)

is said to be the one-variable generating function of (P, ω)-partitions. Here |ϕ| =
∑

x∈P ϕ(x) is the weight
of the (P, ω)-partition ϕ, which is the sum of its entries.

We say that P has hook-length property if there exists a map hP from P to Z>0 satisfying
∑

ϕ∈A (P )

q|ϕ| =
∏

x∈P

1
1− qhP (x)

.(1.2)

If P has hook-length property, then hP (x) is called the hook length of x and hP is called the hook-length
function of P . A hook-length poset is a poset which has hook-length property.

2. Schur function identities

In this section we state eight Cauchy type identities of the Schur functions, which will be applied in the
following sections. Our proof of these product formulas is based on the determinant or Pfaffian evaluations.
We omit the proof and just present the identities, but the proof will be stated in [6].

The Schur function sλ(x1, . . . , xn) of variables x1, . . . , xn with respect to a partition λ = (λ1, . . . , λn) is
defined to be

(2.1) sλ(x1, . . . , xn) =
det(xλj+n−j

i )1≤i,j≤n

det(xn−j
i )1≤i,j≤n

.

For detailed explanation of symmetric functions, the reader can find in [12]. For a positive integer m, we
write Xm = (x1, x2, . . . , xm), Ym = (y1, y2, . . . , ym) and Zm = (z1, z2, . . . , zm) in short, where m is the
number of variables. Let P denote the set of all partitions. One of the most well-known identities is the
Cauchy identity which reads

(2.2)
∑

λ∈P

sλ(Xm)sλ(Yn) =
1∏m

i=1

∏n
j=1(1− xiyj)

.

If λ = (λ1, λ2, . . . ) is a partition and a and b are positive integers such that a ≤ b, then we write λ[a, b], in
short, for the partition (λa, λa+1, . . . , λb). If Xm = (x1, x2, . . . , xm) is an m-tuple of variables, then we use
the notation ‖Xm‖ :=

∏m
i=1 xi for brevity. The aim of this section is to prove the following variants of the

Cauchy identity.
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Theorem 2.1. Let m be a positive integer.

(i) If m ≥ 1, then we have

∑

λ=(λ1,λ2,...,λm)∈P

wλmsλ(Xm)sλ(Ym) =
1− ‖Xm‖‖Ym‖

(1− w‖Xm‖‖Ym‖)
∏m

i,j=1(1− xiyj)
.(2.3)

(ii) If m ≥ 2, and v = 1 or 2, then we have

∑

λ=(λ1,λ2,...,λm)∈P

z|λ|−λm−λm−1
v wλmsλ(Xm)sλ[1,m−1](Ym−1)sλ[m−1,m](Z2)

=
∏m−1

k=1 (1− zm−2
v yk‖Xm‖‖Ym−1‖‖Z2‖)

(1− wzm−2
v ‖Xm‖‖Ym−1‖‖Z2‖)

∏m
i=1

∏m−1
j=1 (1− xiyjzv)

∏m
k=1(1− zm−3

v x−1
k ‖Xm‖‖Ym−1‖‖Z2‖)

.(2.4)

(iii) If v = 1 or 2, then we have

∑

λ=(λ1,λ2,...,λ6)∈P

zλ1+λ2
v wλ6sλ[1,3](X3)sλ[3,4](Z2)sλ[4,6](X3)sλ[1,5](Y5)sλ[5,6](Z2)

=
1

(1− wz2
v‖X3‖2‖Y5‖‖Z2‖2)

∏3
i=1

∏5
j=1(1− xiyjzv)

×
∏5

k=1(1− z2
vyk‖X3‖2‖Y5‖‖Z2‖2)∏3

k=1(1− zvx−1
k ‖X3‖2‖Y5‖‖Z2‖2)

∏
1≤i<j≤5(1− zvy−1

i y−1
j ‖X3‖‖Y5‖‖Z2‖)

.(2.5)

(iv) If v = 1 or 2, then we have

∑

λ=(λ1,λ2,...,λ2r)∈P

zλ1
v wλ2rsλ(X2r)

r∏

i=1

sλ[2i−1,2i](Y2)
r−1∏

i=1

sλ[2i,2i+1](Z2)

=
∏2

i=1(1− zvzi‖X2r‖‖Y2‖r‖Z2‖r−1)

(1− wzv‖X2r‖‖Y2‖r‖Z2‖r−1)
∏2r

i=1

∏2
j=1(1− xiyjzv)

∏
1≤i<j≤2r(1− xixj‖Y2‖‖Z2‖)

.(2.6)

(v) If v = 1 or 2, then we have

∑

λ=(λ1,λ2,...,λ2r+1)∈P

zλ1
v wλ2r+1sλ(X2r+1)

r∏

i=1

sλ[2i−1,2i](Y2)
r∏

i=1

sλ[2i,2i+1](Z2)

=
∏2

i=1(1− zvyi‖X2r+1‖‖Y2‖r‖Z2‖r)

(1− wzv‖X2r+1‖‖Y2‖r‖Z2‖r)
∏2r+1

i=1

∏2
j=1(1− xizjzv)

∏
1≤i<j≤2r+1(1− xixj‖Y2‖‖Z2‖)

.(2.7)

(vi) If r ≥ 2, v ∈ {s, t} ⊆ {1, 2, 3} and s 6= t, then we have

∑

λ=(λ1,λ2,...,λ2r)∈P

xλ1
v wλ2rsλ[1,2r−1](Y2r−1)sλ[2r−2,2r](X3)

r∏

i=1

sλ[2i−1,2i](Z2)
r−2∏

i=1

sλ[2i,2i+1](xs, xt)

=
1

(1− w(xsxt)r−2xv‖X3‖‖Y2r−1‖‖Z2‖r)
∏2r−1

i=1

∏2
j=1(1− xvyizj)

∏
1≤i<j≤2r−1(1− xsxtyiyj‖Z2‖)

×
∏2r−1

k=1 (1− (xsxt)r−2xvyk‖X3‖‖Y2r−1‖‖Z2‖r)∏2
k=1(1− (xsxt)r−2zk‖X3‖‖Y2r−1‖‖Z2‖r−1)

∏2r−1
k=1 (1− (xsxt)r−3xvy−1

k ‖X3‖‖Y2r−1‖‖Z2‖r−1)
.(2.8)

3



(vii) If r ≥ 1, v ∈ {1, 2} and 1 ≤ s 6= t ≤ 3, then we have

∑

λ=(λ1,λ2,...,λ2r+1)∈P

zλ1
v wλ2r+1sλ[1,2r](Y2r)sλ[2r−1,2r+1](X3)

r∏

i=1

sλ[2i,2i+1](Z2)
r−1∏

i=1

sλ[2i−1,2i](xs, xt)

=
1

(1− w(xsxt)r−1zv‖X3‖‖Y2r‖‖Z2‖r)
∏

i=s,t

∏2r
j=1(1− xiyjzv)

∏
1≤i<j≤2r(1− xsxtyiyj‖Z2‖)

×
∏2r

k=1(1− (xsxt)r−1ykzv‖X3‖‖Y2r‖‖Z2‖r)∏
k=s,t(1− (xsxt)r−2xk‖X3‖‖Y2r‖‖Z2‖r)

∏2r
k=1(1− (xsxt)r−2y−1

k zv‖X3‖‖Y2r‖‖Z2‖r−1)
.(2.9)

(viii) If v = 1, 2, 3 or 4, then we have
∑

λ=(λ1,λ2,...,λ6)∈P

yλ1
v wλ6sλ[1,3](X3)sλ[3,4](Z2)sλ[4,6](X3)sλ[1,2](Z2)sλ[2,5](Y4)sλ[5,6](Z2)

=
1

(1− wyv‖X3‖2‖Y4‖‖Z2‖3)
∏

1≤k≤4
k 6=v

∏2
j=1(1− y−1

k zj‖X3‖‖Y4‖‖Z2‖)

×
∏

1≤k≤4(1− ykyv‖X3‖2‖Y4‖‖Z2‖3)∏3
k=1(1− xk‖X3‖‖Y4‖‖Z2‖2)

∏3
i=1

∏2
j=1(1− xiyvzj)

∏
1≤k≤4

k 6=v

∏3
j=1(1− x−1

j ykyv‖X3‖‖Z2‖)
.(2.10)

3. Pre-leaf posets

In this section we introduce a new class of posets, which we call pre-leaf posets, and give a formula
of the generating function of the (P, ω)-partitions for any pre-leaf poset and its column-strict labeling.
Unfortunately the generating functions does not factor out in general, but in the next section we present six
classes of pre-leaf posets which has the hook-length property.

3.1. Pre-leaf posets. Let Z2 denote the set of lattice points in the plane, and let D = {(i, i) : i ∈ Z}
denote the main diagonal of Z2. We call x ∈ D a diagonal point. We can make Z2 into a poset by defining
(i1, j1) ≤ (i2, j2) in Z2 if i1 ≥ i2 and j1 ≥ j2. It is easy to see that (i1, j1) l (i2, j2) in Z2 if, and only
if (i1 − i2, j1 − j2) = (1, 0) or (0, 1). When we draw a diagram, we use the matrix coordinates in which
the first coordinate i (the row index) increases as one goes downwards, and the second coordinate j (the
column index) increases as one goes from left to right. Thus we call (1, 0) a vertical edge, and (0, 1) a
horizontal edge. If P is any subset of Z2, we regard P as a poset by the induced order of Z2, i.e. x ≤ y
in P if, and only if x ≤ y in Z2. Let α = (α1, α2, . . . , αr) be a strictly decreasing sequence of nonnegative
integers of length r, and let d be an integer. Let P (r)(α, d) denote the set of points (i, j) ∈ Z2 such that
d ≤ i ≤ d+ r−1 and i ≤ j ≤ αi−d+1 + i. Note that the ith row of P (r)(α, d) contains αi +1 vertices starting
from (i, i) for d ≤ i ≤ d + r − 1. We introduce an order structure into P (r)(α, d) as an induced subposet
of Z2, which we call a right half-leaf poset of type (α, d). For example, if α = (3, 2, 0) and d = 2, then the
diagram of P (r)((3, 2, 0), 2) is as in Figure 1. Similarly we define P (l)(α, d) by the transpose of P (r)(α, d),
i.e. P (l)(α, d) = {(j, i) ∈ Z2 : (i, j) ∈ P (r)(α, d)}, which we call a left half-leaf poset of type (α, d). We call a
poset half-leaf if it is a right or left half-leaf poset. For example, P (l)((3, 2, 0), 2) is designated by the diagram
in Figure 1. Especially, when the length of α is one, i.e. α = (a), then P (l)((a), d) is an (a + 1)-element
chain composed of vertical edges. We write P (c)(a, d) for P (l)((a), d) in brevity.

For a nonnegative integer f , let Lf denote the subset of Z2 defined by

Lf : = {(1, i) : −f + 1 ≤ i ≤ 1, i ∈ Z},
which is (f + 1)-element chain composed of horizontal edges. For example, if f = 3, then the diagram of L3

is as follows.
(1,−2) (1,−1) (1,0) (1,1)

L3 = .
Assume P and Q are any induced subposets of Z2. We build a new poset, denoted by P tQ, from half-leaf
posets by gluing them together along the main diagonal.
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(2,2) (2,3) (2,4) (2,5)

(3,3) (3,4) (3,5)

(4,4)

P (r)((3, 2, 0), 2) =

,

(2,2)

(3,2)

(4,2)

(5,2)

(3,3)

(4,3)

(5,3)

(4,4)

P (l)((3, 2, 0), 2) =

.

Figure 1. Half-leaf posets

Definition 3.1. Let P and Q be induced subposets of Z2. Let P ]Q denote the disjoint union of P and
Q as a set, i.e. P ]Q = {(x, 1) : x ∈ P} ∪ {(x, 2) : x ∈ Q}. We identify the points in the main diagonal of
P ]Q, i.e. ((i, i), 1) = ((i, i), 2) for i ∈ Z, and denote the resulting poset by P tQ, which we call diagonally
glued poset of P and Q. Thus the order relation x ≤ y in P t Q is the transitive closure of the following
binary relation x ≺ y: We say x ≺ y in P tQ if one of the following conditions holds;

(i) x, y are both in P , and x ≤ y in P ,
(ii) x, y are both in Q, and x ≤ y in Q.

For example, if we glue four posets P (r)((3, 2, 0), 1), P (l)((3, 2), 1), P (l)((3, 1), 2) and L2 along the main
diagonal, then we obtain the following poset in Figure 2. Here we write (i, i) for the identified diagonal

((1,0),4)((1,-1),4) (1,1) ((1,2),1) ((1,3),1) ((1,4),1)

((2,1),2) (2,2) ((2,3),1) ((2,4),1)

((3,1),2) ((3,2),2) ((3,2),3) (3,3)

((4,1),2)

((4,2),2)

((4,2),3) ((4,3),3)

((5,2),3)

Figure 2. A pre-leaf poset
point ((i, i), k), k = 1, 2, 3, 4.

As in this example, we define a new poset as a diagonally glued poset of several P (r)(α, d)’s and
P (l)(α, d)’s. Thus, hereafter, we use the following notation.

Definition 3.2. Let ~α = (α(1), . . . , α(k)) be a k-tuple of strictly decreasing sequences of nonnegative
integers, and let ~β = (β(1), . . . , β(l)) be an l-tuple of strictly decreasing sequences of nonnegative integers. Let
ri (resp. sj) denote the length of α(i) (resp. β(j)) for i = 1, . . . , k (resp. j = 1, . . . , l). Put di =

∑i
ν=1 rν−i+1

(resp. ej =
∑j

ν=1 sν − j + 1) for i = 0, . . . , k (resp. j = 0, . . . , l). Assume dk = el which we denote by n.
Put

R(~α) =
k⊔

i=1

P (r)(α(i), di−1), L(~β) =
l⊔

j=1

P (l)(β(j), ej−1),

then R(~α) and L(~β) both have n elements in the main diagonal. Let f be a nonnegative integer, and let
c = (c1, c2, . . . , cn) be a sequence of nonnegative integers of length n. Hereafter we are mainly concerned
with the poset defined by

Pf (~α; ~β; c) = Lf tR(~α) t L(~β) t
n⊔

k=1

P (c)(ck, k),
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which we call the pre-leaf poset of type (f, ~α, ~β, c). We also write

Pf (α(1), . . . , α(k); β(1), . . . , β(l); c1, . . . , cn)

for Pf (~α; ~β; c).
For example, the poset in Figure 2 is denoted by P2 ((3, 2, 0); (3, 2), (3, 1); 0, 0, 0).

3.2. Generating functions. In this section we define a labeling, which we call the column-strict
labeling, denoted by ωc, for any pre-leaf poset Pf (~α; ~β; c). The goal of this section is to obtain the generating
function of (P, ωc)-partitions for a pre-leaf poset Pf (~α; ~β; c) (see Proposition 3.3).

We use the standard notation [4]: The q-shifted factorial is, by definition,

(a; q)n =

{
1 if n = 0,

(1− aqn−1)(a; q)n−1 if n = 1, 2, . . . .

If α = (α1, . . . , αr) is a strictly decreasing sequence of nonnegative integers, we write (q; q)α for the product∏r
k=1(q; q)αk

. Throughout this section we assume that α(i) (resp. β(j)) is a strictly decreasing sequence
of nonnegative integers of length ri (resp. sj) for i = 1, . . . , k (resp. j = 1, . . . , l). We also put di =∑i

ν=1 rν − i + 1 (resp. ej =
∑j

ν=1 sν − j + 1) for i = 0, . . . , k (resp. j = 0, . . . , l) and assume dk = el = n as
in Definition 3.2. Let f, c1, c2, . . . , cn be any nonnegative integers, and, hereafter, we use the notation ~α =
(α(1), . . . , α(k)), ~β = (β(1), . . . , β(l)) and c = (c1, . . . , cn). We also use the notation (q; q)~α =

∏k
i=1(q; q)α(i)

and (q; q)~β =
∏l

j=1(q; q)β(j) .

Let P := Pf (~α; ~β; c) denote the pre-leaf poset of type (f, ~α, ~β, c). We define the column-strict orientation
εc : P → {0, 1} by assigning 1 to the vertical edges and 0 to the horizontal edges. One can easily see that a
column-strict orientation always come from a labeling in which we linearly order the vertices of P by saying
that (i1, j1) proceeds (i2, j2) if either i1 < i2 or i1 = i2 and j1 > j2. If two different vertices from different
half-leaf posets have the same coordinate (i, j), then we can order them appropriately. We write this labeling
ωc and call it a column-strict labeling . For example, if P = P1((5, 3, 1), (2, 0); (3, 1), (3, 2, 0); 0, 1, 1, 2), then
Figure 3 gives a column-strict labeling. We obtain the following proposition which gives a general formula

ωc =

7 6 5 4 3 2 1

12 11 10 9 8

17 14

20 19 18 16 15 13

22

25 24 23 21

26
29

28 27 .

Figure 3. A column-strict labeling

to compute F (P, ωc; q).

Proposition 3.3. Let P := Pf (~α; ~β; c) denote the pre-leaf poset of type (f, ~α, ~β, c), where ~α, ~β, c and

f are as before. Let α(i) =
(
α

(i)
t

)ri

t=1

(
resp. β(j) =

(
β

(j)
t

)sj

t=1

)
for i = 1, . . . , k (resp. j = 1, . . . , l). Then

we have

F (P, ωc; q) =
q
Pl

j=1
Psj

t=1 (β
(j)
t +1

2 )+Pn
t=1 (ct+1

2 )(q; q)|P |−f−1

(q; q)|P |(q; q)~α(q; q)~β(q; q)c
×

∑

0≤p(2)≤p(3)≤···≤p(n)

q
Pn

i=2(ci+1)p(i)

×
k∏

u=1

det(qα
(u)
i p(du−1+j−1))1≤i,j≤ru

l∏
v=1

det(qβ
(v)
i p(ev−1+j−1))1≤i,j≤sv .

Here we use the convention that p(1) = 0.
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4. Leaf posets

4.1. Basic leaf posets. In the former subsection, we define a pre-leaf poset. But, unfortunately, a
pre-leaf poset may not have hook-length property in general. In this section we define special cases of
pre-leaf posets whose generating functions have product formulas. We call these classes basic leaf posets,
and denote them by Gf (α, β, δ), Bf (α,β, γ, δ, v), If (α, β, γ, δ, v), Wf (α,β, γ, δ, v), Ff (α,β, γ, δ, s, t, v),
Cf (α, β, γ, δ, v). Throughout this section, for a non-negative integer n, (n)q denotes 1− qn.

Definition 4.1. (i) Let m ≥ 2 be an integer, and let α = (α1, α2, . . . , αm) and β = (β1, β2, . . . , βm) be
strictly decreasing sequences of nonnegative integers of length m. Let δ and f be nonnegative integers which
satisfy f ≥ δ ≥ 0. Then, we let Gf (α, β, δ) := Pf (α; β; 0, δ, δ, . . . , δ) , and we call it a ginkgo. The diagram
of Gf (α,β, δ) looks as follows.

Gf (α,β, δ) =

β1 β2 β3 βm

α1

α2

α3

αm

f

cδ

cδ

cδ

In this diagram cδ denotes the chain of length δ. Then the generating function of (Gf (α,β, δ), ωc)-partitions
is equal to

F (Gf (α, β, δ), ωc; q) =
q
Pm

i=1 (βi+1
2 )+(m−1)(δ+1

2 )+(m
2 )(δ+1)(q; q)|α|+|β|+(m−1)(δ+1)

(q; q)α(q; q)β(q; q)m−1
δ (q; q)|α|+|β|+(m−1)δ+f+m

× (|α|+ |β|+ m(δ + 1))q

∏
1≤i<j≤m(qαj − qαi)(qβj − qβi)∏m

i,j=1 (αi + βj + δ + 1)q
,(4.1)

where |α| = ∑m
i=1 αi and |β| = ∑m

i=1 βi.

(ii) Let m ≥ 3 be an integer, and let α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm−1), γ = (γ1, γ2) be
strictly decreasing sequences of nonnegative integers. Let δ and f be nonnegative integers which satisfy
f ≥ β1 + δ ≥ 0. For v = 1, 2, we let Bf (α,β, γ, δ, v) := Pf (α; γ, β; 0, δ, γv + δ, . . . , γv + δ), and we call it a
bamboo. Its diagram is as follows.

Bf (α, β,γ, δ, v) =

β1 β2 β3 βm−1

α1

α2

α3

α4

αm

f

cδ

cγv+δ

cγv+δ

cγv+δ

γ1 γ2
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Then the generating function of (Bf (α, β, γ, δ, v), ωc)-partitions is equal to

F (Bf (α, β,γ, δ, v), ωc; q)

=
q
Pm−1

i=1 (βi+1
2 )+P2

i=1 (γi+1
2 )+(γv+δ+1

2 )m−2
+(δ+1

2 )+|β|+ (m+1)(m−2)
2 γv+(m

2 )(δ+1)

(q; q)α(q; q)β(q; q)γ(q; q)m−2
γv+δ(q; q)δ

× (q; q)|α|+|β|+|γ|+(m−2)γv+(m−1)(δ+1)(qγ2 − qγ1)
∏

1≤i<j≤m(qαj − qαi)
∏

1≤i<j≤m−1(q
βj − qβi)

(q; q)|α|+|β|+|γ|+(m−2)γv+f+(m−1)δ+m

∏m
i=1

∏m−1
j=1 (αi + βj + γv + δ + 1)q

×
∏m−1

i=1 (|α|+ |β|+ βi + |γ|+ (m− 2)γv + m(δ + 1))q∏m
i=1 (|α| − αi + |β|+ |γ|+ (m− 3)γv + (m− 1)(δ + 1))q

,(4.2)

where |α| = ∑m
i=1 αi, |β| =

∑m−1
i=1 βi, and |γ| = ∑2

i=1 γi.

(iii) Let α = (α1, α2, α3), β = (β1, β2, β3, β4, β5) and γ = (γ1, γ2) be strictly decreasing sequences of
nonnegative integers. Let δ and f be nonnegative integers which satisfy f ≥ β1 + δ ≥ 0. For v = 1, 2, we let
If (α,β, γ, δ, v) := Pf (α,γ,α;γ,β; 0, δ, δ, δ, γv + δ, γv + δ) and call it an ivy . Its diagram looks as follows.

If (α, β, γ, δ, v) =

α2

α3

α2

f α1

γ1

α1γ1

α3

β1 β2 β3 β4 β5

γ2
γ2

cδ

cδ

cδ

cγv+δ

cγv+δ

Then the generating function of (If (α, β,γ, δ, v), ωc)-partitions is equal to

F (If (α, β, γ, δ, v), ωc; q)

=
q
P5

i=1 (βi+1
2 )+P2

i=1 (γi+1
2 )+2(γv+δ+1

2 )+3(δ+1
2 )+3|α|+|β|+2|γ|+9γv+15(δ+1)(q; q)2|α|+|β|+2|γ|+2γv+5(δ+1)

(q; q)2α(q; q)β(q; q)2γ(q; q)2γv+δ(q; q)
3
δ(q; q)2|α|+|β|+2|γ|+2γv+f+5δ+6

× (qγ2 − qγ1)2
∏

1≤i<j≤3(q
αj − qαi)2

∏
1≤i<j≤5(q

βj − qβi)
∏3

i=1

∏5
j=1 (αi + βj + γv + δ + 1)q

∏3
i=1 (2|α| − αi + |β|+ 2|γ|+ γv + 5(δ + 1))q

×
∏5

i=1 (2|α|+ |β|+ βi + 2|γ|+ 2γv + 6(δ + 1))q∏
1≤i<j≤5 (|α|+ |β| − βi − βj + |γ|+ γv + 3(δ + 1))q

.(4.3)

(iv) Let m ≥ 4 be a positive integer, and let α = (α1, α2, . . . , αm), β = (β1, β2) and γ = (γ1, γ2) be
strictly decreasing sequences of nonnegative integers. Let δ and f be nonnegative integers which satisfy
f ≥ γ1 + δ ≥ 0. Assume v = 1 or 2. If m is even, then we let

Wf (α, β,γ, δ, v) := Pf (α; β,γ,β, γ, . . . , γ,β; 0, δ, . . . , δ, γv + δ),

where m = 2r and we have r β’s and (r − 1) γ’s alternatively in the second index. If m is odd, then we let

Wf (α, β,γ, δ, v) := Pf (α; β,γ,β, γ, . . . , β,γ; 0, δ, . . . , δ, βv + δ),
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where m = 2r + 1 and we have r β’s and r γ’s alternatively in the second index. We call Wf (α, β, γ, δ, v) a
wisteria, and its diagram is as follows.

Wf (α, β,γ, δ, v) =
β1 β2

γ1 γ2

α1

α2

α3

αm

f

cδ

cδ

c∗

If m = 2r (r ≥ 2), then the generating function of (Wf (α, β, γ, δ, v), ωc)-partitions is equal to

F (Wf (α,β, γ, δ, v), ωc; q)

=
qr
P2

i=1 (βi+1
2 )+(r−1)

P2
i=1 (γi+1

2 )+(γv+δ+1
2 )+(2r−2)(δ+1

2 )+r(r−1)|β|+(r−1)2|γ|+(2r−1)γv+r(2r−1)(δ+1)

(q; q)α(q; q)r
β(q; q)r−1

γ (q; q)γv+δ(q; q)2r−2
δ

× (q; q)|α|+r|β|+(r−1)|γ|+γv+(2r−1)(δ+1)(qβ2 − qβ1)r(qγ2 − qγ1)r−1
∏

1≤i<j≤2r(q
αj − qαi)

(q; q)|α|+r|β|+(r−1)|γ|+γv+f+(2r−1)δ+2r

∏2r
i=1

∏2
j=1 (αi + βj + γv + δ + 1)q

×
∏2

i=1 (|α|+ r|β|+ (r − 1)|γ|+ γi + γv + 2r(δ + 1))q∏
1≤i<j≤2r (αi + αj + |β|+ |γ|+ 2δ + 2)q

,(4.4)

and, if m = 2r + 1 (r ≥ 2), then we have

F (Wf (α, β,γ, δ, v), ωc; q)

=
qr
P2

i=1 (βi+1
2 )+r

P2
i=1 (γi+1

2 )+(βv+δ+1
2 )+(2r−1)(δ+1

2 )+r(r−1)|β|+r2|γ|+2rβv+r(2r+1)(δ+1)

(q; q)α(q; q)r
β(q; q)r

γ(q; q)βv+δ(q; q)2r−1
δ

× (q; q)|α|+r|β|+βv+r|γ|+2r(δ+1)(qβ2 − qβ1)r(qγ2 − qγ1)r
∏

1≤i<j≤2r+1(q
αj − qαi)

(q; q)|α|+r|β|+βv+r|γ|+f+2rδ+2r+1

∏2r+1
i=1

∏2
j=1 (αi + βv + γj + δ + 1)q

×
∏2

i=1 (|α|+ r|β|+ r|γ|+ βv + γi + (2r + 1)(δ + 1))q∏
1≤i<j≤2r+1 (αi + αj + |β|+ |γ|+ 2δ + 2)q

.(4.5)

(v) Let m ≥ 4 be a positive integer, let α = (α1, α2, α3), β = (β1, β2, . . . , βm−1) and γ = (γ1, γ2) be
strictly decreasing sequences of nonnegative integers. Let δ and f be nonnegative integers which satisfy
f ≥ β1 + δ ≥ 0. Fix positive integers s, t which satisfy 1 ≤ s < t ≤ 3, and let v ∈ {s, t} if m is even, and let
v ∈ {1, 2} if m is odd. Write ã := (αs, αt). If m is even, then we let

P = Ff (α, β,γ, δ, s, t, v) = Pf (α, γ, ã,γ, ã, . . . , ã,γ; γ, β; 0, δ, . . . , δ, αv + δ)

where m = 2r (r ≥ 2) and we have one α followed by (r − 1) γ’s and (r − 2) ã’s alternatively in the first
index. If m is odd, then we let

P = Ff (α, β,γ, δ, s, t, v) = Pf (α, γ, ã,γ, ã, . . . , γ, ã; γ, β; 0, δ, . . . , δ, γv + δ)

where m = 2r + 1 (r ≥ 2) and we have one α followed by (r− 1) γ’s and (r− 1) ã’s alternatively in the first
index. We call P a fir, and its diagram is as follows.
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Ff (α, β, γ, δ, s, t, v) =

α2

α3

αs

αt

f α1

γ1

γ1

β1 β2 β3 β4 βm−1

γ2
γ2

cδ

cδ

cδ

cδ

c∗

If m = 2r (r ≥ 2), then we have

F (Ff (α,β, γ, δ, s, t, v), ωc; q)

=
q(

αv+δ+1
2 )+P2r−1

i=1 (βi+1
2 )+P2

i=1 (γi+1
2 )+(2r−2)(δ+1

2 )+r(r−2)(αs+αt)+(2r−1)αv+|β|+r(r−1)|γ|+r(2r−1)(δ+1)

(q; q)α(q; q)β(q; q)r
γ(q; q)r−2

αs (q; q)r−2
αt (q; q)αv+δ(q; q)2r−2

δ

× (q; q)|α|+(r−2)(αs+αt)+αv+|β|+r|γ|+(2r−1)(δ+1)

(q; q)|α|+(r−2)(αs+αt)+αv+|β|+r|γ|+f+(2r−1)δ+2r

× (qγ2 − qγ1)r(qαt − qαs)r−2

∏2
i=1

∏2r−1
j=1 (αv + βj + γi + δ + 1)q

∏
1≤i<j≤2r−1 (αs + αt + βi + βj + |γ|+ 2δ + 2)q

×
∏

1≤i<j≤3(q
αj − qαi)

∏
1≤i<j≤2r−1(q

βj − qβi)
∏2

i=1 (|α|+ (r − 2)(αs + αt) + |β|+ (r − 1)|γ|+ γi + (2r − 1)(δ + 1))q

×
∏2r−1

i=1 (|α|+ (r − 2)(αs + αt) + αv + |β|+ βi + r|γ|+ 2r(δ + 1))q∏2r−1
i=1 (|α|+ (r − 3)(αs + αt) + αv + |β| − βi + (r − 1)|γ|+ 2(r − 1)(δ + 1))q

,(4.6)

and, if m = 2r + 1 (r ≥ 2), then we have

F (Ff (α,β, γ, δ, s, t, v), ωc; q)

=
q
P2r

i=1 (βi+1
2 )+P2

i=1 (γi+1
2 )+(γv+δ+1

2 )+(2r−1)(δ+1
2 )+(r2−1)(αs+αt)+|β|+r(r−1)|γ|+2rγv+r(2r+1)(δ+1)

(q; q)α(q; q)β(q; q)r
γ(q; q)r−1

αs (q; q)r−1
αt (q; q)γv+δ(q; q)2r−1

δ

× (q; q)|α|+(r−1)(αs+αt)+|β|+r|γ|+γv+2r(δ+1)

(q; q)|α|+(r−1)(αs+αt)+|β|+r|γ|+γv+f+2rδ+2r+1

× (qγ2 − qγ1)r(qαt − qαs)r−1

∏
i=s,t

∏2r
j=1 (αi + βj + γv + δ + 1)q

∏
1≤i<j≤2r (αs + αt + βi + βj + |γ|+ 2δ + 2)q

×
∏

1≤i<j≤3(q
αj − qαi)

∏
1≤i<j≤2r(q

βj − qβi)∏
i=s,t (|α|+ (r − 2)(αs + αt) + αi + |β|+ r|γ|+ 2r(δ + 1))q

×
∏2r

i=1 (|α|+ (r − 1)(αs + αt) + |β|+ βi + r|γ|+ γv + (2r + 1)(δ + 1))q∏2r
i=1 (|α|+ (r − 2)(αs + αt) + |β| − βi + (r − 1)|γ|+ γv + (2r − 1)(δ + 1))q

.(4.7)

(vi) Let α = (α1, α2, α3), β = (β1, β2, β3, β4) and γ = (γ1, γ2) be strictly decreasing sequences of nonnegative
integers. Let δ and f be nonnegative integers which satisfy f ≥ β1 + δ ≥ 0. For v = 1, 2, 3, 4, we let

Cf (α, β,γ, δ, v) := Pf (α, γ, α; γ, β,γ; 0, δ, δ, δ, δ, βv + δ)

which we call a chrysanthemum. Its diagram is as follows.
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Cf (α,β, γ, δ, v) =

α2

α3

α2

α3

β1 β2 β3

γ1

f α1

γ1

γ2
α1γ1 γ2

β4

γ2

cδ

cδ

cδ

cδ

cβv+δ

Then we have

F (Cf (α,β, γ, δ, v), ωc; q)

=
q
P4

i=1 (βi+1
2 )+(βv+δ+1

2 )+2
P2

i=1 (γi+1
2 )+4(δ+1

2 )+3|α|+|β|+5βv+6|γ|+15δ+15(q; q)2|α|+|β|+βv+3|γ|+5δ+5

(q; q)2α(q; q)β(q; q)3γ(q; q)βv+δ(q; q)4δ(q; q)2|α|+|β|+βv+3|γ|+f+5δ+6

× (qγ2 − qγ1)3
∏

1≤i<j≤3(q
αj − qαi)2

∏
1≤i<j≤4(q

βj − qβi)
∏2

i=1

∏3
j=1 (αj + βv + γi + δ + 1)q

∏
1≤k≤4

k 6=v

∏3
j=1 (|α| − αj + βv + βk + |γ|+ 2δ + 2)q

×
∏

1≤k≤4 (2|α|+ |β|+ βk + βv + 3|γ|+ 6δ + 6)q∏3
j=1 (|α|+ αj + |β|+ 2|γ|+ 4δ + 4)q

∏
1≤k≤4

k 6=v

∏2
i=1 (|α|+ |β| − βk + |γ|+ γi + 3δ + 3)q

.(4.8)

4.2. General leaf posets. In this section we explain how to compose a general leaf poset from the
basic ones. An operation called “slant sum” which combines two posets to generate a new one is introduced
in [18]. Here we slightly modify the definition, and call it a “joint sum”.

Definition 4.2. Let P1 be a finite poset and let y be any element of P1. Let P2 be a finite poset which
is non-adjacent to P1, i.e. P2 shares no element with P1 and there is no order relation between elements of
P1 and P2. Let x1, x2, · · · , xm be all maximal elements of P2. Set Q to be P1 ∪ P2 as set, and make it a
partially ordered set by inserting additional covering relations x1l y, · · · , xml y besides the order relations
among the elements of P1 or P2. We use P1

y\P2 (or more explicitly P1
y\x1,··· ,xmP2) to denote this new

poset Q, and call it the joint sum of P1 with P2 at y.

An order ideal of a poset P is a subset I of P such that if x ∈ I and y ≤ x, then y ∈ I. The order ideal
〈x〉 = {y ∈ P : y ≤ x} is the principal order ideal generated by x.

Definition 4.3. Let P be a poset, and let (x, y) be a pair of elements in P such that y covers x. We
say (x, y) is an joint pair if 〈x〉 is a chain with the maximum element x and P is equal to (P − 〈x〉)y\〈x〉,
i.e. removing 〈x〉 from P and then making the joint sum of P − 〈x〉 with 〈x〉 at y recovers P . An element
y ∈ P is said to be a joint element if there exists x ∈ P which is covered by y and (x, y) is a joint pair.

Now we are in position to define the notion of general leaf posets as follows.

Definition 4.4. First we inductively define k-level leaf posets for a positive integer k. A poset P is
said to be a 1-level leaf poset if it is a basic leaf poset, a tree, or obtained as a disjoint union of several basic
leaf posets and trees. Let LP1 denote the set of 1-level leaf posets. For k ≥ 2, let Q be a (k − 1)-level leaf
poset and (x, y) is a joint pair in Q. We construct a k-level leaf poset P by removing the chain 〈x〉 from Q
and make the joint sum of Q with P1 at y, where P1 is a 1-level leaf poset which has the same number of
elements as 〈x〉, i.e. P = (Q− 〈x〉)y\P1 and |P1| = |〈x〉|. Let LPk denote the set of k-level leaf posets, and
put

LP :=
⋃

k≥1

LPk.

We call an element of LP a leaf poset.
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Note that a poset can be k-level leaf poset for several k, i.e. there exist some i, j such that LPi∩LPj 6= ∅.
Proposition 4.5. Let P1 be a finite poset and let y be any element of P1. Let P2 be any n-element

poset which is non-adjacent to P1. Let 〈z〉 denote the n-element chain whose maximum element is z. We put
P = P1

y\z〈z〉 and P ′ = P1
y\P2. Let ω be a labeling on P whose restriction on 〈z〉 is a natural labeling and

ω(y) > ω(z). Let ω′ be a labeling on P ′ such that the restriction of ω′ on P1 coincides with the restriction
of ω on P1. Let ω2 denote the restriction of ω′ on P2. Then the generating function of (P ′, ω′)-partitions is
given by F (P ′, ω′; q) = (q; q)nF (P, ω; q)F (P2, ω2; q). Especially, if P and P2 have hook length property and
hP (x) = |〈x〉| for any x ∈ 〈z〉, then P ′ has hook length property, where hP is the hook length function of P .

5. Concluding Remarks

Proposition 4.5 and Definition 4.1 immediately implies that the generating function of P -partitions is
given by a product formula, where P is any leaf poset. Thus we conclude that any leaf poset has hook-length
property. Our proof is based on Stanley’s (P, ω)-partitions and determinant or Pfaffian computations, in
which some of the proofs have elegant Pfaffian expressions and some of them are direct computations by
brute forces. We think that one more interesting problem, which is still left, is to consider a bijective proof
of the hook formulas.
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