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Abstract

We present several generalizations of Cauchy’s determinant det (1/(xi + yj)) and Schur’s
Pfaffian Pf ((xj − xi)/(xj + xi)) by considering matrices whose entries involve some general-
ized Vandermonde determinants. Special cases of our formulae include previous formulae due
to S. Okada and T. Sundquist. As an application, we give a relation for the Littlewood–
Richardson coefficients involving a rectangular partition.

Résumé

On présente plusieurs généralisations du déterminant de Cauchy det (1/(xi + yj)) et du Pfaf-
fian de Schur Pf ((xj − xi)/(xj + xi)) en considérant des matrices dont les coefficients im-
pliquent des déterminants de Vandermonde généralisés. Des cas particuliers de nos formules
contiennent celles obtenues précédemment par S. Okada et T. Sundquist. Comme une appli-
cation, on donne une relation pour les coefficients de Littlewood–Richardson associés aux trois
partitions dont une est de forme rectangle.

1 Introduction

Identities for determinants and Pfaffians are of great interest in many branches of mathematics.
Some people need relations among minors or subPfaffians of a general matrix, others have to eval-
uate special determinants or Pfaffians. In combinatorics and representation theory, an important
role is played by Cauchy’s determinant identity [3]

det
(

1
xi + yj

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
, (1.1)

and Schur’s Pfaffian identity [20]

Pf
(

xj − xi

xj + xi

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

xj − xi

xj + xi
. (1.2)

Also their variations and generalizations have many applications. See, for example, [5], [8], [12],
[16], [17], [22], [23]. Also see [10] and [11] for a survey of determinant evaluations.

In this article, we establish several identities of Cauchy-type determinants and Schur-type Pfaf-
fians involving generalized Vandermonde determinants. Let x = (x1, · · · , xn) and a = (a1, · · · , an)
be two vectors of variables of length n. For nonnegative integers p and q with p + q = n, we define
a generalized Vandermonde matrix V p,q(x; a) to be the n× n matrix with ith row

(1, xi, · · · , xp−1
i , ai, aixi, · · · , aix

q−1
i ).

We introduce another generalized Vandermonde matrix Wn(x;a) as the n×n matrix with ith row

(1 + aix
n−1
i , xi + aix

n−2
i , · · · , xn−1

i + ai).
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If q = 0, then V n,0(x; a) =
(
xj−1

i

)
1≤i,j≤n

and the determinant det V n,0(x; a) =
∏

1≤i<j≤n(xj−xi)

is the usual Vandermonde determinant.
The main purpose of this paper is to prove the following identities for the determinants and

Pfaffians involving these generalized Vandermonde determinants. In the later sections, we also give
several variants of these determinants and Pfaffians.

Theorem 1.1. (a) Let n be a positive integer and let p and q be nonnegative integers. For six
vectors of variables

x = (x1, · · · , xn), y = (y1, · · · , yn), a = (a1, · · · , an), b = (b1, · · · , bn),
z = (z1, · · · , zp+q), c = (c1, · · · , cp+q),

we have

det
(

detV p+1,q+1(xi, yj , z; ai, bj , c)
yj − xi

)

1≤i,j≤n

=
(−1)n(n−1)/2

∏n
i,j=1(yj − xi)

detV p,q(z; c)n−1 det V n+p,n+q(x, y,z; a, b, c). (1.3)

(b) Let n be a positive integer and let p, q, r, s be nonnegative integers. For seven vectors of
variables

x = (x1, · · · , x2n), a = (a1, · · · , a2n), b = (b1, · · · , b2n),
z = (z1, · · · , zp+q), c = (c1, · · · , cp+q),

w = (w1, · · · , wr+s), d = (d1, · · · , dr+s),

we have

Pf
(

detV p+1,q+1(xi, xj , z; ai, aj , c) det V r+1,s+1(xi, xj ,w; bi, bj , d)
xj − xi

)

1≤i,j≤2n

=
1∏

1≤i<j≤2n(xj − xi)
detV p,q(z; c)n−1 detV r,s(w; d)n−1

× det V n+p,n+q(x, z; a, c) det V n+r,n+s(x,w; b,d). (1.4)

(c) Let n be a positive integer and let p be a nonnegative integer. For six vectors of variables

x = (x1, · · · , xn), y = (y1, · · · , yn), a = (a1, · · · , an), b = (b1, · · · , bn),
z = (z1, · · · , zp), c = (c1, · · · , cp),

we have

det
(

detW p+2(xi, yj ,z; ai, bj , c)
(yj − xi)(1− xiyj)

)

1≤i,j≤n

=
1∏n

i,j=1(yj − xi)(1− xiyj)
detW p(z; c)n−1 detW 2n+p(x, y,z; a, b, c). (1.5)

(d) Let n be a positive integer and let p and q be nonnegative integers. For seven vectors of
variables

x = (x1, · · · , x2n), a = (a1, · · · , a2n), b = (b1, · · · , b2n),
z = (z1, · · · , zp), c = (c1, · · · , cp),

w = (w1, · · · , wq), d = (d1, · · · , dq),

we have

Pf
(

detW p+2(xi, xj , z; ai, aj , c) det W q+2(xi, xj ,w; bi, bj ,d)
(xj − xi)(1− xixj)

)

1≤i,j≤2n

=
1∏

1≤i<j≤2n(xj − xi)(1− xixj)
detW p(z; c)n−1 detW q(w; d)n−1

× detW 2n+p(x, z;a, c) det W 2n+q(x,w; b,d). (1.6)
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These identities were conjectured by S. Okada in [18]. If we put p = q = 0 in (1.3) or
p = q = r = s = 0 in (1.4), then the identities read

det
(

bj − ai

yj − xi

)

1≤i,j≤n

=
(−1)n(n−1)/2

∏n
i,j=1(yj − xi)

detV n,n(x, y;a, b), (1.7)

Pf
(

(aj − ai)(bj − bi)
xj − xi

)

1≤i,j≤2n

=
1∏

1≤i<j≤2n(xj − xi)
detV n,n(x; a) det V n,n(x; b). (1.8)

These special cases, as well as the identities (1.5) with p = 0 and (1.6) with p = q = 0, are first given
by S. Okada [16, Theorems 4.2, 4.7, 4.3, 4.4] in his study of rectangular-shaped representations of
classical groups. Another special case of the identity (1.5) with p = 1 is given in [17] and applied to
the enumeration of vertically and horizontally symmetric alternating sign matrices. These special
cases are the starting point of our study.

Under the specialization

xi ← x2
i , yi ← y2

i , zi ← z2
i , wi ← w2

i , ai ← xi, bi ← yi, ci ← zi, di ← wi,

one can deduce from (1.3) and (1.4) the following identities:

det
(

sδ(k)(xi, yj ,z)
xi + yj

)

1≤i,j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
sδ(k)(z)n−1sδ(k)(x, y,z), (1.9)

Pf
(

xj − xi

xj + xi
sδ(k)(xi, xjz)sδ(l)(xi, xj ,w)

)

1≤i,j≤2n

=
∏

1≤i<j≤2n

xj − xi

xj + xi
sδ(k)(z)n−1sδ(l)(w)n−1sδ(k)(x, z)sδ(l)(x, w), (1.10)

where sλ denotes the Schur function corresponding to a partition λ and δ(k) = (k, k − 1, · · · , 1)
denotes the staircase partition. If we take k = 0 in (1.9) and k = l = 0 in (1.10), we obtain
Cauchy’s determinant identity (1.1) and Schur’s Pfaffian identity (1.2). Another special case of
(1.9) with k = l = 1 is the rational case of Frobenius’ identity [4]. Also, if we take k = l = 1 in
(1.10), we obtain the rational case of an elliptic generalization of (1.2) given in [19].

2 A Sketch of the Proof of Our Main Theorem

In this section, we give an outline of the proof of Theorem 1.1. First S. Okada presented the iden-
tities in Theorem 1.1 at the workshop on “Aspects of Combinatorial Representation Theory” and
“2nd East Asian Conference on Algebra and Combinatorics”. At the point they were conjectures,
and we tried a couple of methods to prove some of these identities, for example, the inductions, the
Desnanot–Jacobi formula, and the complex analysis. Among such methods, the best and simplest
way we found is to use the Desnanot–Jacobi formula (Lemma 2.1) and a homogeneous version Up,q

of the generalized Vandermonde matrix V p,q.
The proof of Theorem 1.1 consists of two parts. In the first part, we prove (1.4) by applying

the Desnanot–Jacobi formula for Pfaffians to reduce the general case to the case n = 2, and then
by using the induction on p + q + r + s to show the case n = 2. In the second part, we translate
(1.4) into the homogeneous version (2.5) and derive (1.3), (1.5), (1.6) from this ‘master’ identity.
Only a sketch of the proof is given below, and the details can be found in our paper [6].

2.1 Proof of (1.4)

For the first part, we recall the Desnanot–Jacobi formulae for determinants and Pfaffians. Given
a square matrix A and indices i1, · · · , ir, j1, · · · , jr, we denote by Ai1,··· ,ir

j1,··· ,jr
the matrix obtained by

removing the rows i1, · · · , ir and the columns j1, · · · , jr of A.

Lemma 2.1. (1) If A is a square matrix, then we have

detA1
1 · detA2

2 − det A1
2 · detA2

1 = det A · detA1,2
1,2. (2.1)
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(2) If A is a skew-symmetric matrix, then we have

Pf A1,2
1,2 · Pf A3,4

3,4 − Pf A1,3
1,3 · Pf A2,4

2,4 + Pf A1,4
1,4 · Pf A2,3

2,3 = Pf A · Pf A1,2,3,4
1,2,3,4. (2.2)

This Pfaffian analogue of Desnanot–Jacobi formula is given in [9], [8], and is called the Plücker
relation in [8].

By applying Desnanot–Jacobi formula for Pfaffians to the skew-symmetric matrix on the left
hand side of (1.4) and using the induction on n, we can see that the proof of (1.4) is reduced to
the case n = 2 with z, c, w, d replaced by

z ← (x(1,2,3,4), z), c ← (a(1,2,3,4), c), w ← (x(1,2,3,4),w), d ← (b(1,2,3,4),d),

respectively, where x(1,2,3,4) denotes the vector obtained by removing x1, x2, x3, x4 from x. Then
the identity (1.4) in the case n = 2 can be proven by the induction on p + q + r + s with the help
of the following relations between detV p,q and det V p−1,q (or det V q,p).

Lemma 2.2. (1) If p ≥ q and p ≥ 1, then we have

detV p,q(x; a) =
p+q−1∏

i=1

(xp+q − xi) · detV p−1,q(x1, · · · , xp+q−1; a′1, · · · , a′p+q−1), (2.3)

where we put

a′i =
ai − ap+q

xi − xp+q
(1 ≤ i ≤ p + q − 1).

(2) For nonnegative integers p and q, we have

detV p,q(x; a) = (−1)pq

p+q∏

i=1

ai · detV q,p(x; a−1), (2.4)

where a−1 = (a−1
1 , · · · , a−1

p+q).

Remark 2.3. We can also reduce the proof of the other identities (1.3), (1.5) and (1.6) in The-
orem 1.1 to the case of n = 2 by using Desnanot-Jacobi formulae. It is easy to show the case of
n = 2 of (1.3) by using the relations in Lemma 2.2 and the induction on p + q. We can prove
(1.5) (resp. (1.6)) in the case of n = 2, by regarding the both sides as polynomials in zp+q (resp.
zp) and showing that the values coincide at appropriate points by a brute force. Also the special
cases of these identities can be obtained by regarding the both sides as meromorphic functions and
computing the principal parts at their poles.

2.2 Homogeneous version and proof of (1.3), (1.5) and (1.6)

For the second part of the proof, we introduce a homogeneous version of the matrix V p,q(x; a).

For vectors x, y, a, b of length n and nonnegative integers p, q with p+q = n, we set Up,q

(
x a
y b

)

to be the n× n matrix with ith row

(aix
p−1
i , aix

p−2
i yi, · · · , aiy

p−1
i , bix

q−1
i , bix

q−2
i yi, · · · , biy

q−1
i ).

Then we have the following relation among det Up,q, det V p,q and det W p. Here use the following
notation for vectors x = (x1, · · · , xn) and y = (y1, · · · , yn):

x + y = (x1 + y1, . . . , xn + yn), xy = (x1y1, . . . , xnyn),

and, for integers k and l,

xk = (xk
1 , . . . , xk

n), xkyl = (xk
1yl

1, . . . , x
k
nyl

n).
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Lemma 2.4.

Up,q

(
x a
y b

)
=

p+q∏

k=1

akxp−1
k · V p,q

(
x−1y; a−1bxq−p

)
, (2.5)

V p,q(x;a) = Up,q

(
1 1
x a

)
, (2.6)

detUn,n

(
x 1 + ax

1 + x2 x + a

)
= (−1)n(n−1)/2 detW 2n(x; a), (2.7)

detUn,n+1

(
x 1 + ax2

1 + x2 1 + a

)
= (−1)n(n−1)/2 det W 2n+1(x; a), (2.8)

where 1 = (1, · · · , 1).

We can “homogenize” the identity (1.4). It follows from (2.5) and (2.6) that the following
theorem is equivalent to (1.4).

Theorem 2.5. Let n be a positive integer and let p, q, r and s be nonnegative integers. Suppose
that the vectors x, y, a, b, c, d have length 2n, the vectors ξ, η, α, β have length p + q, and the
vectors ζ, ω, γ, δ have length r + s. Then we have

Pf




detUp+1,q+1

(
xi, xj , ξ ai, aj ,α
yi, yj , η bi, bj , β

)
detUr+1,s+1

(
xi, xj , ζ ci, cj , γ
yi, yj , ω di, dj , δ

)

det
(

xi xj

yi yj

)




1≤i<j≤2n

=
1

∏
1≤i<j≤2n det

(
xi xj

yi yj

) detUp,q

(
ξ α
η β

)n−1

detUr,s

(
ζ γ
ω δ

)n−1

× detUn+p,n+q

(
x, ξ a,α
y, η b, β

)
detUn+r,n+s

(
x, ζ c, γ
y, ω d, δ

)
. (2.9)

The special case of p = q = r = s = 0 of this identity (2.9) is given by M. Ishikawa [5,
Theorem 3.1], and is one of the key ingredients of his proof of Stanley’s conjecture on a certain
weighted summation of Schur functions. (See [21].)

In this setting, a homogeneous version of (1.3) is a direct consequence of (2.9). A key is the
following relation between determinant and Pfaffian. If A is any m × (2n −m) matrix, then we
have

Pf
(

O A
−tA O

)
=

{
(−1)n(n−1)/2 det A if m = n,

0 if m 6= n.
(2.10)

Corollary 2.6. Let n be a positive integer and let p and q be fixed nonnegative integers. For
vectors x, y, z, w, a, b, c, d of length n, and vectors ξ, η, α, β of length p + q, we have

det




det Up+1,q+1

(
xi, zj , ξ ai, cj , α
yi, wj , η bi, dj ,β

)

det
(

xi zj

yi wj

)




1≤i,j≤n

=
(−1)n(n−1)/2

∏
1≤i,j≤n det

(
xi zj

yi wj

) detUp,q

(
ξ α
η β

)n−1

detUn+p,n+q

(
x, z, ξ a, c, α
y,w, η b, d, β

)
. (2.11)

Proof. In (2.9), we take r = s = 0 and put

c1 = · · · = cn = 1, cn+1 = · · · = c2n = 0,

d1 = · · · = dn = 0, dn+1 = · · · = d2n = 1.
(2.12)

Then we can apply (2.10) to obtain (2.11).
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Now the identity (1.3) follows from this corollary (2.11), (2.6) and an appropriate replacement
of variables. Also the remaining identities (1.5) and (1.6) are immediate from (2.11) and (2.9) by
using the relations (2.7) and (2.8). This completes the proof of Theorem 1.1.

3 A variation of the determinant and Pfaffian identities

In this section, we give a variation of the identities in Theorem 1.1, which can be regarded as a
generalization of an identity of T. Sundquist [23].

Let n be a positive integer and let p and q be nonnegative integers with p + q = n. Let
x = (x1, · · · , xn) and a = (a1, · · · , an) be vectors of variables. For partitions λ and µ with
l(λ) ≤ p and l(µ) ≤ q, we define a matrix V p,q

λ,µ(x; a) to be the n× n matrix with ith row

(xλp

i , x
λp−1+1
i , x

λp−2+2
i , · · · , xλ1+p−1

i , aix
µq

i , aix
µq−1+1
i , aix

µq−2+2
i , · · · , aix

µ1+q−1
i ).

For example, if λ = µ = ∅, then we have V p,q
∅,∅ (x; a) = V p,q(x; a). Let Pn denote the set of

partitions λ with length ≤ n which are of the form λ = (α1, · · · , αr|α1 + 1, · · · , αr + 1) in the
Frobenius notation. We define

F p,q(x; a) =
∑

λ∈Pp, µ∈Pq

(−1)(|λ|+|µ|)/2 detV p,q
λ,µ(x; a).

The main result of this section is the following theorem.

Theorem 3.1. (a) Let n be a positive integer and let p and q be nonnegative integers. For six
vectors of variables

x = (x1, · · · , xn), y = (y1, · · · , yn), z = (z1, · · · , zp+q),
a = (a1, · · · , an), b = (b1, · · · , bn), c = (c1, · · · , cp+q),

we have

det
(

F p+1,q+1(xi, yj , z; ai, bj , c)
(yj − xi)(1− xiyj)

)

1≤i,j≤n

=
(−1)n(n−1)/2

∏n
i,j=1(yj − xi)(1− xiyj)

F p,q(z; c)n−1Fn+p,n+q(x, y,z; a, b, c). (3.1)

(b) Let n be a positive integer and let p, q, r, s be nonnegative integers. For seven vectors of
variables

x = (x1, · · · , x2n), a = (a1, · · · , a2n), b = (b1, · · · , b2n),
z = (z1, · · · , zp+q), c = (c1, · · · , cp+q),

w = (w1, · · · , wr+s), d = (d1, · · · , dr+s),

we have

Pf
(

F p+1,q+1(xi, xj ,z; ai, aj , c)F r+1,s+1(xi, xj , w; bi, bj ,d)
(xj − xi)(1− xixj)

)

1≤i,j≤2n

=
1∏

1≤i<j≤2n(xj − xi)(1− xixj)
F p,q(z; c)n−1F r,s(w; d)n−1

× Fn+p,n+q(x, z;a, c)Fn+r,n+s(x,w; b,d). (3.2)

In particular, by putting p = q = r = s = 0 and bi = xi for 1 ≤ i ≤ 2n in (3.2), we obtain
Sundquist’s identity [23, Theorem 2.1].

Corollary 3.2.

Pf
(

aj − ai

1− xixj

)

1≤i<j≤2n

=
(−1)n(n−1)/2

∏
1≤i<j≤2n(1− xixj)

∑

λ,µ∈Pn

(−1)(|λ|+|µ|)/2 det V n,n
λ,µ (x;a). (3.3)

6



The key ingredient to prove Theorem 3.1 and Corollary 3.2 is the following relation between
F p,q(x; a) and det V p,q(y; b).

Proposition 3.3. We have

F p,q(x; a) = (−1)(
p
2)+(q

2)
p+q∏

i=1

xp−1
i · det V p,q(x + x−1;axq−p),

= (−1)(
p
2)+(q

2) detUp,q

(
x 1

1 + x2 a

)
. (3.4)

This proposition can be proven by the Cauchy-Binet formula and the computation of minors
in the following lemma.

Lemma 3.4. Let Dr be the following r× (2r−1) matrix with columns indexed by 0, 1, · · · , 2r−2:

Dr =




0 r − 2 r − 1 r 2r − 2
1

1 1

. .
. . . .

1 1


.

Then the minor of Dr corresponding to a partition λ is given by

det∆[r]
I(λ) (Dr) =

{
(−1)r(r−1)/2+|λ|/2 if λ ∈ Pr,
0 otherwise,

where ∆[r]
I(λ) (Dr) is the r× r submatrix of Dr consisting of columns λr, λr−1 + 1, · · · , λ1 + (r− 1).

Concluding this section, we should remark that, in Theorem 3.1, we can replace F p,q(x;a) by
the following alternatives:

Gp,q(x; a) =
∑

λ∈Qp, µ∈Qq

(−1)(|λ|+|µ|)/2 det V p,q
λ,µ(x;a),

Hp,q(x; a) =
∑

λ∈Rp, µ∈Rq

(−1)(|λ|+p(λ)+|µ|+p(µ))/2 detV p,q
λ,µ(x; a),

where Qn (resp. Rn) is the set of partitions λ with length ≤ n which are of the form λ = (α+1|α)
(resp. λ = (α|α)) in the Frobenius notation. Then we obtain similar relations between Gp,q(x; a),
Hp,q(x; a) and det V p,q(y; b).

4 Another generalization of Cauchy’s determinant identity

In this section, we give another type of generalized Cauchy’s determinant identities involving
detV p,q and det W p. The following is the main result of this section:

Theorem 4.1.

det
(

1
detV p+1,q+1(xi, yj , z; ai, bj , c)

)

1≤i,j≤n

=
(−1)n(n−1)/2

∏
1≤i<j≤n detV p+1,q+1(xi, xj , z; ai, aj , c) det V p+1,q+1(yi, yj , z; bi, bj , c)∏n

i,j=1 detV p+1,q+1(xi, yj , z; ai, bj , c)
, (4.1)

det
(

1
detW p+2(xi, yj ,z; ai, bj , c)

)

1≤i,j≤n

=
(−1)n(n−1)/2

∏
1≤i<j≤n detW p+2(xi, xj , z; ai, aj , c) det W p+2(yi, yj , z; bi, bj , c)∏n

i,j=1 det W p+2(xi, yj , z; ai, bj , c)
. (4.2)
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If p = q = 0, then the identity (4.1) becomes

det
(

1
bj − ai

)

1≤i,j≤n

=
(−1)n(n−1)/2

∏
1≤i<j≤n(aj − ai)(bj − bi)∏n

i,j=1(bj − ai)
,

which is equivalent to Cauchy’s determinant identity (1.1).

Proof. It follows from Desnanot–Jacobi formula (2.1) that it suffices to show the identities in the
case n = 2. If we put

f(x, y; a, b) = det V p+1,q+1(x, y, z; a, b, c), or det W p+2(x, y, z; a, b, c),

then the case n = 2 is equivalent to the following quadratic relation:

f(x1, x2; a1, a2)f(y1, y2; b1, b2)− f(x1, y1; a1, b1)f(x2, y2; a2, b2) + f(x1, y2; a1, b2)f(x2, y1; a2, b1)
= 0. (4.3)

This relation can be obtained by the Plücker relation for determinants.

5 A hyperpfaffian expression

The purpose of this section is to obtain a hyperpfaffian expression of detV p,q(x; a) when p = q is
even. First we recall the definition of hyperpfaffians ([1], see also [14]). Let n and r be positive
integers. Define a subset Ern,n of the symmetric groups Srn by

Ern,n = {σ ∈ Srn : σ(n(i− 1) + 1) < σ(n(i− 1) + 2) < · · · < σ(ni) for 1 ≤ i ≤ n} .

For example, if n = r = 2, then E4,2 is composed of the following 6 elements:

E4,2 = {(1, 2, 3, 4), (1, 3, 2, 4), (1, 4, 2, 3), (3, 4, 1, 2), (2, 4, 1, 3), (2, 3, 1, 4)} .

Let a = (ai1...in)1≤i1<···<in≤nr be an alternating tensor, i.e. aiσ(1)...iσ(n) = sgn(σ)ai1...in for any
permutations σ ∈ Snr. The hyperpfaffian of a is, by definition,

Pf [n](a) =
1
r!

∑

σ∈Enr,n

sgn(σ)
r∏

i=1

aσ(n(i−1)+1),...,σ(ni).

An alternating 2-tensor a is a skew-symmetric matrix and the hyperpfaffian Pf [2](a) is the usual
Pfaffian of the skew-symmetric matrix.

The main result of this section is the following Theorem. (Similar expressions are obtained
when n is odd.)

Theorem 5.1. If n is even, then

detV n,n(x; a) = Pf [n]




(
1 +

n∏
s=1

ais

) ∏

1≤s<t≤n

(xit − xis)




1≤i1<···<in≤2n

, (5.1)

detUn,n

(
x a
y b

)
= Pf [n]




(
n∏

s=1

ais +
n∏

s=1

bis

) ∏

1≤s<t≤n

det
(

yis xis

yit xit

)


1≤i1<···<in≤2n

. (5.2)

The essential part of the proof of the theorem is to compute the following special Pfaffian and
hyperpfaffian.

Lemma 5.2. Let n and r be positive integers and assume n = 2m is even. Then we have

Pf

(
(xm

j − xm
i )2

xj − xi

)

1≤i,j≤nr

=

{∏
1≤i<j≤n(xj − xi) if r = 1,

0 if r ≥ 2,
(5.3)

Pf [n]


 ∏

1≤s<t≤n

(xit − xis)




1≤i1<···<in≤nr

=

{∏
1≤i<j≤n(xj − xi) if r = 1,

0 if r ≥ 2.
(5.4)
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Proof. The first identity (5.3) is obtained from (1.4) by putting p = q = r = s = 0 and ai = bi =
xm

i . The second identity (5.4) follows from the first one (5.3) and the composition of hyperpfaffians
given in [14, Eq. (82)].

6 Application to Littlewood–Richardson coefficients

In this section, we use the Pfaffian identity (1.5) in Theorem 1.1 and the minor-summation formula
[7] to derive a relation between Littlewood–Richardson coefficients.

For three partitions λ, µ and ν, we denote by LRλ
µ,ν the Littlewood-Richardson coefficient.

These numbers LRλ
µ,ν appear in the following expansions (see [15]) :

sµ(X)sν(X) =
∑

λ

LRλ
µ,ν sλ(X),

sλ/µ(X) =
∑

ν

LRλ
µ,ν sν(X),

sλ(X, Y ) =
∑
µ,ν

LRλ
µ,ν sµ(X)sν(Y ).

We are concerned with the Littlewood–Richardson coefficients involving rectangular partitions.
Let ¤(a, b) denote the partition whose Young diagram is the rectangle a× b, i.e.

¤(a, b) = (ba) = (b, . . . , b︸ ︷︷ ︸
a

).

For a partition λ ⊂ ¤(a, b), we define λ† = λ†(a, b) by

λ†i = b− λa+1−i (1 ≤ i ≤ a).

Okada [16] used the special case of the identities (1.3) and (1.4) (i.e., the case of p = q = 0 and
p = q = r = s = 0) to prove the following proposition. (This proposition is also derived by the
combinatorial algorithm called Littlewood–Richardson rule.)

Proposition 6.1. Let n be a positive integer and let e and f be nonnegative integers.
(1) For partitions µ, ν, we have

LR�(n,e)
µ,ν =

{
1 if ν = µ†(n, e),
0 otherwise.

(6.1)

(2) For a partition λ of length ≤ 2n, we have

LRλ
�(n,e),�(n,f) =

{
1 if λn+1 ≤ min(e, f) and λi + λ2n+1−i = e + f (1 ≤ i ≤ n),
0 otherwise.

(6.2)

The main result of this section is the following theorem, which generalizes (6.2). It would be
interesting to find a bijective proof of the equality (6.5).

Theorem 6.2. Let n be a positive integer and let e and f be nonnegative integers. Let λ and µ
be partitions such that λ ⊂ ¤(2n, e + f) and µ ⊂ ¤(n, e). Then we have

(1) LRλ
µ,�(n,f) = 0 unless

λn ≥ f and λn+1 ≤ min(e, f). (6.3)

(2) If λ satisfies the above condition (6.3) and we define two partitions α and β by

αi = λi − f, βi = e− λ2n+1−i, (1 ≤ i ≤ n), (6.4)

then we have
LRλ

µ,�(n,f) = LRβ
α,µ†(n,e)

. (6.5)

In particular, LRλ
µ,�(n,f) = 0 unless α ⊂ β.
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In particular, if µ = ¤(n, e) is a rectangle, then this theorem reduces to (6.2). If µ is a
near-rectangle, then we have the following corollary by using Pieri’s rule [15, (5.16), (5.17)].

Corollary 6.3. Suppose that a partitions λ ⊂ ¤(2n, e + f) satisfies the condition (6.3) in Theo-
rem 6.2. Define two partitions α and β by (6.4). Then we have

LRλ
(en−1,e−k),(fn) =

{
1 if β/α is a horizontal strip of length k,
0 otherwise,

LRλ
(en−k,(e−1)k),(fn) =

{
1 if β/α is a vertical strip of length k,
0 otherwise.

In order to prove Theorem 6.2, we substitute

ai = xe+p+n
i , bi = xf+r+n

i , ci = ze+p+n
i , di = wf+r+n

i (6.6)

in the Pfaffian identity (1.4). By the bi-determinant definition of Schur functions, we have

det V p,q(x;xk) =

{
s�(q,k−p)(x)∆(x) if k ≥ p,
0 if k < p,

where ∆(x) =
∏

1≤i<j≤n(xj − xi). Hence, under the substitution (6.6), the identity (1.4) gives us
the following Pfaffian identity.

Proposition 6.4. We have

1
∆(x)

Pf
(
(xj − xi)s�(q+1,e+n−1)(xi, xj , z)s�(s+1,f+n−1)(xi, xj , w)

)
1≤i,j≤2n

= s�(q,e+n)(z)n−1s�(s,f+n)(w)n−1s�(n+q,e)(x, z)s�(n+s,f)(x, w). (6.7)

Remark 6.5. If we substitute

ai = xe+p+n
i , bi = ye+p+n

i (1 ≤ i ≤ n)

in the determinant identity (1.3), then we have

1
∆(x)∆(y)

det
(
s�(q+1,e+n−1)(xi, yj , z)

)
1≤i,j≤n

= (−1)n(n−1)/2s�(q,e+n)(z)n−1s�(q+n,e)(x,y, z). (6.8)

The special case (q = e + n − 1) of this identity is given in [13, Proposition 8.4.3], and the proof
there works in the general case of (6.8).

If we take q = s = 0 in (6.7), we have

1
∆(x)

Pf ((xj − xi)he+n−1(xi, xj , z)hf+n−1(xi, xj , w))1≤i,j≤2n

= s�(n,e)(x, z)s�(n,f)(x, w), (6.9)

where hr denotes the rth complete symmetric function. We use the minor-summation formula [7]
to expand the left hand side in the Schur function bases {sλ(x)}.
Lemma 6.6. Let bk,l be the coefficient of xkyl in

(y − x)he+n−1(x, y, z)hf+n−1(x, y, w).

Then we have bkl = −blk, and bkl, k < l, is given by

bkl =
∑

i,j

hi(z)hj(w),

where the sum is taken over all pairs of integers (i, j) satisfying

i + j = (e + n− 1) + (f + n− 1) + 1− k − l, 0 ≤ i ≤ (e + n− 1)− k, 0 ≤ j ≤ (f + n− 1)− k.
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Here we recall the minor summation formula [7].

Lemma 6.7. Let X be a 2n ×N matrix and A be an N ×N skew-symmetric matrix. Then we
have ∑

I

Pf ∆I
I(A) det ∆[2n]

I (X) = Pf(XAtX),

where I runs over all 2n-element subsets of [N ], and ∆I
J(M) denotes the submatrix of a matrix M

obtained by picking up the rows indexed by I and the columns indexed by J .

By applying this minor-summation formula, we obtain

Proposition 6.8. Let B = (bij)0≤i,j≤e+f+2n−1 be the skew-symmetric matrix, whose entries bij

are given in Lemma 6.6. Then, for a partition λ ⊂ ¤(2n, e + f), we have
∑

µ⊂�(n,e)
ν⊂�(n,f)

LRλ
µ,ν sµ†(n,e)(z)sν†(n,f)(w) = Pf ∆I(λ)

I(λ)(B), (6.10)

where I(λ) = {λ2n, λ2n−1 + 1, . . . , λ2 + 2n− 2, λ1 + 2n− 1}.
Now we can finish the proof of Theorem 6.2.

Proof of Theorem 6.2. In the above argument, we take p ≥ n and r = 0. In this case, the
variables w disappear and we see that

bkl =

{
h(e+n−1)+(f+n−1)+1−k−l(z) if 0 ≤ k ≤ min(e + n− 1, f + n− 1) and l ≥ f + n− 1,

0 otherwise

and the equation (6.10) becomes
∑

µ⊂�(n,e)

LRλ
µ,�(n,f) sµ†(n,e)(z) = Pf ∆I(λ)

I(λ)(B).

The skew-symmetric matrix B has the form B =
(

O C
−tC O

)
with

C = (he+n−1−i−j(z))0≤i≤f+n−1,0≤j≤e+n−1 .

¿From the relation (2.10), we see that the subPfaffian Pf BI(λ) vanishes unless

λn+1 ≤ min(e, f), λn ≥ f.

If these conditions are satisfied, then we have

Pf BI(λ) = (−1)n(n−1)/2 det
(
hβi−αn+1−j−i+(n+1−j)(z)

)
1≤i,j≤n

= sβ/α(z).

Hence we have ∑

µ⊂�(n,e)

LRλ
µ,�(n,f) sµ†(n,e)(z) = sβ/α(z).

Comparing the coefficients of sµ†(n,e)(z) completes the proof.
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