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Abstract
We call an element of a Coxeter group fully covering (or a fully covering element)

if its length is equal to the number of the elements it covers in the Bruhat ordering.
It is easy to see that the notion of fully covering is a generalization of the notion of
a 321-avoiding permutation and that a fully covering element is a fully commutative
element. Also, we call a Coxeter group bi-full if its fully commutative elements
coincide with its fully covering elements. We show that the bi-full Coxeter groups
are the ones of type An, Dn, En with no restriction on n. In other words, Coxeter
groups of type E9, E10, . . . are also bi-full. According to a result of Fan, a Coxeter
group is a simply-laced FC-finite Coxeter group if and only if it is a bi-full Coxeter
group.

1 Introduction

There are occasions where certain mathematical objects are associated with Coxeter
diagrams (or closely related Dynkin diagrams). Quite often, the objects associated

∗Partially supported by Grant-in-Aid for Scientific Research (C)(2) No. 15540028, Japan Society for
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with the diagrams of types A, D, E6, E7 and E8 (the diagrams of irreducible simply-
laced, finite-type Coxeter systems) form a special class characterized by certain nice
properties (sometimes among the ones associated with the irreducible simply-laced
diagrams, and sometimes among all irreducible ones). Usually the diagrams En with
n ≥ 9 do not join this class. However, in some cases, the diagrams En with no
restriction on n, along with the diagrams An and Dn, form a nice class. As an
example, we recall the notion of FC-finite Coxeter groups. A Coxeter group is called
FC-finite if the number of its fully commutative elements is finite. Here, an element of
a Coxeter group is said to be fully commutative if any of its reduced expression can
be converted into any other by exchanging adjacent commuting generators several
times. C. K. Fan gave a result that the irreducible simply-laced FC-finite Coxeter
groups are the ones of type A,D, and E ([3, Proposition 2.]). These are also exactly
the irreducible simply-laced Coxeter groups with finitely many minuscule elements
([7]).

In this paper, we call an element of a Coxeter group fully covering if its length is
equal to the number of elements it covers in the Bruhat ordering. This notion has
appeared in [4, Theorem 1]. Our main goal is to characterize the Coxeter groups
whose fully covering elements coincide with its fully commutative elements. We
call such a Coxeter group bi-full. Fan’s result implies that Coxeter groups of type
A,D, E6, E7, and E8 are bi-full [4, Theorem 1] and a Coxeter groups of type Ã2 is
not bi-full [4, Conclusion]. However a bi-full Coxeter group was not characterized.
Our main result is that the irreducible bi-full Coxeter groups are the ones of type
A,D, E. According to a result of Fan, it implies that a Coxeter group is simply-laced
and FC-finite if and only if it is bi-full (Theorem 2.14).

An element σ of a symmetric group is called a 321-avoiding permutation if there
is no triple 1 ≤ i < j < k ≤ n such that σ(i) > σ(j) > σ(k). It is easy to see that
the notion of being fully covering is a generalization of the notion of a 321-avoiding
permutation (see [1]) from the viewpoint of the Bruhat ordering. Also, it is a well
known fact that a permutation is 321-avoiding if and only if it is fully commutative [1].
Actually, this fact is a motivation for our present work. There is another interesting
generalization of the notion of a 321-avoiding permutation. In [5], Green extended
the notion to affine permutation groups (namely the Coxeter groups of type Ãn) from
the viewpoint of a permutation. Our generalization and his generalization are not
equivalent. Indeed, in an affine permutation group W , the 321-avoiding permutations
in Green’s sense are exactly the fully commutative elements. It is known that these
are also exactly the minuscule elements in W [6, Theorem 5.1].

Our result can be applied to the theory of Kazhdan-Lusztig polynomials. Let W
be a Coxeter group and let x,w be elements of W . Let p1(x,w) be the coefficient of
degree 1 of the Kazhdan-Lusztig polynomial for x,w. M. Dyer showed that p1(e, w) =
c−(w) − |supp(w)| and that p1(e, w) ≥ 0 (see [2]), where c−(w) is the number of
elements covered by w in the Bruhat ordering. Thus if W is one of type A, D, E
and w is a fully commutative element of W then we can rewrite it as p1(e, w) =
`(w)− |supp(w)| by our result.

This paper is organized as follows: In §2, we recall and provide some basic termi-
nology. In §3, we collect some important properties of a fully commutative element.
In §4, we show that Coxeter groups of type A, D, and E are bi-full. In §5, we show
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that a Coxeter group which is neither of type A,D nor E cannot be bi-full.

2 Preliminaries and Notations

In this paper, we assume that (W,S) is a Coxeter system.

Notation 2.1 We denote the set of integers by Z and denote the set of positive
integers by Z>0. For n ∈ Z>0, we put [n] := {1, 2, . . . , n}. For a set A, we denote its
cardinality by |A| or ]A.

Notation 2.2 Let w be an element of W and let e be the identity element of W .
A length function ` is a mapping from W to Z defined by `(e) equals 0 and `(w)
equals the smallest m such that there exist elements s1, s2, . . . , sm of S satisfying
w = s1s2 . . . sm for w 6= e. We call `(w) the length of w. Let x1, x2, . . . , xm be elements
of W . If we have w = x1x2 . . . xm and `(x1x2 . . . xm) = `(x1) + `(x2) + . . . + `(xm),
then we call x1x2 . . . xm an extended reduced expression of w. Note that we do not
assume that x1, x2, . . . , xm are elements of S. In particular, we call x1x2 . . . xm a
reduced expression of w if all xi are elements of S.

Definition 2.3 For s, t ∈ S, we denote the order of st by m(s, t).

(i) If we have {m(s, t)|s, t ∈ S} ⊆ {1, 2, 3}, then we call (W,S) (resp. W ) a simply-
laced Coxeter system (resp. a simply-laced Coxeter group).

(ii) If a Coxeter diagram of (W,S) is connected then we call (W,S) (resp. W ) an
irreducible Coxeter system (resp. an irreducible Coxeter group).

Definition 2.4 Let (W,S) be a Coxeter system with its relation defined by Figure
1 (resp. Figure 2).

s s p p p s s s s

s

α1 α2 αr u β2 β1

γ

Figure 1: Coxeter diagram of type Er+4

s s p p p s s s

s

α1 α2 αr u β

γ

Figure 2: Coxeter diagram of type Dr+3

Then we call (W,S) a Coxeter system of type Er+4 (resp. type Dr+3).
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Definition 2.5 Let w be an element of W . We say that w is a fully commutative
element (or w is fully commutative) if any reduced expression of w can be converted
into any other reduced expression of w by exchanging adjacent commuting generators
several times.

Definition 2.6 For a Coxeter system (W,S), we put

WFC := {w ∈ W |w is fully commutative}.

If the cardinality of WFC is finite then we call (W,S) (resp. W ) a FC-finite Coxeter
system (resp. FC-finite Coxeter group).

From now on, we denote a Coxeter group of type X by W (X).

Theorem 2.7 (C. K. Fan) The irreducible simply-laced FC-finite Coxeter groups
are W (An),W (Dn+3), and W (En+5) for n ≥ 1 (see [3] for more detailed informa-
tion).

We recall the definition of the Bruhat ordering.

Definition 2.8 Put T := {wsw−1|s ∈ S, w ∈ W}. For y, z ∈ W , we define its
relation and denote it by y <′ z if there exists an element t of T such that `(tz) < `(z)
and y = tz. Then the Bruhat ordering denoted by ≤ is defined as follows: For
x,w ∈ W , x ≤ w if and only if there exist elements x0, x1, . . . , xr of W such that
x = x0 <′ x1 <′ · · · <′ xr = w. For x,w ∈ W , we say that w covers x (or x is covered
by w) if x < w and `(x) = `(w)− 1. We denote it by xl w.

The following is well known as the subword property. For w ∈ W , let s1s2 · · · sm

be a reduced expression of w. For x ∈ W , x ≤ w if and only if there exists a
sequence of natural numbers i1, i2, . . . , ir such that 1 ≤ i1 < i2 < · · · < ir ≤ m and
x = si1si2 · · · sir . This expression of x is not reduced in general, in other words it may
happen that `(x) < r. However it is known that one can find a sequence of natural
numbers j1, j2, . . . , jk such that 1 ≤ j1 < j2 < · · · < jk ≤ m, x = sj1sj2 · · · sjk

and
`(x) = k.

In this paper, we assume that an ordering handled with on a Coxeter group is the
Bruhat ordering.

Notation 2.9 For w ∈ W , we put

supp(w) : = {s ∈ S|s ≤ w},
C−(w) : = {x ∈ W |xl w},
c−(w) : = |C−(w)|.

Definition 2.10 For w ∈ W , we call w fully covering (or a fully covering element)
if `(w) = c−(w).

By the definitions of fully commutative and fully covering, we immediately have
the following.
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Proposition 2.11 A fully covering element w of W is fully commutative.

Proof. Assume that w is not fully commutative. It implies that there exists a reduced
expression s1s2 . . . sm of w and exists an integer 1 ≤ i ≤ m − 2 such that si = si+2.
Then s1s2 . . . siŝi+1si+2 . . . sm cannot be covered by w, where xŷz denotes xz. Thus
w is not fully covering. This is a contradiction.

Definition 2.12 Let (W,S) be a Coxeter system. We call (W,S) (resp. W ) a bi-full
Coxeter system or bi-full (resp. a bi-full Coxeter group or bi-full) if it satisfies the
following. For any w ∈ W , w is fully commutative if and only if w is fully covering.

Remark 2.13 Let (W1, S1), (W2, S2) be bi-full Coxeter systems (resp. FC-finite
Coxeter systems). If we have S1 ∩ S2 = ∅ and s1s2 = s2s1 for any (s1, s2) ∈ S1 × S2

then (W1W2, S1 ∪ S2) is also a bi-full Coxeter system (resp. an FC-finite Coxeter
system).

Our goal of this paper is to prove the following.

Theorem 2.14 W is a simply-laced FC-finite Coxeter group if and only if W is a
bi-full Coxeter group.

By Theorem 2.7 and Remark 2.13, we can easily reduce Theorem 2.14 to the
following.

Theorem 2.15 An irreducible bi-full Coxeter group is either of type A, D or E.

By Proposition 2.11, if the following two claims hold then we can obtain Theorem
2.15.

Claim 1. Any fully commutative element of a Coxeter group of type E is fully
covering (Theorem 4.1).

Claim 2. If W is neither of type A,D nor E then there is an element such that it is
fully commutative and is not fully covering (Theorem 5.1).

We often use the following fact in this paper (cf [8]).

Fact 2.16 Let J be a subset of S. Put

WJ : = 〈{s|s ∈ J}〉,
W J : = {x ∈ W |`(xy) = `(x) + `(y) for all y ∈ WJ}

( = {x ∈ W |`(xs) = `(x) + 1 for all s ∈ J}) and
JW : = {x ∈ W |`(yx) = `(y) + `(x) for all y ∈ WJ}

( = {x ∈ W |`(sx) = `(x) + 1 for all s ∈ J}).

(i) For w ∈ W , there is a unique pair of (x, y) ∈ W J ×WJ such that w = xy.

(ii) For w ∈ W , there is a unique pair of (y, z) ∈ WJ × JW such that w = yz.
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3 Properties of a fully commutative element

In this section, we collect some basic and important properties of a fully commutative
element from a point of view to associate with a fully covering element.

By the definition of fully commutative, we have the following.

Lemma 3.1

(i) Let w be an element of W . Let s1s2 . . . sm and s′1s
′
2 . . . s′m be reduced expressions

of w. If w is fully commutative then we have

{s1, s2, . . . , sm} = {s′1, s′2, . . . , s′m} as multisets.

(ii) If m(s, t) is odd or 2 for any s, t ∈ S then we have the following for any w ∈
W . w is fully commutative if and only if {s1, s2, . . . , sr} = {s′1, s′2, . . . , s′m} as
multisets for any reduced expressions s1s2 . . . sm, s′1s

′
2 . . . s′m of w.

(iii) An element is fully commutative if it has a unique reduced expression.

(iv) Let xyz be an extended reduced expression of w. If w is fully commutative then
y is also fully commutative.

(v) Let W be a simply-laced Coxeter group and let w be an element of W . Then w
is not fully commutative if and only if there is a reduced expression s1s2 . . . sm

of w such that si = si+2 for some 1 ≤ i ≤ m− 2.

We omit the proof of the lemma since it is straightforward.

Proposition 3.2 Let w be a fully commutative element and let s1s2 . . . sr be a re-
duced expression of w (r ≥ 2). If w = ss1s2 . . . sr−1 for some s ∈ S then we have the
followings.

(i) s = sr.

(ii) ssj = sjs for any j ∈ [r − 1].

(iii) s 6≤ s1s2 . . . sr−1.

We shall state the following lemma before we prove Proposition 3.2.

Lemma 3.3 Let w be an element of W and let J = {a, b} be a subset of S such that
a 6= b, wa < w, wb < w, m(a, b) = m. Then we have the followings.

(i) There exists an element y of W J such that w = y(ab)
m
2 = y(ba)

m
2 and `(w) =

`(y) + m if m is even.

(ii) There exists an element y of W J such that w = y(ab)
m−1

2 a = y(ba)
m−1

2 b and
`(w) = `(y) + m if m is odd.

(iii) If w is fully commutative then m = 2.

Proof. (i) and (ii) By Fact 2.16, there exists a pair (wJ , wJ) ∈ W J ×WJ such that
wa = wJwJ . It implies that we have w = wJwJa and `(w) = `(wJ) + `(wJ) + 1. By
wb < w and a 6= b, one of the following properties holds.
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(1) There exists x ∈ W such that x is covered by wJ and that xwJab is an extended
reduced expression of w.

(2) There exists z ∈ W such that z is covered by wJ and that wJzab is an extended
reduced expression of w.

Assume (1) holds. By the subword property, we have wJ ≤ w = xwJab. By x < wJ ,
wJab ∈ WJ and the subword property, we have wJa l wJ or wJb l wJ . This is
a contradiction. Accordingly (2) holds. Remember that we have wJ ∈ WJ and
wJ l wJa. It implies wJ = (ab)k for some k ≥ 1 or wJ = b(ab)h for some h ≥ 0. On
the other hand, we have z l wJ and z l za. It implies that

z =
{

b(ab)k−1, if wJ = (ab)k,
(ab)h, if wJ = b(ab)h.

Since wJa = zab, we obtain wJa = (ab)ka = b(ab)k−1ab or wJa = b(ab)ha = (ab)hab
. Thus wJa = (ab)ka = (ba)kb or wJa = (ba)h+1 = (ab)h+1. Hence (i) and (ii) hold.
(iii) By (i),(ii), and the definition of fully commutative, m ≥ 3 implies that w is not
fully commutative. This is a contradiction. Hence (iii) holds.

Proof of Proposition 3.2. By Lemma 3.1(i), we obtain (i). We shall prove (ii)
by induction on r.
Case r = 2. Now we have s1s2 = ss1. By (i), we obtain s1s2 = s2s1. Therefore (ii)
holds.
Case r ≥ 3. Now we have w = s1s2 . . . sr = ss1s2 . . . sr−1. Hence we obtain wsr < w
and wsr−1 < w. By Lemma 3.3(iii), we have

sr−1sr = srsr−1. (1)

Thus we have s1s2 . . . sr−2sr = ss1s2 . . . sr−2. Since s1s2 . . . sr−2srsr−1 is also a re-
duced expression of w and w is fully commutative, s1s2 . . . sr−2sr is also fully com-
mutative. By the inductive assumption, we have

ssj = sjs for any j ∈ [r − 2]. (2)

By (i), (1), and (2), we obtain

ssj = sjs for any j ∈ [r − 1].

We can easily show that (iii) holds by (i) and (ii).

The following corollary is useful to find an element which is fully commutative
and is not fully covering.

Corollary 3.4 Let w be an element of W and let s1, s2, . . . , sm be elements of S
such that w = s1s2 . . . sm. Note that we do not assume that s1s2 . . . sm is a reduced
expression of w. We define a condition (FC) as follows:

(FC) If there exists a pair of integers i and j such that i < j and si = sj then there
exists a pair of integers a and b such that i < a < b < j, sasi 6= sisa and
sbsi 6= sisb.
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Then we have the followings.

(i) If s1s2 . . . sm satisfies the condition (FC) then s1s2 . . . sm is a reduced expression
of w and w is fully commutative.

(ii) If W is a simply-laced Coxeter group, s1s2 . . . sm is a reduced expression of w
and w is fully commutative, then s1s2 . . . sm satisfies the condition (FC).

Proof. (i) We shall prove the corollary by induction on m.
Case m ≤ 2. It is obvious.
Case m ≥ 3. Assume that s1s2 . . . sm is not a reduced expression. By the dele-
tion condition, there exists a pair of integers u and v such that u < v and w =
s1s2 . . . ŝu . . . ŝv . . . sm. Thus we have

susu+1 . . . sv−1 = su+1 . . . sv−1sv. (3)

Note that the condition (FC) holds on susu+1 . . . sv−1. By the inductive assump-
tion, susu+1 . . . sv−1 is a reduced expression and is fully commutative. By (3) and
Proposition 3.2, we have su = sv, susk = sksu for any k ∈ {u + 1, u + 2, . . . , v − 1}.
This is a contradiction. Accordingly s1s2 . . . sm is a reduced expression of w. If w is
not fully commutative then there is a reduced expression s′1s

′
2 . . . s′m of w converted

into s1s2 . . . sm by exchanging adjacent commuting generators several times such that
s′i = s′i+2 for some i ∈ [m− 2]. Consequently the condition (FC) does not hold. This
is a contradiction. Therefore w is fully commutative.
(ii) Assume that there is a pair of integers i and j such that i < j, si = sj and

c := ]{k ∈ {i + 1, i + 2, . . . , j − 1}|sksi 6= sisk} ≤ 1.

Case c = 0. Then we have w = s1 . . . ŝi . . . ŝj . . . sm. It implies that s1s2 . . . sm

cannot be a reduced expression. This is a contradiction.
Case c = 1. Let k be an integer such that sksi 6= sisk and i + 1 ≤ k ≤ j − 1. By
virtue of the case, such k is unique. Then we have

w = s1 . . . ŝi . . . sisksj . . . ŝj . . . sm.

Since W is a simply-laced Coxeter group, we have sisksj = sksisk. This is a contra-
diction.

By Corollary 3.4, we have the following.

Corollary 3.5 Let W be a simply-laced Coxeter group and let w be an element of W
such that `(w2) = 2`(w) and w2 is fully commutative. Then for any k ∈ Z>0 we have
`(wk) = k`(w) and wk is fully commutative. In particular, W is not an FC-finite
Coxeter group.

Proof. Let s1s2 . . . sm be a reduced expression of w. Then, s1s2 . . . sms1s2 . . . sm

is a reduced expression of w2. By Corollary 3.4(ii) and virtue of the corollary,
s1s2 . . . sms1s2 . . . sm satisfies the condition (FC). We can easily see that

(s1s2 . . . sm)(s1s2 . . . sm) · · · (s1s2 . . . sm)

also satisfies the condition (FC). By Corollary 3.4(i), we have `(wk) = k`(w) and wk

is fully commutative.
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The following lemma holds on any Coxeter system.

Lemma 3.6 Let (W,S) be a Coxeter system and let x be an element of W . Let s1,
s2 be elements of S such that s1s2x is an extended reduced expression and that s2s1s2

is a reduced expression. If we have s1 6∈ supp (x) then s2s1s2x is an extended reduced
expression.

Proof. Since s1s2x is an extended reduced expression, we have x < s2x. On the other
hand, we have x < s1x by s1 6∈ supp (x). Thus, we obtain x ∈ {s1,s2}W . Remember
that s2s1s2 is a reduced expression. Hence s2s1s2x is an extended reduced expression.

The following lemma holds on any simply-laced Coxeter system.

Lemma 3.7 Let (W,S) be a simply-laced Coxeter system and let w be a fully com-
mutative element of W . If s1s2 . . . sm is a reduced expression of w then s1ŝ2s3 . . . sm

is a reduced expression.

Proof. Assume that s1ŝ2s3 . . . sm is not a reduced expression. Then there exists an
integer j such that 3 ≤ j ≤ m and s3s4 . . . sm = s1s3 . . . ŝj . . . sm. Thus we have w =
s1s2s1 . . . ŝj . . . sm. By our assumption, we can see that we have s1s2s1 = s2s1s2. It
implies that w is not fully commutative. This is a contradiction. Hence s1ŝ2s3 . . . sm

is a reduced expression.

4 W (En) is bi-full

Our aim of this section is to prove the following.

Theorem 4.1 Let W be a Coxeter group of type E and let w be an element of W .
If w is fully commutative then w is fully covering.

The following proposition is well-known. In fact we can easily prove it by the
notion of a 321-avoiding permutation. However we prove it without terms of a 321-
avoiding permutation.

Proposition 4.2 Let W be a Weyl group of type An. Then a fully commutative
element w of W is fully covering.

Before we prove the proposition above, we show one lemma.

Notation 4.3 Let s1s2 . . . sm be a reduced expression of an element of W and let α
be an element of S. Put

gα(s1s2 . . . sm) := ]{i ∈ [m] | si = α}.
By Lemma 3.1(i), if w is fully commutative, then we can define

gα(w) := gα(s1s2 . . . sm),

where s1s2 . . . sm is a reduced expression of w.
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Lemma 4.4 Let w be an element of W and let s1s2 . . . sm be a reduced expression
of w. Let {α1, α2, . . . , αr} be a subset of supp(w) satisfying the following conditions
(1),(2), and (3).

(1) αis = sαi for any i ∈ [r] and for any s ∈ supp(w)− {α1, α2, . . . , αr}.
(2) 〈α1, α2, . . . , αr〉 is a Weyl group of type Ar with its relation defined by Figure 3.

p p ps s s s
α1 α2 αr−1 αr

Figure 3: Coxeter diagram of type Ar

(3) gα1(s1s2 . . . sm) ≥ 2.

Then w is not fully commutative.

Proof. By the condition (3), there exists a pair of integers a and b such that

a < b, sa = sb = α1, α1 6∈ supp(sa+1sa+2 . . . sb−1).

We shall prove by induction on r.
Case r = 1. Since α1 is commutative to any element of supp(w) − {α1}, we have
w = s1 . . . ŝa . . . ŝb . . . sm. It implies that s1s2 . . . sm is not a reduced expression of w.
This is a contradiction.
Case r ≥ 2. Note that α1 is not commutative to α2 and is commutative to others.

Subcase 1. gα2(sa+1sa+2 . . . sb−1) = 0. By a similar argument to the case r = 1,
this is a contradiction.

Subcase 2. gα2(sa+1sa+2 . . . sb−1) = 1. There exists an integer c such that
a < c < b, sc = α2. By virtue of Subcase 2 and the condition (2), we have

w = s1 . . . ŝa . . . α1α2α1 . . . ŝb . . . sm = s1 . . . ŝa . . . α2α1α2 . . . ŝb . . . sm.

Therefore w is not fully commutative.
Subcase 3. gα2(sa+1sa+2 . . . sb−1) ≥ 2. Put w′ := sa+1 . . . sb−1. Then it is

easy to see that w′ and {α2, . . . , αr} satisfy the conditions (1), (2), and (3). By the
inductive assumption, w′ is not fully commutative. It follows from Lemma 3.1(iv)
that w is not fully commutative.

Proof of Proposition 4.2. Let m be the length of w, that is, we have m = `(w).
We shall prove by induction on m.
Case m ≤ 2. It is obvious.
Case m ≥ 3. Let s1s2 . . . sm be a reduced expression of w.

We check if s1s2 . . . ŝi . . . sm is a reduced expression or not. It is sufficient to
handle with cases 1 < i < m.

Case 1. supp(s1s2 . . . si−1) = supp(si+1si+2 . . . sm). Since W is a Weyl group of
type An, there exists an element s0 of supp(s1s2 . . . si−1) such that ]{s ∈ supp(w)|ss0 6=
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s0s} ≤ 1. By virtue of Case 1, we have gs0(s1s2 . . . sm) ≥ 2. By Lemma 4.4, w is not
fully commutative. This is a contradiction.

Case 2. supp(s1s2 . . . si−1) 6= supp(si+1si+2 . . . sm).
Subcase 2-1. supp(s1s2 . . . si−1)− supp(si+1si+2 . . . sm) 6= ∅.

Put J := supp(si+1si+2 . . . sm). Then there exists a pair of wJ ∈ W J and wJ ∈ WJ

such that wJwJsisi+1 . . . sm is an extended reduced expression of w. By Lemma
3.1(iv), wJsisi+1 . . . sm is also fully commutative. By virtue of Subcase 2-1, we have
wJ 6= e. It implies that

`(wJsisi+1 . . . sm) < `(w).

By the inductive assumption, we have

wJsi+1si+2 . . . sm l wJsisi+1 . . . sm, wJsi+1si+2 . . . sm ∈ WJ .

By the definition of W J , we have

`(wJwJsi+1si+2 . . . sm) = `(w)− 1.

Thus it follows that s1s2 . . . ŝi . . . sm is a reduced expression.
Subcase 2-2. supp(si+1si+2 . . . sm) − supp(s1s2 . . . si−1) 6= ∅. We can prove by

a similar discussion above.
Therefore it implies that s1s2 . . . ŝi . . . sm is a reduced expression.

Furthermore we shall show two lemmas in preparation for proof of Theorem 4.1.

Lemma 4.5 Let (W,S) be a Coxeter system of type Dr+3 with its relation defined
by Figure 2 (r ≥ 1). Put J := S−{α1}. Let w be a fully commutative element of JW
and let s1s2 . . . sm be a reduced expression of w. If α1, β, γ are elements of supp(w)
then we have the followings.

(i) r + 3 ≤ m, s1s2 . . . sr+3 = α1α2 . . . αruβγ.

(ii) For any s ∈ J , sw is not fully commutative.

(iii) m ≤ 2r + 4.

(iv) If m ≥ r + 4 then sr+4sr+5 . . . sm = uαrαr−1 . . . α2r+5−m where αr+1 = u.

Proof. In this proof, we sometimes denote u by αr+1.
(i) By w ∈ JW and supp(w) − J = {α1}, we have s1 = α1. Assume that s2 6= α2.
Then we can easily obtain

s2 ∈ S − {α1, α2} ⊆ J, w = s2s1ŝ2s3 . . . sm.

This is a contradiction. Thus s2 = α2. Now we show that if s1s2 . . . sk = α1α2 . . . αk

then sk+1 = αk+1 for 2 ≤ k ≤ r. Note that we have sk+1 6= αk since s1s2 . . . sm is a
reduced expression. Assume that sk+1 = αj for some 1 ≤ j ≤ k − 1. Then

αjαj+1 . . . αkαk+1 = αjαj+1αjαj+2αj+3 . . . αk.

By αjαj+1αj = αj+1αjαj+1, αjαj+1 . . . αkαk+1 is not fully commutative. By Lemma
3.1(iv), w is also not fully commutative. This is a contradiction. If sk+1 ∈ S −
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{α1, α2, . . . , αk+1} ⊆ J then we obtain sk+1w < w. This is a contradiction. Hence
sk+1 = αk+1. By the inductive assumption, we obtain s1s2 . . . srsr+1 = α1α2 . . . αru.
If sr+2 ∈ {α1, α2, . . . , αr} then w is not fully commutative. This is not the case. If
sr+2 = u then `(w) 6= m. This is also not the case. Thus we obtain sr+2 = β or γ.
Hence we have

s1s2 . . . srsr+1sr+2 = α1α2 . . . αruβ or α1α2 . . . αruγ.

Case s1s2 . . . srsr+1sr+2 = α1α2 . . . αruβ. By a similar argument, we have sr+3 =
γ.
Case s1s2 . . . srsr+1sr+2 = α1α2 . . . αruγ. By a similar argument, we have sr+3 =

β.
Since β is commutative to γ, we obtain

s1s2 . . . sr+3 = α1α2 . . . αruβγ.

Furthermore, by an argument above, we have r + 3 ≤ m.

(ii) By w ∈ JW , ss1s2 . . . sm is a reduced expression of sw. By (i), there is a reduced
expression of ss1s2 . . . sr+3 which is





α1 . . . αk−2αkαk−1αk . . . αr+1βγ, if s = αk (k = 2, 3, . . . , r + 1),
α1 . . . αrβuβγ, if s = β,
α1 . . . αrγuγβ, if s = γ.

Thus, sα1α2 . . . αr+3 is not fully commutative. By Lemma 3.1(iv), sw is also not fully
commutative.

(iii) and (iv) By Corollary 3.4(ii) and the lemma (i), it is easy to show that we have

sr+4sr+5 . . . st = uαrαr−1 . . . α2r+5−t

for any t such that r +4 ≤ t ≤ 2r +4 and t ≤ m. Assume m > 2r +4. It implies that

s1s2 . . . s2r+5 = α1α2 . . . αruβγuαrαr−1 . . . α1s2r+5.

Since s1s2 . . . s2r+5 is a reduced expression, we have s2r+5 ∈ J . By a similar argument
of the proof of (ii), it follows that w is not fully commutative. This is a contradiction.
Therefore we obtain m ≤ 2r + 4.

From now on, we assume that (W,S) is a Coxeter system of type Er+4 (r ≥ 0)
with its relation defined by Figure 1. Note that a Coxeter system of type E4 (resp.
E5) is a Coxeter system of type A4 (resp. D5).

Lemma 4.6 Let (W,S) be a Coxeter system of type Er+4 (r ≥ 1). Put J := S−{α1}.
Let w be a fully commutative element of JW and let s1s2 . . . sm be a reduced expression
of w. Then we have the followings.

(i) If α1, β1, γ ∈ supp(w) then sw is not fully commutative for all s ∈ J .

(ii) Assume α1, β2, γ ∈ supp(w), β1 6∈ supp(w) and s ∈ J . If sw is fully commutative
then s = β1.
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(iii) Assume gα1(w) ≥ 2 and s ∈ J such that sw is fully commutative. Then w =
α1α2 . . . αruγβ2uαr . . . α2α1 and s = β1.

(iv) Assume gα1(w) ≥ 3 and w ∈ JW ∩ W J . Then there exists an element v of
WS−{α1,α2} such that

(α1α2 . . . αruγβ2uαrαr−1 . . . α2)α1β1vβ1(α2 . . . αruγβ2uαrαr−1 . . . α1)

is an extended reduced expression of w and that β1vβ1 ∈ S−{β1}W ∩WS−{β1}.

Remark 4.7 Let (W,S) be a Coxeter system of type Ẽ7 with its relation defined
by Figure 7. Then Lemma 4.6(i) cannot hold on this Coxeter system. For example,
put w := α1α2α3uβ3β2γuα3β3uγα2α3uβ3β2β1. Then w is fully commutative and we
have α1, β1, γ ∈ supp(w) and w ∈ S−{α1}W . However β1w is also fully commutative.

Proof of Lemma 4.6. In this proof, we sometimes denote u by αr+1.
(i) If there exists a pair of not empty subsets S1 and S2 of S such that supp(w) =
S1∪S2, S1∩S2 = ∅, and that any element of S1 is commutative to any element of S2,
then w cannot be contained in JW . By α1, γ, β1 ∈ supp(w), we have supp(w) = S.
By Lemma 4.5 and {s ∈ S|β1s 6= sβ1} = {β2}, we can easily see that there exists
an extended reduced expression of w which is α1α2 . . . αruβ2β1γy for some y ∈ W .
By a similar argument of the proof of Lemma 4.5(ii), it follows that sw is not fully
commutative.

(ii) Since w is fully commutative and we have β1 6∈ supp(w), β1w is fully commutative.
If we have s ∈ J − {β1} then sw is not fully commutative by Lemma 4.5(ii).

(iii) By our assumption and Corollary 3.4(ii), there exists a pair of elements x1 and
x2 of W and exists an element z of 〈β1, β2, γ〉 such that we have {α1, α2, . . . , αr} ⊆
supp(x1) ∩ supp(x2) and that x1uzux2 is an extended reduced expression of w. By
Corollary 3.4(ii), we can obtain z ∈ {β2γ, β1β2γ, β2β1γ}. Thus we have {α1, α2, . . . ,
αr, u, γ, β2} ⊆ supp(w). Since (i) holds and there exists s ∈ J such that sw is fully
commutative, we have β1 6∈ supp(w). By Lemma 4.5(iii) and gα1(w) ≥ 2, we can
obtain w = α1α2 . . . αruβ2γuαrαr−1 . . . α1. By using (ii), we have s = β1.

(iv) By w ∈ JW ∩W J and gα1(w) ≥ 3, we have s1 = sm = α1 and α1 ∈ supp(s2 . . .
sm−1). If we write s1s2 . . . sm−1 = w1w2 by some w1 ∈ W J , w2 ∈ WJ then w2 6= e
and gα1(w1) ≥ 2. Let s be an element of J and let y be an element of WJ such that
w2 = sy and `(w2) = 1 + `(y). Note that `(w1s) = `(w1) + 1. By using (iii), we have

w1 = α1α2 . . . αruγβ2uαrαr−1 . . . α1

and s = β1. Hence (α1α2 . . . αruγβ2uαrαr−1 . . . α1)β1yα1 is an extended reduced
expression of w. Rewrite α1β1yα1 = w′2w

′
1 for some w′1 ∈ JW and w′2 ∈ WJ . By

β1α1 = α1β1, we have w′2 6= e and gα1(w
′
1) ≥ 2. Let s′ be an element of J and let z

be an element of WJ such that w′2 = zs′ and `(w′2) = `(z)+1. By using (iii), we have

w′1 = α1α2 . . . αruγβ2uαrαr−1 . . . α1

and s′ = β1. Hence zβ1(α1α2 . . . αruγβ2uαrαr−1 . . . α1) is an extended reduced
expression of α1β1yα1. Note that zβ1w

′
1 is also a fully commutative element and
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α1zβ1w
′
1 < zβ1w

′
1. By Proposition 3.2, we have α1 6∈ supp(zβ1). Thus α1 is commu-

tative to any element of supp(zβ1). Hence we have z ∈ WS−{α1,α2}. Therefore we
have

w = (α1α2 . . . αruγβ2uαr . . . α2)zβ1α1(α2 . . . αruγβ2uαr . . . α1)
= (α1α2 . . . αruγβ2uαr . . . α2)α1zβ1(α2 . . . αruγβ2uαr . . . α1).

Assume that z = e. Then,

α2zβ1α1α2 = α2β1α1α2 = β1α2α1α2.

This is a contradiction. Thus we have z 6= e. Let s′′ be an element of S − {α1, α2}
and let v be an element of WS−{α1,α2} such that z = s′′v and `(z) = 1 + `(v). By
using (iii), s′′ = β1 and

(α1α2 . . . αruγβ2uαrαr−1 . . . α2)α1β1vβ1(α2 . . . αruγβ2uαrαr−1 . . . α1)

is an extended reduced expression of w. Since α2 6∈ supp(β1vβ1),

(α1α2 . . . αruγβ2uαrαr−1 . . . α2)β1vβ1α1(α2 . . . αruγβ2uαrαr−1 . . . α1)

is also an extended reduced expression of w. Moreover, by using (iii), we can easily see
the following for a fully commutative element x. If (α1 . . . αruγβ2uαr . . . α1)x (resp.
x(α1 . . . αruγβ2uαr . . . α1)) is an extended reduced expression then x ∈ WS−{β1}

(resp. x ∈ S−{β1}W ). Thus, we can obtain β1vβ1 ∈ S−{β1}W ∩WS−{β1}.

Proof of Theorem 4.1. Let w be a fully commutative element of W (Er+4). We
shall prove that w is fully covering by induction on r. Note that we sometimes denote
u by αr+1.
Case r = 0. It has been proven since we regard W (E4) as W (A4).
Case r ≥ 1. If we have α1 6∈ supp(w) then we can regard w ∈ W (Er+3). By the
inductive assumption, w is fully covering. By a similar way, if we have u 6∈ supp(w)
or γ 6∈ supp(w) or β2 6∈ supp(w) then w is fully covering. Thus we assume that we
have α1, u, γ, β2 ∈ supp(w).

Assume that we have `(w) = m. We shall prove that w is fully covering by
induction on m. It is easy to verify in cases m ≤ 2. Thus we handle with cases
m ≥ 3. Put J := S − {α1} and we check the following three cases.

1. w 6∈ W J , 2. w 6∈ JW , 3. w ∈ JW ∩W J .
Case 1 By an assumption of this case, there exists a pair of wJ ∈ W J and

wJ ∈ WJ such that wJ 6= e and w = wJwJ . Let s1s2 . . . sm be a reduced expression
of w such that s1s2 . . . sk = wJ and sk+1 . . . sm = wJ . For 1 ≤ i ≤ m, we shall prove
that s1s2 . . . ŝi . . . sm is a reduced expression. Note that by wJ = s1s2 . . . sk ∈ W J ,
J = S − {α1} and α1 ∈ supp(w), we have sk = α1 and `(wJ) < `(w).

Assume that we have k + 1 ≤ i ≤ m. Then by Lemma 3.1(iv) wJ is fully commu-
tative. By the inductive assumption on m, sk+1 . . . ŝi . . . sm is a reduced expression.
By the definition of W J , s1 . . . sksk+1 . . . ŝi . . . sm is also a reduced expression.

Next assume that we have 1 ≤ i ≤ k.
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Subcase 1-1 supp(s1s2 . . . si−1) 6= supp(si+1si+2 . . . sm). By a similar argument
in the proof of Case 2 of Proposition 4.2, we can easily see that s1s2 . . . ŝi . . . sm is a
reduced expression.

Subcase 1-2 supp(s1s2 . . . si−1) = supp(si+1si+2 . . . sm) and α1 6∈ supp(s1s2 . . . si−1).
By α1 ∈ supp(w), we have si = α1. By sk = α1, we have i = k. By β2, γ ∈ supp(w),
we have α1, β2, γ ∈ supp(s1s2 . . . sk). Assume β1 ∈ supp(s1s2 . . . sk). By s1s2 . . . sk ∈
W J and Lemma 4.6(i), s1s2 . . . sksk+1 is not fully commutative. This is a contra-
diction. Assume β1 6∈ supp(s1s2 . . . sk). By s1s2 . . . sk ∈ W J and Lemma 4.6(ii), we
have sk+1 = β1. By i = k, we have

β1 ∈ supp(si+1si+2 . . . sm)− supp(s1s2 . . . si−1).

This is a contradiction.
Subcase 1-3 supp(s1s2 . . . si−1) = supp(si+1si+2 . . . sm) and α1 ∈ supp(s1s2 . . . si−1).

By i ≤ k and sk = α1, we have gα1(s1s2 . . . sk) ≥ 2. Since s1s2 . . . sk ∈ W J and
Lemma 4.6(iii), we obtain

s1s2 . . . si . . . sk = α1α2 . . . αruγβ2uαrαr−1 . . . α1

and sk+1 = β1. Thus

β1 ∈ supp(si+1si+2 . . . sm)− supp(s1s2 . . . si−1).

This is a contradiction.

Case 2 We omit the proof since we can state this case by a similar argument as
in the proof of Case 1.

Case 3 Let s1s2 . . . sm be a reduced expression of w. For 1 ≤ i ≤ m, we prove
that s1s2 . . . ŝi . . . sm is a reduced expression. By Lemma 3.7, it is enough to prove for
cases 3 ≤ i ≤ m− 2. Note that by an assumption of this case we have s1 = sm = α1

and s2 = sm−1 = α2.
Subcase 3-1 α1 6∈ supp(s2s3 . . . sm−1). Assume that s1s2 . . . ŝi . . . sm is not a re-

duced expression. By the inductive assumption on m, s1 . . . ŝi . . . sm−1 is a reduced ex-
pression. Thus there exists an integer j such that 1 ≤ j ≤ i−1 and s1 . . . ŝi . . . sm−1 =
s1 . . . ŝj . . . ŝi . . . sm−1sm. It implies sj . . . ŝi . . . sm−1 = sj+1 . . . ŝi . . . sm. Accordingly
sj . . . ŝi . . . sm is not a reduced expression. If j > 1 then s2 . . . ŝi . . . sm is not a re-
duced expression. This is a contradiction. Thus j = 1 and s1s2 . . . ŝi . . . sm−1 =
s2 . . . ŝi . . . sm. Put x := s3 . . . ŝi . . . sm−1. Then s2s1s2x < s1s2x and α1 6∈ supp(x).
By Lemma 3.6, we have s1 = α1, s2 = α2 and `(α2α1α2) = 3. This is a contradiction.
Hence s1s2 . . . ŝi . . . sm is a reduced expression.

Subcase 3-2 α1 ∈ supp(s2s3 . . . sm−1). By Lemma 4.6(iv), there exists an ele-
ment v of W such that we have α1, α2 6∈ supp(v) and that

(α1α2 . . . αruγβ2uαrαr−1 . . . α2)α1β1vβ1(α2 . . . αruγβ2uαrαr−1 . . . α1)

is an extended reduced expression of w. Note v = s2r+6s2r+7 . . . sm−2r−4. If 1 ≤
i ≤ 2r + 5 or m − 2r − 3 ≤ i ≤ m then supp(s1s2 . . . si−1) 6= supp(si+1si+2 . . . sm).
By a similar discussion in the proof of Case 2 of Proposition 4.2, s1s2 . . . ŝi . . . sm
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is a reduced expression. The rest case is 2r + 6 ≤ i ≤ m − 2r − 4. Assume that
s1s2 . . . ŝi . . . sm is not a reduced expression. By a similar discussion in Subcase 3-1,
we have s1s2 . . . ŝi . . . sm−1 = s2 . . . ŝi . . . sm. Put v′ := s2r+6s2r+7 . . . ŝi . . . sm−2r−4.
Then

α1(α2 . . . αruγβ2uαrαr−1 . . . α2)α1β1v
′β1(α2 . . . αruγβ2uαrαr−1 . . . α2)

= (α2 . . . αruγβ2uαrαr−1 . . . α2)α1β1v
′β1(α2 . . . αruγβ2uαrαr−1 . . . α2)α1

and both sides are extended reduced expressions.
By the subword property, we have

α1α2 . . . αruβ2β1

≤ (α2 . . . αruγβ2uαrαr−1 . . . α2)α1β1v
′β1(α2 . . . αruγβ2uαrαr−1 . . . α2)α1.

On the other hand, a reduced expression of α1α2 . . . αruβ2β1 is unique. This is a
contradiction. Therefore s1s2 . . . ŝi . . . sm is a reduced expression.

Remark 4.8 Let w be an element of a Coxeter group. In [4], w is said to be short-
braid avoiding if and only if any reduced expression s1s2 . . . sm for w satisfies si 6= si+2

for all i ∈ [m−2]. It is easy to see that a fully covering element is short-braid avoiding,
and that a short-braid avoiding element is fully commutative. By the same method
as the one adopted in the proof of [4, Theorem 1] and Theorem 4.1, we can easily
obtain the following which includes Fan’s result [4, Theorem 1]. Let (W,S) be a
Coxeter system and let (W0, S0) be a Coxeter system defined by S0 := S as a set
and m(s, t) := 3 if m(s, t) > 3 in W or m(s, t) in W0 is defined as m(s, t) in W if
m(s, t) ≤ 3 for s, t ∈ S0. If W0 is a Coxeter group of type A, D or E then for w ∈ W ,
w is a short-braid avoiding element if and only if w is a fully covering element.

Although it is already shown by Fan that a Coxeter group of type E is an FC-finite
Coxeter group, we give another proof.

Proposition 4.9 For n ≥ 3, we have

max{`(w)|w ∈ W (En)FC} ≤ 2n−1 − 1,

where we put W (E3) := 〈β1, β2, γ〉. In particular, we have |W (En)FC | < ∞.

Note that the above inequality is not best possible (see the proof of this proposi-
tion).

Remark 4.10 In [10], H. Tagawa showed

max{c−(x)|x ∈ W (An)} = b(n + 1)2/4c,
where bac is the largest integer equal or less than a. By the formula, it is easy to
show

max{`(x)|x ∈ W (An)FC} = b(n + 1)2/4c.
Note that it does not hold on case of type D. In fact, we have

max{c−(x)|x ∈ W (D4)} = 8 > 6 = max{`(x)|x ∈ W (D4)FC}.
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Proof of Proposition 4.9. For n ≥ 3, we put

an := max{`(w)|w ∈ W (En)FC}

and we shall prove an ≤ 2n−1 − 1 by induction on n.
Case n = 3, 4. By Remark 4.10, we have

a3 = 3 = 22 − 1, a4 = 6 < 23 − 1.

Case n ≥ 5. We claim `(w) ≤ 2n−1 − 1 for any w ∈ W (En)FC . If gα1(w) = 0 then
we can regard w ∈ W (En−1)FC . Thus

`(w) ≤ an−1 ≤ 2n−2 − 1 < 2n−1 − 1.

Now we assume gα1(w) ≥ 1. Put W := W (En) and J := S − {α1}.
Subcase w 6∈ W J . Then there exists a pair of wJ ∈ W J and wJ ∈ WJ such that

wJ 6= e and w = wJwJ . Assume gα1(w) = 1. Then since wJ ∈ W J and J = S−{α1},
there exists an element z of W such that α1 6∈ supp(z) and wJ = zα1. Then zα1wJ is
an extended reduced expression of w and we can regard z, wJ ∈ W (En−1)FC . Thus

`(w) ≤ 2an−1 + 1 ≤ 2(2n−2 − 1) + 1 = 2n−1 − 1.

Assume gα1(w) ≥ 2. Then by Lemma 4.6, we have wJ = α1α2 . . . αn−4uγβ2uαn−4αn−5

. . . α1. On the other hand, we can regard wJ ∈ W (En−1)FC . Hence we have

`(w) ≤ 2n− 4 + an−1 ≤ 2(n− 2) + 2n−2 − 1 ≤ 2n−1 − 1.

Subcase w 6∈ JW . We can prove this case by a similar discussion above.
Subcase w ∈ JW ∩ W J . Then there exists an element z of W (En) such that

α1zα1 is an extended reduced expression of w. If we have gα1(z) = 0 then we have
z ∈ W (En−1)FC . Thus we have

`(w) ≤ an−1 + 2 ≤ 2n−2 + 1 ≤ 2n−1 − 1.

Assume that we have gα1(z) ≥ 1. Then there exists an element v of W (En)FC such
that v ∈ WS−{α1,α2} and that

(α1α2 . . . αn−4uγβ2uαn−4αn−5 . . . α2)α1β1vβ1(α2 . . . αn−4uγβ2uαn−4αn−5 . . . α1)

is an extended reduced expression of w by Lemma 4.6(iv). Hence we have

`(w) ≤ 4n− 9 + an−2 ≤ 4n− 9 + 2n−3 − 1 ≤ 2n−1 − 1.

This completes the proof of the proposition.
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5 Not bi-full Coxeter groups

Our aim of this section is to prove the following.

Theorem 5.1 Let W be an irreducible Coxeter group which is neither of type A, D
nor E. Then W is not a bi-full Coxeter group. In other words, there is an element
of W which is fully commutative and which is not fully covering. In particular, if W
is a simply-laced Coxeter group then we have |WFC | = ∞.

First we prove the following.

Proposition 5.2 Let (W1, S1) (resp. (W2, S2), (W3, S3), (W4, S4), (W5, S5)) be a
Coxeter system of type Ãn (n ≥ 2) (resp. D̃r+3 (r ≥ 1), Ẽ6, Ẽ7, I2(m) (m ≥ 4))
with its relation defined by Figure 4 (resp Figure 5, Figure 6, Figure 7, Figure 8).
Then for each 1 ≤ i ≤ 5 there exists an element wi of Wi such that wi is fully
commutative and wi is not fully covering. Furthermore we have |WFC

i | = ∞ for any
1 ≤ i ≤ 4.

´
´

´́
Q

Q
QQ

s s p p p s s

s

α1 α2 αn−1 αn

α0

Figure 4: Coxeter diagram of type Ãn
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s s s s

s

s

β

α

δ

γ

u1 u2 ur−1 ur

Figure 5: Coxeter diagram of type D̃r+3

s s s s s

s

s

α1 α2 u β2 β1

γ2

γ1

Figure 6: Coxeter diagram of type Ẽ6.
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s s s s s s s

s

α1 α2 α3 u β3 β2 β1

γ

Figure 7: Coxeter diagram of type Ẽ7.

s sm
α1 α2

Figure 8: Coxeter diagram of type I2(m).

Proof. Case (1),(2),(3),(4). For 1 ≤ i ≤ 4, let wi and yi be elements of Wi defined
by putting as follows:

w1 := α1α2 . . . αnα0α1α2 . . . αn,

y1 := α1α2 . . . αnα̂0α1α2 . . . αn,

w2 := urur−1 . . . u1αβu1u2 . . . urγδurur−1 . . . u1αβu1u2 . . . urγδur,

y2 := urur−1 . . . u1αβu1u2 . . . urγδûrur−1 . . . u1αβu1u2 . . . urγδur,

w3 := uβ2β1α2uβ2γ2uα2α1γ1γ2uα2β2uγ2γ1β1β2uγ2α2uβ2β1α1α2uβ2γ2u,

y3 := uβ2β1α2uβ2γ2uα2α1γ1γ2uα2β2ûγ2γ1β1β2uγ2α2uβ2β1α1α2uβ2γ2u,

w4 := β1β2β3uα3γuβ3β2β1α2α3uβ3β2γuα3β3uγα2α3uβ3β2β1

×α1α2α3uβ3β2γuα3β3uγα2α3uβ3β2β1,

y4 := β1β2β3uα3γuβ3β2β1α2α3uβ3β2γuα3β3uγα2α3uβ3β2β1

×α̂1α2α3uβ3β2γuα3β3uγα2α3uβ3β2β1.

By Corollary 3.4, we can easily see that all wi are fully commutative. By direct
calculation, we can obtain

y1 = α̂1α2 . . . αnα̂0α1α2 . . . α̂n,

y2 = ûrur−1 . . . u1αβu1u2 . . . urγδûrur−1 . . . u1αβu1u2 . . . urγδûr,

y3 = ûβ2β1α2uβ2γ2uα2α1γ1γ2uα2β2ûγ2γ1β1β2uγ2α2uβ2β1α1α2uβ2γ2û,

y4 = β̂1β2β3uα3γuβ3β2β1α2α3uβ3β2γuα3β3uγα2α3uβ3β2β1

×α̂1α2α3uβ3β2γuα3β3uγα2α3uβ3β2β̂1.

Thus, yi is not covered by wi, that is, wi is not fully covering for 1 ≤ i ≤ 4. For
1 ≤ i ≤ 4, let xi be an element of Wi defined by putting as follows:

x1 := α0α1 . . . αn,

x2 := urur−1 . . . u1αβu1u2 . . . urγδ,

x3 := uβ2γ2uα2α1γ1γ2uα2β2uγ2γ1β1β2uγ2α2uβ2β1α1α2,

x4 := α1α2α3uβ3β2γuα3β3uγα2α3uβ3β2β1.
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Then we can easily see that x2
i is also fully commutative and that we have `(x2

i ) =
2`(xi) for 1 ≤ i ≤ 4. Therefore we have |WFC

i | = ∞ for any 1 ≤ i ≤ 4 by Corollary
3.5.

Case (5). Put w5 := α1α2α1. By Lemma 3.1(iii), w5 is fully commutative. Since
α1α̂2α1(= e) is not covered by w5, w5 is not fully covering.

Proof of Theorem 5.1. Recall that W is neither of type A,D, nor E. It is easy to
show that a Coxeter diagram associated to W contains at least one of the Coxeter
diagrams in Figure 4,5,6,7 and 8. Therefore W is not a bi-full Coxeter group, by
Proposition 5.2. Furthermore if W is a simply-laced Coxeter group then we can
easily see that there are infinite its fully commutative elements by Proposition 5.2.
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