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Abstract

We call an element of a Coxeter group fully covering (or a fully covering element)
if its length is equal to the number of the elements it covers in the Bruhat ordering.
It is easy to see that the notion of fully covering is a generalization of the notion of
a 321-avoiding permutation and that a fully covering element is a fully commutative
element. Also, we call a Coxeter group bi-full if its fully commutative elements
coincide with its fully covering elements. We show that the bi-full Coxeter groups
are the ones of type A,, D,, E, with no restriction on n. In other words, Coxeter
groups of type Fg, E1g,... are also bi-full. According to a result of Fan, a Coxeter
group is a simply-laced FC-finite Coxeter group if and only if it is a bi-full Coxeter
group.

1 Introduction

There are occasions where certain mathematical objects are associated with Coxeter
diagrams (or closely related Dynkin diagrams). Quite often, the objects associated
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with the diagrams of types A, D, Eg, E7 and Eg (the diagrams of irreducible simply-
laced, finite-type Coxeter systems) form a special class characterized by certain nice
properties (sometimes among the ones associated with the irreducible simply-laced
diagrams, and sometimes among all irreducible ones). Usually the diagrams F,, with
n > 9 do not join this class. However, in some cases, the diagrams FE, with no
restriction on n, along with the diagrams A, and D,, form a nice class. As an
example, we recall the notion of FC-finite Coxeter groups. A Coxeter group is called
FC-finite if the number of its fully commutative elements is finite. Here, an element of
a Coxeter group is said to be fully commutative if any of its reduced expression can
be converted into any other by exchanging adjacent commuting generators several
times. C. K. Fan gave a result that the irreducible simply-laced FC-finite Coxeter
groups are the ones of type A, D, and E ([3, Proposition 2.]). These are also exactly
the irreducible simply-laced Coxeter groups with finitely many minuscule elements
(7).

In this paper, we call an element of a Coxeter group fully covering if its length is
equal to the number of elements it covers in the Bruhat ordering. This notion has
appeared in [4, Theorem 1]. Our main goal is to characterize the Coxeter groups
whose fully covering elements coincide with its fully commutative elements. We
call such a Coxeter group bi-full. Fan’s result implies that Coxeter groups of type
A, D, Eg, E7, and FEg are bi-full [4, Theorem 1] and a Coxeter groups of type As is
not bi-full [4, Conclusion]. However a bi-full Coxeter group was not characterized.
Our main result is that the irreducible bi-full Coxeter groups are the ones of type
A, D, E. According to a result of Fan, it implies that a Coxeter group is simply-laced
and FC-finite if and only if it is bi-full (Theorem 2.14).

An element o of a symmetric group is called a 321-avoiding permutation if there
is no triple 1 < i < j < k < n such that o(i) > o(j) > o(k). It is easy to see that
the notion of being fully covering is a generalization of the notion of a 321-avoiding
permutation (see [1]) from the viewpoint of the Bruhat ordering. Also, it is a well
known fact that a permutation is 321-avoiding if and only if it is fully commutative [1].
Actually, this fact is a motivation for our present work. There is another interesting
generalization of the notion of a 321-avoiding permutation. In [5], Green extended
the notion to affine permutation groups (namely the Coxeter groups of type fln) from
the viewpoint of a permutation. Our generalization and his generalization are not
equivalent. Indeed, in an affine permutation group W, the 321-avoiding permutations
in Green’s sense are exactly the fully commutative elements. It is known that these
are also exactly the minuscule elements in W [6, Theorem 5.1].

Our result can be applied to the theory of Kazhdan-Lusztig polynomials. Let W
be a Coxeter group and let x,w be elements of W. Let pi(x,w) be the coefficient of
degree 1 of the Kazhdan-Lusztig polynomial for z,w. M. Dyer showed that p; (e, w) =
¢ (w) — |supp(w)| and that pi(e,w) > 0 (see [2]), where ¢~ (w) is the number of
elements covered by w in the Bruhat ordering. Thus if W is one of type A, D, F
and w is a fully commutative element of W then we can rewrite it as pi(e,w) =
{(w) — |supp(w)| by our result.

This paper is organized as follows: In §2, we recall and provide some basic termi-
nology. In §3, we collect some important properties of a fully commutative element.
In §4, we show that Coxeter groups of type A, D, and E are bi-full. In §5, we show



that a Coxeter group which is neither of type A, D nor E cannot be bi-full.

2 Preliminaries and Notations
In this paper, we assume that (W, .S) is a Cozeter system.

Notation 2.1 We denote the set of integers by Z and denote the set of positive
integers by Zso. For n € Z~, we put [n] := {1,2,...,n}. For a set A, we denote its
cardinality by |A| or §A.

Notation 2.2 Let w be an element of W and let e be the identity element of W.
A length function ¢ is a mapping from W to Z defined by ¢(e) equals 0 and ¢(w)
equals the smallest m such that there exist elements s1,s9,...,s, of S satisfying
W = 8$182 ... Sy, for w # e. We call £(w) the length of w. Let x1,x9, ...,z be elements
of W. If we have w = x1x9... 2y and £(z122 ... 2y) = (x1) + L(x2) + ... + (1),
then we call 129 ... 2, an extended reduced expression of w. Note that we do not
assume that xq,x9,...,x,, are elements of S. In particular, we call x1x2...2,, a
reduced expression of w if all x; are elements of S.

Definition 2.3 For s,t € S, we denote the order of st by m(s,t).

(i) If we have {m(s,t)|s,t € S} C {1,2,3}, then we call (W, 5) (resp. W) a simply-
laced Coxeter system (resp. a simply-laced Coxeter group).

(ii) If a Coxeter diagram of (W, .S) is connected then we call (W,S) (resp. W) an
irreducible Coxeter system (resp. an irreducible Coxeter group).

Definition 2.4 Let (W,S) be a Coxeter system with its relation defined by Figure
1 (resp. Figure 2).
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Figure 1: Coxeter diagram of type E, 4
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Figure 2: Coxeter diagram of type D, .3

Then we call (W, .S) a Coxeter system of type E, 4 (resp. type D;3).



Definition 2.5 Let w be an element of W. We say that w is a fully commutative
element (or w is fully commutative) if any reduced expression of w can be converted
into any other reduced expression of w by exchanging adjacent commuting generators
several times.

Definition 2.6 For a Coxeter system (W, .S), we put
WY .= {w € Ww is fully commutative}.

If the cardinality of W€ is finite then we call (W, S) (resp. W) a FC-finite Coxeter
system (resp. FC-finite Coxeter group).

From now on, we denote a Coxeter group of type X by W(X).

Theorem 2.7 (C. K. Fan) The irreducible simply-laced FC-finite Coxeter groups
are W(Ap), W(Dyy3), and W(Ey15) for n > 1 (see [3] for more detailed informa-
tion).

We recall the definition of the Bruhat ordering.

Definition 2.8 Put T := {wsw™!|s € S, w € W}. For y,2 € W, we define its
relation and denote it by y <’ z if there exists an element ¢ of T such that £(tz) < ¢(z)
and y = tz. Then the Bruhat ordering denoted by < is defined as follows: For
z,w € W, x < w if and only if there exist elements xg, x1,...,x, of W such that
r=x9< 11 < - <"z, =w. For x,w € W, we say that w covers z (or z is covered
by w) if x < w and ¢(z) = ¢(w) — 1. We denote it by = < w.

The following is well known as the subword property. For w € W, let s182--- $m
be a reduced expression of w. For x € W, x < w if and only if there exists a
sequence of natural numbers i1,49,...,%, such that 1 < i1 < iy < --- <14, < m and
T = Si, Siy - - - Si,- T'his expression of x is not reduced in general, in other words it may
happen that ¢(x) < r. However it is known that one can find a sequence of natural
numbers ji,j2,...,J such that 1 < ji < jo < --- < jp <m, x = s5,5j, -5, and
l(x) = k.

k

In this paper, we assume that an ordering handled with on a Coxeter group is the
Bruhat ordering.

Notation 2.9 For w € W, we put

supp(w) : = {s € S|s <w},
C (w): = {zeW|lz<uw},
¢ (w): = |C™(w)].

Definition 2.10 For w € W, we call w fully covering (or a fully covering element)
if {(w) = ¢~ (w).

By the definitions of fully commutative and fully covering, we immediately have
the following.



Proposition 2.11 A fully covering element w of W is fully commutative.

Proof. Assume that w is not fully commutative. It implies that there exists a reduced
expression s1ss ...y, of w and exists an integer 1 < ¢ < m — 2 such that s; = s;42.
Then $183...5;8;+18i+2 - - - Sm cannot be covered by w, where 32z denotes xz. Thus
w is not fully covering. This is a contradiction. |

Definition 2.12 Let (W, S) be a Coxeter system. We call (W, S) (resp. W) a bi-full
Coxeter system or bi-full (resp. a bi-full Coxeter group or bi-full) if it satisfies the
following. For any w € W, w is fully commutative if and only if w is fully covering.

Remark 2.13 Let (W7, 51),(Wa,S2) be bi-full Coxeter systems (resp. FC-finite
Coxeter systems). If we have S; NSy = () and s159 = s9s1 for any (s1,s2) € S1 x S
then (W1 Ws,S1 U Sy) is also a bi-full Coxeter system (resp. an FC-finite Coxeter
system).

Our goal of this paper is to prove the following.

Theorem 2.14 W is a simply-laced FC-finite Coxeter group if and only if W is a
bi-full Coxeter group.

By Theorem 2.7 and Remark 2.13, we can easily reduce Theorem 2.14 to the
following.

Theorem 2.15 An irreducible bi-full Cozeter group is either of type A, D or E.

By Proposition 2.11, if the following two claims hold then we can obtain Theorem
2.15.

Claim 1. Any fully commutative element of a Coxeter group of type E is fully
covering (Theorem 4.1).

Claim 2. If W is neither of type A, D nor E then there is an element such that it is
fully commutative and is not fully covering (Theorem 5.1).

We often use the following fact in this paper (cf [8]).

Fact 2.16 Let J be a subset of S. Put

Wi = {slseJ}),

W' = {zeWll(zy) = l(z) + L(y) for all y € Wy}
( = {zeWl|l(zs) =4(z)+1forall se€ J})and

TW. = {zeWll(yx) = £(y) + £(z) for all y € W}
( = {zeWll(sz)=4(z)+1forall s e J}).

z,y) € W’ x W such that w = zy.
y,z) € Wy x /W such that w = yz.

(i) For w € W, there is a unique pair of (
(

(ii) For w € W, there is a unique pair of



3 Properties of a fully commutative element

In this section, we collect some basic and important properties of a fully commutative
element from a point of view to associate with a fully covering element.
By the definition of fully commutative, we have the following.

Lemma 3.1
(i) Letw be an element of W. Let s182. .., and sy sh ... s, be reduced expressions
of w. If w is fully commutative then we have

{51,82,...,8m} = {s],85,...,5 .} as multisets.

(ii) If m(s,t) is odd or 2 for any s,t € S then we have the following for any w €

W. w is fully commutative if and only if {s1,52,...,8-} = {s}],85,...,8,} as

multisets for any reduced expressions $182 ... Sm, SiSh...sh, of w.

(iii) An element is fully commutative if it has a unique reduced expression.

(iv) Let xyz be an extended reduced expression of w. If w is fully commutative then
y is also fully commutative.

(v) Let W be a simply-laced Cozxeter group and let w be an element of W. Then w
is mot fully commutative if and only if there is a reduced expression $182...Sm
of w such that s; = sj1o for some 1 <i<m — 2.

We omit the proof of the lemma since it is straightforward.

Proposition 3.2 Let w be a fully commutative element and let s182...s, be a re-
duced expression of w (r > 2). If w = 88152 ...8,—1 for some s € S then we have the
followings.

(i) s =s,.
(ii) ssj = sjs for any j € [r —1].
(iii) s £ s182...87_1.
We shall state the following lemma before we prove Proposition 3.2.

Lemma 3.3 Let w be an element of W and let J = {a,b} be a subset of S such that
a#b, wa < w, wb<w, m(a,b) =m. Then we have the followings.

(i) There exists an element y of W7 such that w = y(ab)2 = y(ba)
L(y) +m if m is even.

m
2

and L(w) =

(ii) There exists an element y of W such that w = y(ab)mT_la = y(ba)mT_lb and
Lw) =L(y) +m if m is odd.

(i5i) If w is fully commutative then m = 2.
Proof. (i) and (ii) By Fact 2.16, there exists a pair (w”’,wy) € WY x W such that

wa = w’wy. It implies that we have w = w’/wa and £(w) = ¢(w”’) + L(wy) + 1. By
wb < w and a # b, one of the following properties holds.



(1) There exists x € W such that z is covered by w” and that zwjab is an extended
reduced expression of w.

(2) There exists z € W such that z is covered by w; and that w”’zab is an extended
reduced expression of w.

Assume (1) holds. By the subword property, we have w’/ < w = zwjab. By z < w’,
wyab € W and the subword property, we have w’/a < w’ or w’/b < w’. This is
a contradiction. Accordingly (2) holds. Remember that we have w; € W; and
wy < wya. It implies wy = (ab)* for some k > 1 or wy = b(ab)" for some h > 0. On
the other hand, we have z < wy and z < za. It implies that

B {b(ab)k—l, if wy = (ab)*,
| (ab)h, if wy = b(ab)".

Since wya = zab, we obtain wya = (ab)*a = b(ab)*~tab or wya = b(ab)"a = (ab)"ab
. Thus wya = (ab)*a = (ba)*b or wya = (ba)"*' = (ab)"*1. Hence (i) and (ii) hold.

(iii) By (i),(ii), and the definition of fully commutative, m > 3 implies that w is not
fully commutative. This is a contradiction. Hence (iii) holds. 1

Proof of Proposition 3.2. By Lemma 3.1(i), we obtain (i). We shall prove (ii)
by induction on r.

Case r = 2. Now we have s1s9 = ss1. By (i), we obtain s;89 = s9s1. Therefore (ii)
holds.

Case r > 3. Now we have w = 8182...5, = $5182...5,_1. Hence we obtain ws, < w
and ws,—; < w. By Lemma 3.3(iii), we have

Sp_187 = 8787_1. (1)

Thus we have s182...8,_98, = 88189...8,_2. Since $189...8,_98-S,_1 1S also a re-
duced expression of w and w is fully commutative, siss ... S,_2s, is also fully com-
mutative. By the inductive assumption, we have

ssj =sjs forany j e [r—2]. (2)
By (i), (1), and (2), we obtain
ssj = sjs for any j € [r —1].
We can easily show that (iii) holds by (i) and (ii). 1

The following corollary is useful to find an element which is fully commutative
and is not fully covering.

Corollary 3.4 Let w be an element of W and let s1,S2,...,5m be elements of S
such that w = s189...58,. Note that we do not assume that s182... 8, 15 a reduced
expression of w. We define a condition (FC) as follows:

(FC) If there exists a pair of integers i and j such that i < j and s; = sj then there
exists a pair of integers a and b such that i < a < b < j, $48; # 8iSq and

SpS; 7 SiSp-



Then we have the followings.

(i) If s182 ... sm satisfies the condition (FC) then s1S2. .. Sy is a reduced expression
of w and w is fully commutative.

(ii) If W is a simply-laced Coxeter group, $1S2...Sm is a reduced expression of w
and w is fully commutative, then s1Sg ... sy satisfies the condition (FC).

Proof. (i) We shall prove the corollary by induction on m.

Case m < 2. It is obvious.

Case m > 3. Assume that s152...5,, is not a reduced expression. By the dele-
tion condition, there exists a pair of integers u and v such that v < v and w =
5159 ...84...8y...5y. Thus we have

SuSutl -+ Spy_1 = Sutl---Sy_1Su- (3)

Note that the condition (FC) holds on s,Sy+1...Sy—1. By the inductive assump-
tion, SyuSy+1-...Sy—1 is a reduced expression and is fully commutative. By (3) and
Proposition 3.2, we have s, = Sy, SySkp = Sgsy for any k € {u+ 1L,u+2,...,v— 1}.
This is a contradiction. Accordingly siss ... s, is a reduced expression of w. If w is
not fully commutative then there is a reduced expression s;s,...s), of w converted
into s182 ... s, by exchanging adjacent commuting generators several times such that
s; = s;, o for some i € [m — 2]. Consequently the condition (FC) does not hold. This
is a contradiction. Therefore w is fully commutative.

(ii) Assume that there is a pair of integers ¢ and j such that i < j, s; = s; and

c=f{kef{i+1,i+2,...,5 — 1}|sps; # sisp} < 1.

Case ¢ = 0. Then we have w = s1...5;...5;...5y,. It implies that sis2...sn,
cannot be a reduced expression. This is a contradiction.

Case ¢ = 1. Let k be an integer such that sis; # s;sp and i +1 < k < j — 1. By
virtue of the case, such k is unique. Then we have

W=51...5...85kSj...55...5n.

Since W is a simply-laced Coxeter group, we have s;s,s; = s3s;5;. This is a contra-
diction. 1

By Corollary 3.4, we have the following.

Corollary 3.5 Let W be a simply-laced Coxeter group and let w be an element of W
such that £(w?) = 20(w) and w? is fully commutative. Then for any k € Z~o we have
(W) = kl(w) and w* is fully commutative. In particular, W is not an FC-finite
Cozeter group.

Proof. Let siss...s, be a reduced expression of w. Then, s183...8,5152...8m
is a reduced expression of w?. By Corollary 3.4(ii) and virtue of the corollary,
$182...8m8182 ... Sy satisfies the condition (FC). We can easily see that

(s182...8m)(5152. .. 8m) - (S182...5m)

also satisfies the condition (FC). By Corollary 3.4(i), we have £(w*) = kf(w) and w*
is fully commutative. ]



The following lemma holds on any Coxeter system.

Lemma 3.6 Let (W,S) be a Cozeter system and let x be an element of W. Let sq,
so be elements of S such that s1sex is an extended reduced expression and that sos1s9
is a reduced expression. If we have s; € supp (x) then sas1sa2x is an extended reduced
exXPTeSSLon.

Proof. Since s1sox is an extended reduced expression, we have x < ssx. On the other
hand, we have z < sjz by s1 € supp (x). Thus, we obtain = € {s1:52} 17 Remember
that s9s159 is a reduced expression. Hence s95159x is an extended reduced expression.

]

The following lemma holds on any simply-laced Coxeter system.

Lemma 3.7 Let (W, S) be a simply-laced Coxeter system and let w be a fully com-
mutative element of W. If s1s9...5m is a reduced expression of w then s15583...5m
1s a reduced expression.

Proof. Assume that s15583... s, is not a reduced expression. Then there exists an
integer 7 such that 3 < j <m and s3s4...8, = S153... sAJ ...Sm. Thus we have w =
$15281...5j...8,. By our assumption, we can see that we have s;s2s1 = s2s152. It
implies that w is not fully commutative. This is a contradiction. Hence s15383... s,
is a reduced expression. |

4 W(E,) is bi-full

Our aim of this section is to prove the following.

Theorem 4.1 Let W be a Cozeter group of type E and let w be an element of W.
If w is fully commutative then w is fully covering.

The following proposition is well-known. In fact we can easily prove it by the
notion of a 321-avoiding permutation. However we prove it without terms of a 321-
avoiding permutation.

Proposition 4.2 Let W be a Weyl group of type A,. Then a fully commutative
element w of W is fully covering.

Before we prove the proposition above, we show one lemma.

Notation 4.3 Let s1s2...s;, be a reduced expression of an element of W and let «
be an element of S. Put

9a(8182...8m) :=8{i € [m] | s; = a}.
By Lemma 3.1(i), if w is fully commutative, then we can define
Ja(W) == ga(s152...5m),

where s1s5... 8, is a reduced expression of w.



Lemma 4.4 Let w be an element of W and let s18o ..., be a reduced expression
of w. Let {a,aa,...,a,} be a subset of supp(w) satisfying the following conditions

(1),(2), and (3).
(1) s = say for any i € [r] and for any s € supp(w) — {a1,az, ..., ar}.

(2) (a1,qs,...,q.) is a Weyl group of type A, with its relation defined by Figure 3.

Qyp Gy Or—1 Qp

Figure 3: Coxeter diagram of type A,

(3) oy (5152...8m) > 2.

Then w is not fully commutative.
Proof. By the condition (3), there exists a pair of integers a and b such that

a<b, Sq=s8=0a1, a1 ¢&supp(Se+1Sa+2---Sp—1)-

We shall prove by induction on 7.
Case r = 1. Since oy is commutative to any element of supp(w) — {1}, we have
W=251...8,...5p...5y. It implies that s155...s,, is not a reduced expression of w.
This is a contradiction.
Case r > 2. Note that oy is not commutative to as and is commutative to others.
Subcase 1. gq,(Sa+1Sa+2---Sp—1) = 0. By a similar argument to the case r = 1,
this is a contradiction.
Subcase 2. gq,(Sa+1Sa+2---Sp—1) = 1. There exists an integer ¢ such that
a < c<b, s. = a. By virtue of Subcase 2 and the condition (2), we have

W=8]...8...0010200] ...8p...8m =81...8q...0000009...8p...5m.

Therefore w is not fully commutative.

Subcase 3. go,(Sat1Sa42---Sp—1) = 2. Put w’ := s441...8-1. Then it is
easy to see that w’ and {ao, ..., a,} satisfy the conditions (1), (2), and (3). By the
inductive assumption, w’ is not fully commutative. It follows from Lemma 3.1(iv)
that w is not fully commutative. |

Proof of Proposition 4.2. Let m be the length of w, that is, we have m = ¢(w).
We shall prove by induction on m.
Case m < 2. It is obvious.
Case m > 3. Let s152... 58, be a reduced expression of w.

We check if s189...5;...5, is a reduced expression or not. It is sufficient to
handle with cases 1 < i < m.

Case 1. supp(s152...8i—1) = sSupp(Si+18i+2 ... Sm). Since W is a Weyl group of
type Ay, there exists an element sg of supp(syse . .. s;—1) such that {s € supp(w)|ssy #

10



sps} < 1. By virtue of Case 1, we have gs,(s152...5m) > 2. By Lemma 4.4, w is not
fully commutative. This is a contradiction.

Case 2. supp(s182...8i—1) 7# supp(Si+18i4+2---Sm)-

Subcase 2-1. supp(s152...5;—1) — supp(8i+18i12 - --5m) # 0.
Put J := supp(si+18i+2 - - - Sm). Then there exists a pair of w’! e W/ and wy € W
such that w/w JSiSit1---Sm is an extended reduced expression of w. By Lemma
3.1(iv), wysiSit1 - - - Sm 1s also fully commutative. By virtue of Subcase 2-1, we have
w’ # e. Tt implies that

U WySiSit1 - - Sm) < L(w).

By the inductive assumption, we have
WISit15i42 -« Sm < WJSiSiq1 ---Smy WJSi+1Si+2-..5m € W.
By the definition of W, we have
ﬁ(w‘]stiHng N Sm> = E(w) —1.

Thus it follows that s1s9...5;...8., is a reduced expression.

Subcase 2-2. supp($;+18i+2---Sm) — supp(sis2...s,—1) # . We can prove by
a similar discussion above.

Therefore it implies that s189...5;... sy, is a reduced expression. |

Furthermore we shall show two lemmas in preparation for proof of Theorem 4.1.

Lemma 4.5 Let (W, S) be a Cozeter system of type D,ys with its relation defined
by Figure 2 (r > 1). Put J :=S—{a1}. Let w be a fully commutative element of W
and let $182.. .S, be a reduced expression of w. If oy, B,y are elements of supp(w)
then we have the followings.

(i) T+3<m, $182...843 = qrQa...0uly.

(i) For any s € J, sw is not fully commutative.
(iii) m < 2r + 4.

(i) If m > r+4 then Sp448,45 - - - Sm = UQpQp_1 -« . . Q2p45—m Where aypy1 = u.
Proof. In this proof, we sometimes denote u by au41.

(i) By w € W and supp(w) — J = {a1}, we have s; = aj. Assume that so # as.
Then we can easily obtain

s9 €S —{aj,as} CJ, w=52815253...5m.

This is a contradiction. Thus sy = ay. Now we show that if s1s9...8:. = a1a ...
then spy1 = ag4q for 2 < k < r. Note that we have sg11 # ai since s182...8y, is a
reduced expression. Assume that s;41 = «; for some 1 < j <k —1. Then

QO] e OOy ] = OGO L1 OGO 120013 .. o (U

By ajaji105 = ajpr10a41, ooyt - .. o4 is not fully commutative. By Lemma,
3.1(iv), w is also not fully commutative. This is a contradiction. If sz11 € S —

11



{a1,a0,...,ar11} C J then we obtain s 1w < w. This is a contradiction. Hence
Sk+1 = k+1. By the inductive assumption, we obtain s182...8,8,41 = @102 ... U.
If sp19 € {a1,9,...,a,} then w is not fully commutative. This is not the case. If
Sy+2 = u then (w) # m. This is also not the case. Thus we obtain s,49 = 3 or 7.
Hence we have

8182 ...8,pSr4+1Sr42 = 102 . .. aruﬁ or o1Qg...0pu7y.

Case $152...5/8p4+18r+2 = q1Qg ... apuf. By a similar argument, we have s,13 =

.
Case 5152...878r41Sr42 = Q12 ... puwy. By a similar argument, we have s,43 =

3.

Since ( is commutative to v, we obtain

$189 ... 8p43 = Q19 . . . pu Y.

Furthermore, by an argument above, we have r + 3 < m.

(ii) By w € /W, ss153 ... 8, is a reduced expression of sw. By (i), there is a reduced
expression of ss189 ... $y+3 which is

Qa1 ... Q210 ... 010y, ifs=a (k=2,3,...,r+1),
aj ..o BufBy, if s =3,
Qaq ... apyuys, if s =1.

Thus, sajas ... 43 is not fully commutative. By Lemma 3.1(iv), sw is also not fully
commutative.

(iii) and (iv) By Corollary 3.4(ii) and the lemma (i), it is easy to show that we have

Sr44Sr45 ... 5t = UQpQlp_1 ... O2p45—¢

for any ¢ such that r+4 <t < 2r+4 and t < m. Assume m > 2r+4. It implies that

5182 ...82r45 = X1 (x2 . .. aruﬁ'yuarar_l e 1 S2p4 5.

Since s182 . .. Sop45 is a reduced expression, we have sg.+5 € J. By a similar argument
of the proof of (ii), it follows that w is not fully commutative. This is a contradiction.
Therefore we obtain m < 2r + 4. ]

From now on, we assume that (W, S) is a Coxeter system of type E,,4 (r > 0)
with its relation defined by Figure 1. Note that a Coxeter system of type Ey (resp.
Es) is a Coxeter system of type Ay (resp. Ds).

Lemma 4.6 Let (W, S) be a Cozeter system of type Eyiq (r > 1). Put J :=S—{a1}.
Let w be a fully commutative element of "W and let s1so . . . sy, be a reduced expression
of w. Then we have the followings.

(i) If aq, (1,7 € supp(w) then sw is not fully commutative for all s € J.

(ii) Assume ai, [, € supp(w), f1 & supp(w) and s € J. If sw is fully commutative
then s = (1.
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(iii) Assume go,(w) > 2 and s € J such that sw is fully commutative. Then w =
Q1Qs . .. uyBoucy ... aoay and s = 3.

(iv) Assume go,(w) > 3 and w € "W N W7. Then there exists an element v of
Ws_{a1,aq) Such that

(a1ag ... cpuyfoucyap_q ... c0)ay f1vfr(ae ... apuyfouc,ap_1 ... aq)
is an extended reduced expression of w and that Bivfy € S~ P N WwS—{6},

Remark 4.7 Let (W, S) be a Coxeter system of type Fr with its relation defined
by Figure 7. Then Lemma 4.6(i) cannot hold on this Coxeter system. For example,
put w := ajasazufsfoyuasfsuyasasuBsBe1. Then w is fully commutative and we
have oy, f1,7 € supp(w) and w € S—{ei}Ww . However fiw is also fully commutative.

Proof of Lemma 4.6. In this proof, we sometimes denote u by c41.

(i) If there exists a pair of not empty subsets S; and Sy of S such that supp(w) =
S1USs, S1NSy = ), and that any element of Sy is commutative to any element of So,
then w cannot be contained in YW. By ay,7, 31 € supp(w), we have supp(w) = S.
By Lemma 4.5 and {s € S|f1s # sp1} = {f2}, we can easily see that there exists
an extended reduced expression of w which is ajas ... a,uB2081vy for some y € W.
By a similar argument of the proof of Lemma 4.5(ii), it follows that sw is not fully
commutative.

(ii) Since w is fully commutative and we have 81 ¢ supp(w), S1w is fully commutative.
If we have s € J — {1} then sw is not fully commutative by Lemma 4.5(ii).

(iii) By our assumption and Corollary 3.4(ii), there exists a pair of elements x; and
xo of W and exists an element z of (51, 32,7) such that we have {ay, ag,...,a,} C
supp(x1) N supp(z2) and that xjuzuzy is an extended reduced expression of w. By
Corollary 3.4(ii), we can obtain z € {827, 51027, f2617}. Thus we have {aq, ag, ...,
ar,u,7, B2} € supp(w). Since (i) holds and there exists s € J such that sw is fully
commutative, we have 3; ¢ supp(w). By Lemma 4.5(iii) and g,,(w) > 2, we can
obtain w = aja ... ayufayuc,ay—1 ... 1. By using (ii), we have s = 3;.

(iv) By w € 7W N W7 and g, (w) > 3, we have s; = s,, = a1 and a; € supp(sz. ..
Sm_1). If we write s182...5,_1 = wiwy by some w; € W7, wy € Wy then wa # e
and g, (w1) > 2. Let s be an element of J and let y be an element of W such that
wy = sy and f(we) = 1+ £(y). Note that £(w;s) = ¢(w1) + 1. By using (iii), we have

W] = QL9 . .. QpUYSoUQrQp_1 - . . Q]

and s = ;. Hence (ajag...apuyfoucyap_q...a1)B1yaq is an extended reduced
expression of w. Rewrite ajB1ya; = whw) for some w) € /W and w) € W;. By
Bra1 = a1, we have w), # e and gq, (w]) > 2. Let s’ be an element of J and let z
be an element of W such that w), = zs’ and ¢(wj) = ¢(z) + 1. By using (iii), we have

/
W] = a1y ... Uy SoUu, Q1 . .. (]

and s = ;. Hence 20i(q1s ... uyfouc,a,—1...aq) is an extended reduced
expression of a;f1ya;. Note that zfjw] is also a fully commutative element and
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a1 zf1w) < zB1w). By Proposition 3.2, we have a1 ¢ supp(z01). Thus oy is commu-
tative to any element of supp(zf). Hence we have z € Wg_y4, a,}- Therefore we
have

w = (qag...quyfoucy, ...a)zfiai(as ... cpuyfaucy ... o)

= (may...qpuyfoucy ... az)arzfi(ae ... cpuyfoucy ... aq).

Assume that z = e. Then,
azfraran = apfrajan = Brogaras.

This is a contradiction. Thus we have z # e. Let s” be an element of S — {a, a2}
and let v be an element of Wg_(4, q,} such that z = s"v and £(z) = 1 + £(v). By
using (iii), s” = (1 and

(a1ag. .. cpuyfoucyay_q ... ao)af1vfi(as ... apuyfoucyap_q . .. o)

is an extended reduced expression of w. Since ag & supp(fiv/1),

(v1ag ... cpuyfoucyap_q ... a9)f1vfrar(as . .. aruyBouc,ap_q ... o)

is also an extended reduced expression of w. Moreover, by using (iii), we can easily see
the following for a fully commutative element z. If (o ..., uyBaucy. ... a1)x (resp.
z(aq ... puyfoucy ... a1)) is an extended reduced expression then x € Wwo—{61}
(resp. x € S~1BW). Thus, we can obtain v, € S~ Ww N WS-}, |

Proof of Theorem 4.1. Let w be a fully commutative element of W(E,4). We
shall prove that w is fully covering by induction on r. Note that we sometimes denote
U by Qpy1.

Case r = 0. It has been proven since we regard W (Ey) as W (Ay).

Case r > 1. If we have a; ¢ supp(w) then we can regard w € W(E,3). By the
inductive assumption, w is fully covering. By a similar way, if we have u ¢ supp(w)
or v ¢ supp(w) or fo & supp(w) then w is fully covering. Thus we assume that we
have ay,u,"y, B2 € supp(w).

Assume that we have ¢(w) = m. We shall prove that w is fully covering by
induction on m. It is easy to verify in cases m < 2. Thus we handle with cases
m > 3. Put J:= S — {a;} and we check the following three cases.

LwegW! 2. weg’W,3. we/Wnw.

Case 1 By an assumption of this case, there exists a pair of w/ € WY/ and
wy € Wy such that wy # e and w = w’wy. Let s182. .. 8, be a reduced expression
of w such that sysy...s; = w’ and Sk+1---Sm = wy. For 1 < ¢ < m, we shall prove
that s182...5;...5, is a reduced expression. Note that by w! = s189...8; € W‘],
J=8—{a1} and a1 € supp(w), we have s = a1 and l(wy) < {(w).

Assume that we have k+1 < < m. Then by Lemma 3.1(iv) w; is fully commu-
tative. By the inductive assumption on m, Sgy1...5;... Sy, is a reduced expression.
By the definition of W, s1...8,8411...5;...5m is also a reduced expression.

Next assume that we have 1 <34 < k.
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Subcase 1-1 supp(sis2...S;—1) 7 sSupp(Si+18i+2-..Sm). By a similar argument
in the proof of Case 2 of Proposition 4.2, we can easily see that s1s3...8;...8,, is a
reduced expression.

Subcase 1-2 supp(s182...8i—1) = supp(Si+18i4+2 - .- Sm) and aj & supp(s152...S—1).
By a1 € supp(w), we have s; = ay. By sy = a1, we have i = k. By (2,7 € supp(w),
we have aq, f2,7 € supp(s1Sz... k). Assume (31 € supp(s152...Sk). By sis2...s; €
W and Lemma 4.6(i), 5152 ...5,sk4+1 is not fully commutative. This is a contra-
diction. Assume () & supp(s152...Sk). By si1s2...5; € W+ and Lemma 4.6(ii), we
have si4+1 = 1. By ¢ = k, we have

1 € supp(8i4+18i+2---Sm) — Supp(s182. .. 8i—1).

This is a contradiction.

Subcase 1-3 supp(s182...8;—1) = supp(8i+18i4+2 - - - Sm) and a1 € supp(s152...S—1).
By i < k and s = a1, we have gq,(s182...5,) > 2. Since $182...5; € W and
Lemma 4.6(iii), we obtain

8182 ...8; ... 8k = Q1Q9 ... QpUYPoUQrQlp_1 ... Q]
and sgpy1 = f1. Thus

51 € supp(8i+18i4+2---Sm) — Supp(s182....8i—1)-

This is a contradiction.

Case 2 We omit the proof since we can state this case by a similar argument as
in the proof of Case 1.

Case 3 Let s1s9...5,, be a reduced expression of w. For 1 < ¢ < m, we prove
that s189...5; ... S is a reduced expression. By Lemma, 3.7, it is enough to prove for
cases 3 < i < m — 2. Note that by an assumption of this case we have s1 = s, = a1
and s9 = $;;—1 = Q.

Subcase 3-1 a; & supp(s283...Sm—1). Assume that s183...8;...,, is not a re-
duced expression. By the inductive assumption onm, s1...5;... S;m_1 is areduced ex-
pression. Thus there exists an integer j such that 1 < j <i—1lands;...5...5p,_1 =
$1...5j...8;...5m—15m. It implies s;...5;...8m,-1 = 8j41...5;...5my. Accordingly
Sj...5...8y is not a reduced expression. If j > 1 then sp...5;...5sy, is not a re-
duced expression. This is a contradiction. Thus j = 1 and $182...5;...8n_1 =
$9...5i...8m. Put x :=s3...5...8,-1. Then s9s150x < s1sex and «; ¢ supp(x).
By Lemma 3.6, we have s1 = a1, s3 = a9 and £(aga3a9) = 3. This is a contradiction.
Hence s189...5; ..., is a reduced expression.

Subcase 3-2 «a; € supp(s283...Sm—1). By Lemma 4.6(iv), there exists an ele-
ment v of W such that we have a;, as & supp(v) and that

(g . .. cpuyfoucyag_q . .. ag)a1 f1ofr(as . .. apuyfoucyap_y ... 1)

is an extended reduced expression of w. Note v = So,1652747---Sm—2r—q. If 1 <
i <2r+5o0rm—2r—3<i<m then supp(sis2...8;—1) 7# sSupp(Si+18i+2---Sm).
By a similar discussion in the proof of Case 2 of Proposition 4.2, s183...5;...5n
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is a reduced expression. The rest case is 2r + 6 < i < m — 2r — 4. Assume that
$189...5;...5my is not a reduced expression. By a similar discussion in Subcase 3-1,
we have $152...5;...8m_1 = 82...8;...5m. Put v := 89,4652947...5 ...5m_2r_4.
Then

ai(ag ... cpuyBouc,ap_q ... ag)ay 10" Br(as . . . apuyfoucy a1 . .. )
= (ag...puyBouc,ay_1 ... c0)a1 10 Bi(as . .. apuyBoucap_1 ... ag)ag

and both sides are extended reduced expressions.
By the subword property, we have

a1 ... apufefr
< (ag...quyfoucya,_1 ...a)a1B1v' B1(as . .. cpuyPBoucyay_1 ... ao)aq.

On the other hand, a reduced expression of ajas ... a,uBs31 is unique. This is a
contradiction. Therefore s159...5;... 5, is a reduced expression. |

Remark 4.8 Let w be an element of a Coxeter group. In [4], w is said to be short-
braid avoiding if and only if any reduced expression 183 . .. s, for w satisfies s; # s;42
for all i € [m—2]. It is easy to see that a fully covering element is short-braid avoiding,
and that a short-braid avoiding element is fully commutative. By the same method
as the one adopted in the proof of [4, Theorem 1] and Theorem 4.1, we can easily
obtain the following which includes Fan’s result [4, Theorem 1]. Let (W,S) be a
Coxeter system and let (Wy, Sp) be a Coxeter system defined by Sy := S as a set
and m(s,t) := 3 if m(s,t) > 3 in W or m(s,t) in Wy is defined as m(s,t) in W if
m(s,t) < 3 for s,t € Sp. If Wy is a Coxeter group of type A, D or E then for w € W,
w is a short-braid avoiding element if and only if w is a fully covering element.

Although it is already shown by Fan that a Coxeter group of type F is an FC-finite
Coxeter group, we give another proof.

Proposition 4.9 Forn > 3, we have
max{/(w)|w € W(E,)F¢} <21 1,
where we put W(E3) := (81, B2,7). In particular, we have |W(E,)"¢| < oc.

Note that the above inequality is not best possible (see the proof of this proposi-
tion).

Remark 4.10 In [10], H. Tagawa showed
max{c™(z)|lz € W(A4,)} = [(n+1)?/4],

where |a] is the largest integer equal or less than a. By the formula, it is easy to

show
max{{(z)|z € W(A,) Y} = [(n+1)2/4].

Note that it does not hold on case of type D. In fact, we have
max{c™ (z)|z € W(D4)} = 8 > 6 = max{/(z)|x € W(Dy)"“}.
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Proof of Proposition 4.9. For n > 3, we put
ap = max{l(w)|w € W(E,)F}

and we shall prove a, < 2"~! — 1 by induction on n.
Case n = 3,4. By Remark 4.10, we have

az3=3=22-1, as=6<2>—-1.

Case n > 5. We claim £(w) < 2"' — 1 for any w € W(E,)FC. If g4, (w) = 0 then
we can regard w € W (E,_1)F¢. Thus

l(w)<ap, 1 <2V 2 —1<2m 11

Now we assume g,, (w) > 1. Put W:=W(E,) and J := S5 — {1 }.

Subcase w ¢ W”. Then there exists a pair of w’ € W7 and w; € W such that
wy # e and w = w’/w;. Assume g,, (w) = 1. Then since w’ € W/ and J = S —{a },
there exists an element z of W such that a; ¢ supp(z) and w’ = zay. Then zajwy is
an extended reduced expression of w and we can regard z,w; € W(E,_1)F¢. Thus

f(w) <2ap-1+1<Z 2(2”_2 — 1) +1= on—1_ 1

Assume g, (w) > 2. Then by Lemma 4.6, we have w’ = ajas ... ay_quyfBouc, 40, 5
...a1. On the other hand, we can regard w; € W(E,_1)f“. Hence we have

E(w)§2n—4+an_1 SQ(n—2)+2"*2_1§2n71_1'

Subcase w ¢ YTW. We can prove this case by a similar discussion above.

Subcase w € YW N W, Then there exists an element z of W(E,) such that
ayzaq is an extended reduced expression of w. If we have gq, (2) = 0 then we have
2z € W(E,_1)F¢. Thus we have

lw)<ap1+2<2"241<2m 1,

FC

Assume that we have g,,(z) > 1. Then there exists an element v of W (E,)"“ such

that v € Wg_(q, a,) and that
(1g ... ap—quyPoucy, 405 . .. a3)a1 101 (Qg . . . p—gUYBouty— 40y —5 . . . (1)
is an extended reduced expression of w by Lemma 4.6(iv). Hence we have
l(w)<4An —9+ap_o <4n—94+2"3 —1<2n 1 1

This completes the proof of the proposition. |
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5 Not bi-full Coxeter groups
Our aim of this section is to prove the following.

Theorem 5.1 Let W be an irreducible Coxeter group which is neither of type A, D
nor E. Then W is not a bi-full Cozxeter group. In other words, there is an element
of W which is fully commutative and which is not fully covering. In particular, if W
is a simply-laced Coxeter group then we have [WFC| = co.

First we prove the following.

Proposition 5.2 Let (W1,51) (resp. (Wa,S2), (W3, S3), (Wy,Ss), (Ws,S5)) be a
Cozeter system of type A, (n > 2) (resp. Dyy3 (r > 1), Eg, Er, Iy(m) (m > 4))
with its relation defined by Figure 4 (resp Figure 5, Figure 6, Figure 7, Figure 8).
Then for each 1 < i < 5 there exists an element w; of W; such that w; is fully

commutative and w; is not fully covering. Furthermore we have |VVZFC\ = 0o for any
1<4<4.

Qg

a1 Qg Qp_1 Qp

Figure 4: Coxeter diagram of type A,

Wy Uy Up_1 U

B )

Figure 5: Coxeter diagram of type l~)r+3

4!

V2

ap az  u By By

Figure 6: Coxeter diagram of type Eg.
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N

ar a3 u B3 Py [

Figure 7: Coxeter diagram of type Ej.

Figure 8: Coxeter diagram of type Iy(m).

Proof. Case (1),(2),(3),(4). For 1 <i <4, let w; and y; be elements of W; defined
by putting as follows:

wp, =
Y=
w2 =
Y2 =
w3 =
Yys =
wy =

ya =

Q1O . . . OO . . . Oy,

Q1O . .. OO . . . Oy,

UpUp—1 - - - ULQLPUIUS « « . UpYOUpUp—1 - . - UTALULUL - . . Up YOl
UpUp_1 .. ULCQSBULUY « . UpYOUpUp_1 . . . UL SULUS - . . UpYOU,

u 251 aaufayruczon y1v2uae Sauvyeyi fi fauyecoufa fra aguBayou,
ufaB100ufay2uazar y1y2uas B2ty f1 Beuyecoufz fran azuBayou,
B1 B2 B3uczyuBs 21 cazufBs Beyucs f3uyazasuBs P2 51

X ag apazufBs Payua SauyagagufBs B,
B1B2B3uazyuBs 281 aasufsBayuas Bzuyazasufs Bz b1

x o agozu 33 Baryuces fauyanazuBaBe .

By Corollary 3.4, we can easily see that all w; are fully commutative. By direct
calculation, we can obtain

n =
Y2 =
Yys =
Y4 =

01Qg ... QOO . . . Ol

Uplyp—1 - - UTQLULUY « .« UpYOUpUp—1 - . . UTQLULUS - . . Up YO U,

ufl 1 puBryuaza y1y2uce Batiy2y1 f1 fouyecouBe frarazuBey2l,
(1 B2 B3 uceyu B3 0a 1 anazu B3 Saryucs fauryazasu s Ba

X a1 oz Bayuas ByuryanazuBsBa 1.

Thus, y; is not covered by w;, that is, w; is not fully covering for 1 < ¢ < 4.
1 <4 <4, let x; be an element of W; defined by putting as follows:

T = oo ... Qp,

To = Uplp—1 - .- U1QSBUIUD - . . UpYO,

3 = ufyucsaryry2ucsfBouyey1B1BeuyeasuBfraran,
T4 = aragasufsfayuasBauyasasufsfefi.
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Then we can easily see that x? is also fully commutative and that we have ((z?) =
20(x;) for 1 < i < 4. Therefore we have |W'C| = oo for any 1 < i < 4 by Corollary
3.5.

Case (5). Put ws := ajaga;. By Lemma 3.1(iii), ws is fully commutative. Since
apazaq (= e) is not covered by ws, ws is not fully covering. |

Proof of Theorem 5.1. Recall that W is neither of type A, D, nor E. It is easy to
show that a Coxeter diagram associated to W contains at least one of the Coxeter
diagrams in Figure 4,5,6,7 and 8. Therefore W is not a bi-full Coxeter group, by
Proposition 5.2. Furthermore if W is a simply-laced Coxeter group then we can
easily see that there are infinite its fully commutative elements by Proposition 5.2. i
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