A characterization of the simply-laced FC-finite Coxeter groups

Manabu HAGIWARA
Institute of Industrial Science, University of Tokyo
Komaba, Meguro-ku, Tokyo, Japan, 153-8505
manau@imailab.iis.u-tokyo.ac.jp
Masao ISHIKAWA
Department of Mathematics, Tottori University
Koyama, Tottori, Japan, 680-8551
ishikawa@fed.tottori-u.ac.jp
Hiroyuki TAGAWA*
Department of Mathematics, Wakayama University
Sakaedani, Wakayama, Japan, 640-8510
tagawa@math.edu.wakayama-u.ac.jp

Abstract

We call an element of a Coxeter group fully covering (or a fully covering element) if its length is equal to the number of the elements it covers in the Bruhat ordering. It is easy to see that the notion of fully covering is a generalization of the notion of a 321-avoiding permutation and that a fully covering element is a fully commutative element. Also, we call a Coxeter group bi-full if its fully commutative elements coincide with its fully covering elements. We show that the bi-full Coxeter groups are the ones of type A_{n}, D_{n}, E_{n} with no restriction on n. In other words, Coxeter groups of type E_{9}, E_{10}, \ldots are also bi-full. According to a result of Fan, a Coxeter group is a simply-laced FC-finite Coxeter group if and only if it is a bi-full Coxeter group.

1 Introduction

There are occasions where certain mathematical objects are associated with Coxeter diagrams (or closely related Dynkin diagrams). Quite often, the objects associated

[^0]with the diagrams of types A, D, E_{6}, E_{7} and E_{8} (the diagrams of irreducible simplylaced, finite-type Coxeter systems) form a special class characterized by certain nice properties (sometimes among the ones associated with the irreducible simply-laced diagrams, and sometimes among all irreducible ones). Usually the diagrams E_{n} with $n \geq 9$ do not join this class. However, in some cases, the diagrams E_{n} with no restriction on n, along with the diagrams A_{n} and D_{n}, form a nice class. As an example, we recall the notion of FC-finite Coxeter groups. A Coxeter group is called $F C$-finite if the number of its fully commutative elements is finite. Here, an element of a Coxeter group is said to be fully commutative if any of its reduced expression can be converted into any other by exchanging adjacent commuting generators several times. C. K. Fan gave a result that the irreducible simply-laced FC-finite Coxeter groups are the ones of type A, D, and E ([3, Proposition 2.]). These are also exactly the irreducible simply-laced Coxeter groups with finitely many minuscule elements ([7]).

In this paper, we call an element of a Coxeter group fully covering if its length is equal to the number of elements it covers in the Bruhat ordering. This notion has appeared in [4, Theorem 1]. Our main goal is to characterize the Coxeter groups whose fully covering elements coincide with its fully commutative elements. We call such a Coxeter group bi-full. Fan's result implies that Coxeter groups of type A, D, E_{6}, E_{7}, and E_{8} are bi-full [4, Theorem 1] and a Coxeter groups of type \tilde{A}_{2} is not bi-full [4, Conclusion]. However a bi-full Coxeter group was not characterized. Our main result is that the irreducible bi-full Coxeter groups are the ones of type A, D, E. According to a result of Fan, it implies that a Coxeter group is simply-laced and FC-finite if and only if it is bi-full (Theorem 2.14).

An element σ of a symmetric group is called a 321-avoiding permutation if there is no triple $1 \leq i<j<k \leq n$ such that $\sigma(i)>\sigma(j)>\sigma(k)$. It is easy to see that the notion of being fully covering is a generalization of the notion of a 321-avoiding permutation (see [1]) from the viewpoint of the Bruhat ordering. Also, it is a well known fact that a permutation is 321 -avoiding if and only if it is fully commutative [1]. Actually, this fact is a motivation for our present work. There is another interesting generalization of the notion of a 321-avoiding permutation. In [5], Green extended the notion to affine permutation groups (namely the Coxeter groups of type \tilde{A}_{n}) from the viewpoint of a permutation. Our generalization and his generalization are not equivalent. Indeed, in an affine permutation group W, the 321-avoiding permutations in Green's sense are exactly the fully commutative elements. It is known that these are also exactly the minuscule elements in W [6, Theorem 5.1].

Our result can be applied to the theory of Kazhdan-Lusztig polynomials. Let W be a Coxeter group and let x, w be elements of W. Let $p_{1}(x, w)$ be the coefficient of degree 1 of the Kazhdan-Lusztig polynomial for x, w. M. Dyer showed that $p_{1}(e, w)=$ $c^{-}(w)-|\operatorname{supp}(w)|$ and that $p_{1}(e, w) \geq 0$ (see [2]), where $c^{-}(w)$ is the number of elements covered by w in the Bruhat ordering. Thus if W is one of type A, D, E and w is a fully commutative element of W then we can rewrite it as $p_{1}(e, w)=$ $\ell(w)-|\operatorname{supp}(w)|$ by our result.

This paper is organized as follows: In $\S 2$, we recall and provide some basic terminology. In $\S 3$, we collect some important properties of a fully commutative element. In $\S 4$, we show that Coxeter groups of type A, D, and E are bi-full. In $\S 5$, we show
that a Coxeter group which is neither of type A, D nor E cannot be bi-full.

2 Preliminaries and Notations

In this paper, we assume that (W, S) is a Coxeter system.
Notation 2.1 We denote the set of integers by \mathbb{Z} and denote the set of positive integers by $\mathbb{Z}_{>0}$. For $n \in \mathbb{Z}_{>0}$, we put $[n]:=\{1,2, \ldots, n\}$. For a set A, we denote its cardinality by $|A|$ or $\sharp A$.

Notation 2.2 Let w be an element of W and let e be the identity element of W. A length function ℓ is a mapping from W to \mathbb{Z} defined by $\ell(e)$ equals 0 and $\ell(w)$ equals the smallest m such that there exist elements $s_{1}, s_{2}, \ldots, s_{m}$ of S satisfying $w=s_{1} s_{2} \ldots s_{m}$ for $w \neq e$. We call $\ell(w)$ the length of w. Let $x_{1}, x_{2}, \ldots, x_{m}$ be elements of W. If we have $w=x_{1} x_{2} \ldots x_{m}$ and $\ell\left(x_{1} x_{2} \ldots x_{m}\right)=\ell\left(x_{1}\right)+\ell\left(x_{2}\right)+\ldots+\ell\left(x_{m}\right)$, then we call $x_{1} x_{2} \ldots x_{m}$ an extended reduced expression of w. Note that we do not assume that $x_{1}, x_{2}, \ldots, x_{m}$ are elements of S. In particular, we call $x_{1} x_{2} \ldots x_{m}$ a reduced expression of w if all x_{i} are elements of S.

Definition 2.3 For $s, t \in S$, we denote the order of $s t$ by $m(s, t)$.
(i) If we have $\{m(s, t) \mid s, t \in S\} \subseteq\{1,2,3\}$, then we call (W, S) (resp. W) a simplylaced Coxeter system (resp. a simply-laced Coxeter group).
(ii) If a Coxeter diagram of (W, S) is connected then we call (W, S) (resp. W) an irreducible Coxeter system (resp. an irreducible Coxeter group)

Definition 2.4 Let (W, S) be a Coxeter system with its relation defined by Figure 1 (resp. Figure 2).

Figure 1: Coxeter diagram of type E_{r+4}

Figure 2: Coxeter diagram of type D_{r+3}

Then we call (W, S) a Coxeter system of type $E_{r+4}\left(\right.$ resp. type $\left.D_{r+3}\right)$.

Definition 2.5 Let w be an element of W. We say that w is a fully commutative element (or w is fully commutative) if any reduced expression of w can be converted into any other reduced expression of w by exchanging adjacent commuting generators several times.

Definition 2.6 For a Coxeter system (W, S), we put

$$
W^{F C}:=\{w \in W \mid w \text { is fully commutative }\}
$$

If the cardinality of $W^{F C}$ is finite then we call (W, S) (resp. W) a $F C$-finite Coxeter system (resp. FC-finite Coxeter group).

From now on, we denote a Coxeter group of type X by $W(X)$.
Theorem 2.7 (C. K. Fan) The irreducible simply-laced FC-finite Coxeter groups are $W\left(A_{n}\right), W\left(D_{n+3}\right)$, and $W\left(E_{n+5}\right)$ for $n \geq 1$ (see [3] for more detailed information).

We recall the definition of the Bruhat ordering.
Definition 2.8 Put $T:=\left\{w s w^{-1} \mid s \in S\right.$, $\left.w \in W\right\}$. For $y, z \in W$, we define its relation and denote it by $y<^{\prime} z$ if there exists an element t of T such that $\ell(t z)<\ell(z)$ and $y=t z$. Then the Bruhat ordering denoted by \leq is defined as follows: For $x, w \in W, x \leq w$ if and only if there exist elements $x_{0}, x_{1}, \ldots, x_{r}$ of W such that $x=x_{0}<^{\prime} x_{1}<^{\prime} \cdots<^{\prime} x_{r}=w$. For $x, w \in W$, we say that w covers x (or x is covered by w) if $x<w$ and $\ell(x)=\ell(w)-1$. We denote it by $x \lessdot w$.

The following is well known as the subword property. For $w \in W$, let $s_{1} s_{2} \cdots s_{m}$ be a reduced expression of w. For $x \in W, x \leq w$ if and only if there exists a sequence of natural numbers $i_{1}, i_{2}, \ldots, i_{r}$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq m$ and $x=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$. This expression of x is not reduced in general, in other words it may happen that $\ell(x)<r$. However it is known that one can find a sequence of natural numbers $j_{1}, j_{2}, \ldots, j_{k}$ such that $1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq m, x=s_{j_{1}} s_{j_{2}} \cdots s_{j_{k}}$ and $\ell(x)=k$.

In this paper, we assume that an ordering handled with on a Coxeter group is the Bruhat ordering.

Notation 2.9 For $w \in W$, we put

$$
\begin{aligned}
\operatorname{supp}(w): & =\{s \in S \mid s \leq w\} \\
C^{-}(w): & =\{x \in W \mid x \lessdot w\} \\
c^{-}(w): & =\left|C^{-}(w)\right|
\end{aligned}
$$

Definition 2.10 For $w \in W$, we call w fully covering (or a fully covering element) if $\ell(w)=c^{-}(w)$.

By the definitions of fully commutative and fully covering, we immediately have the following.

Proposition 2.11 A fully covering element w of W is fully commutative.
Proof. Assume that w is not fully commutative. It implies that there exists a reduced expression $s_{1} s_{2} \ldots s_{m}$ of w and exists an integer $1 \leq i \leq m-2$ such that $s_{i}=s_{i+2}$. Then $s_{1} s_{2} \ldots s_{i} \widehat{s_{i+1}} s_{i+2} \ldots s_{m}$ cannot be covered by w, where $x \widehat{y} z$ denotes $x z$. Thus w is not fully covering. This is a contradiction.

Definition 2.12 Let (W, S) be a Coxeter system. We call (W, S) (resp. W) a bi-full Coxeter system or bi-full (resp. a bi-full Coxeter group or bi-full) if it satisfies the following. For any $w \in W, w$ is fully commutative if and only if w is fully covering.

Remark 2.13 Let $\left(W_{1}, S_{1}\right),\left(W_{2}, S_{2}\right)$ be bi-full Coxeter systems (resp. FC-finite Coxeter systems). If we have $S_{1} \cap S_{2}=\emptyset$ and $s_{1} s_{2}=s_{2} s_{1}$ for any $\left(s_{1}, s_{2}\right) \in S_{1} \times S_{2}$ then ($W_{1} W_{2}, S_{1} \cup S_{2}$) is also a bi-full Coxeter system (resp. an FC-finite Coxeter system).

Our goal of this paper is to prove the following.
Theorem 2.14 W is a simply-laced $F C$-finite Coxeter group if and only if W is a bi-full Coxeter group.

By Theorem 2.7 and Remark 2.13, we can easily reduce Theorem 2.14 to the following.

Theorem 2.15 An irreducible bi-full Coxeter group is either of type A, D or E.
By Proposition 2.11, if the following two claims hold then we can obtain Theorem 2.15.

Claim 1. Any fully commutative element of a Coxeter group of type E is fully covering (Theorem 4.1).

Claim 2. If W is neither of type A, D nor E then there is an element such that it is fully commutative and is not fully covering (Theorem 5.1).

We often use the following fact in this paper (cf [8]).
Fact 2.16 Let J be a subset of S. Put

$$
\begin{aligned}
W_{J}: & =\langle\{s \mid s \in J\}\rangle, \\
W^{J}: & =\left\{x \in W \mid \ell(x y)=\ell(x)+\ell(y) \text { for all } y \in W_{J}\right\} \\
(& =\{x \in W \mid \ell(x s)=\ell(x)+1 \text { for all } s \in J\}) \text { and } \\
{ }^{J} W: & =\left\{x \in W \mid \ell(y x)=\ell(y)+\ell(x) \text { for all } y \in W_{J}\right\} \\
(& =\{x \in W \mid \ell(s x)=\ell(x)+1 \text { for all } s \in J\}) .
\end{aligned}
$$

(i) For $w \in W$, there is a unique pair of $(x, y) \in W^{J} \times W_{J}$ such that $w=x y$.
(ii) For $w \in W$, there is a unique pair of $(y, z) \in W_{J} \times{ }^{J} W$ such that $w=y z$.

3 Properties of a fully commutative element

In this section, we collect some basic and important properties of a fully commutative element from a point of view to associate with a fully covering element.

By the definition of fully commutative, we have the following.

Lemma 3.1

(i) Let w be an element of W. Let $s_{1} s_{2} \ldots s_{m}$ and $s_{1}^{\prime} s_{2}^{\prime} \ldots s_{m}^{\prime}$ be reduced expressions of w. If w is fully commutative then we have

$$
\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}=\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{m}^{\prime}\right\} \text { as multisets. }
$$

(ii) If $m(s, t)$ is odd or 2 for any $s, t \in S$ then we have the following for any $w \in$ $W . w$ is fully commutative if and only if $\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}=\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{m}^{\prime}\right\}$ as multisets for any reduced expressions $s_{1} s_{2} \ldots s_{m}, s_{1}^{\prime} s_{2}^{\prime} \ldots s_{m}^{\prime}$ of w.
(iii) An element is fully commutative if it has a unique reduced expression.
(iv) Let xyz be an extended reduced expression of w. If w is fully commutative then y is also fully commutative.
(v) Let W be a simply-laced Coxeter group and let w be an element of W. Then w is not fully commutative if and only if there is a reduced expression $s_{1} s_{2} \ldots s_{m}$ of w such that $s_{i}=s_{i+2}$ for some $1 \leq i \leq m-2$.

We omit the proof of the lemma since it is straightforward.

Proposition 3.2 Let w be a fully commutative element and let $s_{1} s_{2} \ldots s_{r}$ be a reduced expression of $w(r \geq 2)$. If $w=s s_{1} s_{2} \ldots s_{r-1}$ for some $s \in S$ then we have the followings.
(i) $s=s_{r}$.
(ii) $s s_{j}=s_{j} s$ for any $j \in[r-1]$.
(iii) $s \not \leq s_{1} s_{2} \ldots s_{r-1}$.

We shall state the following lemma before we prove Proposition 3.2.
Lemma 3.3 Let w be an element of W and let $J=\{a, b\}$ be a subset of S such that $a \neq b, w a<w, w b<w, m(a, b)=m$. Then we have the followings.
(i) There exists an element y of W^{J} such that $w=y(a b)^{\frac{m}{2}}=y(b a)^{\frac{m}{2}}$ and $\ell(w)=$ $\ell(y)+m$ if m is even.
(ii) There exists an element y of W^{J} such that $w=y(a b)^{\frac{m-1}{2}} a=y(b a)^{\frac{m-1}{2}} b$ and $\ell(w)=\ell(y)+m$ if m is odd.
(iii) If w is fully commutative then $m=2$.

Proof. (i) and (ii) By Fact 2.16, there exists a pair $\left(w^{J}, w_{J}\right) \in W^{J} \times W_{J}$ such that $w a=w^{J} w_{J}$. It implies that we have $w=w^{J} w_{J} a$ and $\ell(w)=\ell\left(w^{J}\right)+\ell\left(w_{J}\right)+1$. By $w b<w$ and $a \neq b$, one of the following properties holds.
(1) There exists $x \in W$ such that x is covered by w^{J} and that $x w_{J} a b$ is an extended reduced expression of w.
(2) There exists $z \in W$ such that z is covered by w_{J} and that $w^{J} z a b$ is an extended reduced expression of w.
Assume (1) holds. By the subword property, we have $w^{J} \leq w=x w_{J} a b$. By $x<w^{J}$, $w_{J} a b \in W_{J}$ and the subword property, we have $w^{J} a \lessdot w^{J}$ or $w^{J} b \lessdot w^{J}$. This is a contradiction. Accordingly (2) holds. Remember that we have $w_{J} \in W_{J}$ and $w_{J} \lessdot w_{J} a$. It implies $w_{J}=(a b)^{k}$ for some $k \geq 1$ or $w_{J}=b(a b)^{h}$ for some $h \geq 0$. On the other hand, we have $z \lessdot w_{J}$ and $z \lessdot z a$. It implies that

$$
z= \begin{cases}b(a b)^{k-1}, & \text { if } w_{J}=(a b)^{k}, \\ (a b)^{h}, & \text { if } w_{J}=b(a b)^{h} .\end{cases}
$$

Since $w_{J} a=z a b$, we obtain $w_{J} a=(a b)^{k} a=b(a b)^{k-1} a b$ or $w_{J} a=b(a b)^{h} a=(a b)^{h} a b$. Thus $w_{J} a=(a b)^{k} a=(b a)^{k} b$ or $w_{J} a=(b a)^{h+1}=(a b)^{h+1}$. Hence (i) and (ii) hold.
(iii) By (i),(ii), and the definition of fully commutative, $m \geq 3$ implies that w is not fully commutative. This is a contradiction. Hence (iii) holds.

Proof of Proposition 3.2. By Lemma 3.1(i), we obtain (i). We shall prove (ii) by induction on r.
Case $r=2$. Now we have $s_{1} s_{2}=s s_{1}$. By (i), we obtain $s_{1} s_{2}=s_{2} s_{1}$. Therefore (ii) holds.
Case $r \geq 3$. Now we have $w=s_{1} s_{2} \ldots s_{r}=s s_{1} s_{2} \ldots s_{r-1}$. Hence we obtain $w s_{r}<w$ and $w s_{r-1}<w$. By Lemma 3.3(iii), we have

$$
\begin{equation*}
s_{r-1} s_{r}=s_{r} s_{r-1} . \tag{1}
\end{equation*}
$$

Thus we have $s_{1} s_{2} \ldots s_{r-2} s_{r}=s s_{1} s_{2} \ldots s_{r-2}$. Since $s_{1} s_{2} \ldots s_{r-2} s_{r} s_{r-1}$ is also a reduced expression of w and w is fully commutative, $s_{1} s_{2} \ldots s_{r-2} s_{r}$ is also fully commutative. By the inductive assumption, we have

$$
\begin{equation*}
s s_{j}=s_{j} s \quad \text { for any } j \in[r-2] . \tag{2}
\end{equation*}
$$

By (i), (1), and (2), we obtain

$$
s s_{j}=s_{j} s \text { for any } j \in[r-1] .
$$

We can easily show that (iii) holds by (i) and (ii).
The following corollary is useful to find an element which is fully commutative and is not fully covering.

Corollary 3.4 Let w be an element of W and let $s_{1}, s_{2}, \ldots, s_{m}$ be elements of S such that $w=s_{1} s_{2} \ldots s_{m}$. Note that we do not assume that $s_{1} s_{2} \ldots s_{m}$ is a reduced expression of w. We define a condition (FC) as follows:
(FC) If there exists a pair of integers i and j such that $i<j$ and $s_{i}=s_{j}$ then there exists a pair of integers a and b such that $i<a<b<j, s_{a} s_{i} \neq s_{i} s_{a}$ and $s_{b} s_{i} \neq s_{i} s_{b}$.

Then we have the followings.

(i) If $s_{1} s_{2} \ldots s_{m}$ satisfies the condition (FC) then $s_{1} s_{2} \ldots s_{m}$ is a reduced expression of w and w is fully commutative.
(ii) If W is a simply-laced Coxeter group, $s_{1} s_{2} \ldots s_{m}$ is a reduced expression of w and w is fully commutative, then $s_{1} s_{2} \ldots s_{m}$ satisfies the condition (FC).

Proof. (i) We shall prove the corollary by induction on m.
Case $m \leq 2$. It is obvious.
Case $m \geq 3$. Assume that $s_{1} s_{2} \ldots s_{m}$ is not a reduced expression. By the deletion condition, there exists a pair of integers u and v such that $u<v$ and $w=$ $s_{1} s_{2} \ldots \widehat{s_{u}} \ldots \widehat{s_{v}} \ldots s_{m}$. Thus we have

$$
\begin{equation*}
s_{u} s_{u+1} \ldots s_{v-1}=s_{u+1} \ldots s_{v-1} s_{v} . \tag{3}
\end{equation*}
$$

Note that the condition (FC) holds on $s_{u} s_{u+1} \ldots s_{v-1}$. By the inductive assumption, $s_{u} s_{u+1} \ldots s_{v-1}$ is a reduced expression and is fully commutative. By (3) and Proposition 3.2, we have $s_{u}=s_{v}, s_{u} s_{k}=s_{k} s_{u}$ for any $k \in\{u+1, u+2, \ldots, v-1\}$. This is a contradiction. Accordingly $s_{1} s_{2} \ldots s_{m}$ is a reduced expression of w. If w is not fully commutative then there is a reduced expression $s_{1}^{\prime} s_{2}^{\prime} \ldots s_{m}^{\prime}$ of w converted into $s_{1} s_{2} \ldots s_{m}$ by exchanging adjacent commuting generators several times such that $s_{i}^{\prime}=s_{i+2}^{\prime}$ for some $i \in[m-2]$. Consequently the condition (FC) does not hold. This is a contradiction. Therefore w is fully commutative.
(ii) Assume that there is a pair of integers i and j such that $i<j, s_{i}=s_{j}$ and

$$
c:=\sharp\left\{k \in\{i+1, i+2, \ldots, j-1\} \mid s_{k} s_{i} \neq s_{i} s_{k}\right\} \leq 1 .
$$

Case $c=0$. Then we have $w=s_{1} \ldots \widehat{s_{i}} \ldots \widehat{s_{j}} \ldots s_{m}$. It implies that $s_{1} s_{2} \ldots s_{m}$ cannot be a reduced expression. This is a contradiction.
Case $c=1$. Let k be an integer such that $s_{k} s_{i} \neq s_{i} s_{k}$ and $i+1 \leq k \leq j-1$. By virtue of the case, such k is unique. Then we have

$$
w=s_{1} \ldots \widehat{s_{i}} \ldots s_{i} s_{k} s_{j} \ldots \widehat{s_{j}} \ldots s_{m}
$$

Since W is a simply-laced Coxeter group, we have $s_{i} s_{k} s_{j}=s_{k} s_{i} s_{k}$. This is a contradiction.

By Corollary 3.4, we have the following.
Corollary 3.5 Let W be a simply-laced Coxeter group and let w be an element of W such that $\ell\left(w^{2}\right)=2 \ell(w)$ and w^{2} is fully commutative. Then for any $k \in \mathbb{Z}_{>0}$ we have $\ell\left(w^{k}\right)=k \ell(w)$ and w^{k} is fully commutative. In particular, W is not an $F C$-finite Coxeter group.

Proof. Let $s_{1} s_{2} \ldots s_{m}$ be a reduced expression of w. Then, $s_{1} s_{2} \ldots s_{m} s_{1} s_{2} \ldots s_{m}$ is a reduced expression of w^{2}. By Corollary 3.4(ii) and virtue of the corollary, $s_{1} s_{2} \ldots s_{m} s_{1} s_{2} \ldots s_{m}$ satisfies the condition (FC). We can easily see that

$$
\left(s_{1} s_{2} \ldots s_{m}\right)\left(s_{1} s_{2} \ldots s_{m}\right) \cdots\left(s_{1} s_{2} \ldots s_{m}\right)
$$

also satisfies the condition (FC). By Corollary 3.4(i), we have $\ell\left(w^{k}\right)=k \ell(w)$ and w^{k} is fully commutative.

The following lemma holds on any Coxeter system.
Lemma 3.6 Let (W, S) be a Coxeter system and let x be an element of W. Let s_{1}, s_{2} be elements of S such that $s_{1} s_{2} x$ is an extended reduced expression and that $s_{2} s_{1} s_{2}$ is a reduced expression. If we have $s_{1} \notin$ supp (x) then $s_{2} s_{1} s_{2} x$ is an extended reduced expression.

Proof. Since $s_{1} s_{2} x$ is an extended reduced expression, we have $x<s_{2} x$. On the other hand, we have $x<s_{1} x$ by $s_{1} \notin \operatorname{supp}(x)$. Thus, we obtain $x \in\left\{s_{1}, s_{2}\right\} W$. Remember that $s_{2} s_{1} s_{2}$ is a reduced expression. Hence $s_{2} s_{1} s_{2} x$ is an extended reduced expression.

The following lemma holds on any simply-laced Coxeter system.
Lemma 3.7 Let (W, S) be a simply-laced Coxeter system and let w be a fully commutative element of W. If $s_{1} s_{2} \ldots s_{m}$ is a reduced expression of w then $s_{1} \widehat{s_{2}} s_{3} \ldots s_{m}$ is a reduced expression.

Proof. Assume that $s_{1} \widehat{s_{2}} s_{3} \ldots s_{m}$ is not a reduced expression. Then there exists an integer j such that $3 \leq j \leq m$ and $s_{3} s_{4} \ldots s_{m}=s_{1} s_{3} \ldots \widehat{s_{j}} \ldots s_{m}$. Thus we have $w=$ $s_{1} s_{2} s_{1} \ldots \widehat{s_{j}} \ldots s_{m}$. By our assumption, we can see that we have $s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$. It implies that w is not fully commutative. This is a contradiction. Hence $s_{1} \widehat{s_{2}} s_{3} \ldots s_{m}$ is a reduced expression.

$4 W\left(E_{n}\right)$ is bi-full

Our aim of this section is to prove the following.
Theorem 4.1 Let W be a Coxeter group of type E and let w be an element of W. If w is fully commutative then w is fully covering.

The following proposition is well-known. In fact we can easily prove it by the notion of a 321-avoiding permutation. However we prove it without terms of a 321avoiding permutation.

Proposition 4.2 Let W be a Weyl group of type A_{n}. Then a fully commutative element w of W is fully covering.

Before we prove the proposition above, we show one lemma.
Notation 4.3 Let $s_{1} s_{2} \ldots s_{m}$ be a reduced expression of an element of W and let α be an element of S. Put

$$
g_{\alpha}\left(s_{1} s_{2} \ldots s_{m}\right):=\sharp\left\{i \in[m] \mid s_{i}=\alpha\right\} .
$$

By Lemma 3.1(i), if w is fully commutative, then we can define

$$
g_{\alpha}(w):=g_{\alpha}\left(s_{1} s_{2} \ldots s_{m}\right),
$$

where $s_{1} s_{2} \ldots s_{m}$ is a reduced expression of w.

Lemma 4.4 Let w be an element of W and let $s_{1} s_{2} \ldots s_{m}$ be a reduced expression of w. Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$ be a subset of supp (w) satisfying the following conditions (1),(2), and (3).
(1) $\alpha_{i} s=s \alpha_{i}$ for any $i \in[r]$ and for any $s \in \operatorname{supp}(w)-\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$.
(2) $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\rangle$ is a Weyl group of type A_{r} with its relation defined by Figure 3.

$$
{\stackrel{\rightharpoonup}{\alpha_{1}}}_{\alpha_{2}}^{\bullet} \dot{\alpha}_{r-1}^{\bullet} \quad \stackrel{\alpha}{r}_{r}
$$

Figure 3: Coxeter diagram of type A_{r}

(3) $g_{\alpha_{1}}\left(s_{1} s_{2} \ldots s_{m}\right) \geq 2$.

Then w is not fully commutative.
Proof. By the condition (3), there exists a pair of integers a and b such that

$$
a<b, \quad s_{a}=s_{b}=\alpha_{1}, \quad \alpha_{1} \notin \operatorname{supp}\left(s_{a+1} s_{a+2} \ldots s_{b-1}\right) .
$$

We shall prove by induction on r.
Case $r=1$. Since α_{1} is commutative to any element of $\operatorname{supp}(w)-\left\{\alpha_{1}\right\}$, we have $w=s_{1} \ldots \widehat{s_{a}} \ldots \widehat{s_{b}} \ldots s_{m}$. It implies that $s_{1} s_{2} \ldots s_{m}$ is not a reduced expression of w. This is a contradiction.
Case $r \geq 2$. Note that α_{1} is not commutative to α_{2} and is commutative to others.
Subcase 1. $g_{\alpha_{2}}\left(s_{a+1} s_{a+2} \ldots s_{b-1}\right)=0$. By a similar argument to the case $r=1$, this is a contradiction.

Subcase 2. $g_{\alpha_{2}}\left(s_{a+1} s_{a+2} \ldots s_{b-1}\right)=1$. There exists an integer c such that $a<c<b, s_{c}=\alpha_{2}$. By virtue of Subcase 2 and the condition (2), we have

$$
w=s_{1} \ldots \widehat{s_{a}} \ldots \alpha_{1} \alpha_{2} \alpha_{1} \ldots \widehat{s_{b}} \ldots s_{m}=s_{1} \ldots \widehat{s_{a}} \ldots \alpha_{2} \alpha_{1} \alpha_{2} \ldots \widehat{s_{b}} \ldots s_{m} .
$$

Therefore w is not fully commutative.
Subcase 3. $g_{\alpha_{2}}\left(s_{a+1} s_{a+2} \ldots s_{b-1}\right) \geq 2$. Put $w^{\prime}:=s_{a+1} \ldots s_{b-1}$. Then it is easy to see that w^{\prime} and $\left\{\alpha_{2}, \ldots, \alpha_{r}\right\}$ satisfy the conditions (1), (2), and (3). By the inductive assumption, w^{\prime} is not fully commutative. It follows from Lemma 3.1(iv) that w is not fully commutative.

Proof of Proposition 4.2. Let m be the length of w, that is, we have $m=\ell(w)$.
We shall prove by induction on m.
Case $m \leq 2$. It is obvious.
Case $m \geq 3$. Let $s_{1} s_{2} \ldots s_{m}$ be a reduced expression of w.
We check if $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression or not. It is sufficient to handle with cases $1<i<m$.

Case 1. $\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right)=\operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)$. Since W is a Weyl group of type A_{n}, there exists an element s_{0} of $\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right)$ such that $\sharp\left\{s \in \operatorname{supp}(w) \mid s s_{0} \neq\right.$
$\left.s_{0} s\right\} \leq 1$. By virtue of Case 1, we have $g_{s_{0}}\left(s_{1} s_{2} \ldots s_{m}\right) \geq 2$. By Lemma 4.4, w is not fully commutative. This is a contradiction.

Case 2. $\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right) \neq \operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)$.
Subcase 2-1. $\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right)-\operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right) \neq \emptyset$.
Put $J:=\operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)$. Then there exists a pair of $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$ such that $w^{J} w_{J} s_{i} s_{i+1} \ldots s_{m}$ is an extended reduced expression of w. By Lemma $3.1(\mathrm{iv}), w_{J} s_{i} s_{i+1} \ldots s_{m}$ is also fully commutative. By virtue of Subcase $2-1$, we have $w^{J} \neq e$. It implies that

$$
\ell\left(w_{J} s_{i} s_{i+1} \ldots s_{m}\right)<\ell(w) .
$$

By the inductive assumption, we have

$$
w_{J} s_{i+1} s_{i+2} \ldots s_{m} \lessdot w_{J} s_{i} s_{i+1} \ldots s_{m}, \quad w_{J} s_{i+1} s_{i+2} \ldots s_{m} \in W_{J}
$$

By the definition of W^{J}, we have

$$
\ell\left(w^{J} w_{J} s_{i+1} s_{i+2} \ldots s_{m}\right)=\ell(w)-1 .
$$

Thus it follows that $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression.
Subcase 2-2. $\operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)-\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right) \neq \emptyset$. We can prove by a similar discussion above.

Therefore it implies that $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression.
Furthermore we shall show two lemmas in preparation for proof of Theorem 4.1.
Lemma 4.5 Let (W, S) be a Coxeter system of type D_{r+3} with its relation defined by Figure 2 $(r \geq 1)$. Put $J:=S-\left\{\alpha_{1}\right\}$. Let w be a fully commutative element of ${ }^{J} W$ and let $s_{1} s_{2} \ldots s_{m}$ be a reduced expression of w. If $\alpha_{1}, \beta, \gamma$ are elements of $\operatorname{supp}(w)$ then we have the followings.
(i) $r+3 \leq m, s_{1} s_{2} \ldots s_{r+3}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta \gamma$.
(ii) For any $s \in J$, $s w$ is not fully commutative.
(iii) $m \leq 2 r+4$.
(iv) If $m \geq r+4$ then $s_{r+4} s_{r+5} \ldots s_{m}=u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2 r+5-m}$ where $\alpha_{r+1}=u$.

Proof. In this proof, we sometimes denote u by α_{r+1}.
(i) By $w \in{ }^{J} W$ and $\operatorname{supp}(w)-J=\left\{\alpha_{1}\right\}$, we have $s_{1}=\alpha_{1}$. Assume that $s_{2} \neq \alpha_{2}$. Then we can easily obtain

$$
s_{2} \in S-\left\{\alpha_{1}, \alpha_{2}\right\} \subseteq J, \quad w=s_{2} s_{1} \widehat{s_{2}} s_{3} \ldots s_{m}
$$

This is a contradiction. Thus $s_{2}=\alpha_{2}$. Now we show that if $s_{1} s_{2} \ldots s_{k}=\alpha_{1} \alpha_{2} \ldots \alpha_{k}$ then $s_{k+1}=\alpha_{k+1}$ for $2 \leq k \leq r$. Note that we have $s_{k+1} \neq \alpha_{k}$ since $s_{1} s_{2} \ldots s_{m}$ is a reduced expression. Assume that $s_{k+1}=\alpha_{j}$ for some $1 \leq j \leq k-1$. Then

$$
\alpha_{j} \alpha_{j+1} \ldots \alpha_{k} \alpha_{k+1}=\alpha_{j} \alpha_{j+1} \alpha_{j} \alpha_{j+2} \alpha_{j+3} \ldots \alpha_{k} .
$$

$\operatorname{By} \alpha_{j} \alpha_{j+1} \alpha_{j}=\alpha_{j+1} \alpha_{j} \alpha_{j+1}, \alpha_{j} \alpha_{j+1} \ldots \alpha_{k} \alpha_{k+1}$ is not fully commutative. By Lemma $3.1(\mathrm{iv}), w$ is also not fully commutative. This is a contradiction. If $s_{k+1} \in S-$
$\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k+1}\right\} \subseteq J$ then we obtain $s_{k+1} w<w$. This is a contradiction. Hence $s_{k+1}=\alpha_{k+1}$. By the inductive assumption, we obtain $s_{1} s_{2} \ldots s_{r} s_{r+1}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u$. If $s_{r+2} \in\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$ then w is not fully commutative. This is not the case. If $s_{r+2}=u$ then $\ell(w) \neq m$. This is also not the case. Thus we obtain $s_{r+2}=\beta$ or γ. Hence we have

$$
s_{1} s_{2} \ldots s_{r} s_{r+1} s_{r+2}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta \text { or } \alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma
$$

Case $s_{1} s_{2} \ldots s_{r} s_{r+1} s_{r+2}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta$. By a similar argument, we have $s_{r+3}=$ γ.
Case $s_{1} s_{2} \ldots s_{r} s_{r+1} s_{r+2}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma$. By a similar argument, we have $s_{r+3}=$ β.

Since β is commutative to γ, we obtain

$$
s_{1} s_{2} \ldots s_{r+3}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta \gamma
$$

Furthermore, by an argument above, we have $r+3 \leq m$.
(ii) By $w \in{ }^{J} W, s s_{1} s_{2} \ldots s_{m}$ is a reduced expression of $s w$. By (i), there is a reduced expression of $s s_{1} s_{2} \ldots s_{r+3}$ which is

$$
\begin{cases}\alpha_{1} \ldots \alpha_{k-2} \alpha_{k} \alpha_{k-1} \alpha_{k} \ldots \alpha_{r+1} \beta \gamma, & \text { if } s=\alpha_{k} \\ \alpha_{1} \ldots \alpha_{r} \beta u \beta \gamma, & \text { if } s=\beta \\ \alpha_{1} \ldots \alpha_{r} \gamma u \gamma \beta, & \text { if } s=\gamma\end{cases}
$$

Thus, $s \alpha_{1} \alpha_{2} \ldots \alpha_{r+3}$ is not fully commutative. By Lemma 3.1(iv), $s w$ is also not fully commutative.
(iii) and (iv) By Corollary 3.4(ii) and the lemma (i), it is easy to show that we have

$$
s_{r+4} s_{r+5} \cdots s_{t}=u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2 r+5-t}
$$

for any t such that $r+4 \leq t \leq 2 r+4$ and $t \leq m$. Assume $m>2 r+4$. It implies that

$$
s_{1} s_{2} \ldots s_{2 r+5}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta \gamma u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1} s_{2 r+5}
$$

Since $s_{1} s_{2} \ldots s_{2 r+5}$ is a reduced expression, we have $s_{2 r+5} \in J$. By a similar argument of the proof of (ii), it follows that w is not fully commutative. This is a contradiction. Therefore we obtain $m \leq 2 r+4$.

From now on, we assume that (W, S) is a Coxeter system of type $E_{r+4}(r \geq 0)$ with its relation defined by Figure 1. Note that a Coxeter system of type E_{4} (resp. $\left.E_{5}\right)$ is a Coxeter system of type $A_{4}\left(\right.$ resp. $\left.D_{5}\right)$.

Lemma 4.6 Let (W, S) be a Coxeter system of type $E_{r+4}(r \geq 1)$. Put $J:=S-\left\{\alpha_{1}\right\}$. Let w be a fully commutative element of ${ }^{J} W$ and let $s_{1} s_{2} \ldots s_{m}$ be a reduced expression of w. Then we have the followings.
(i) If $\alpha_{1}, \beta_{1}, \gamma \in \operatorname{supp}(w)$ then sw is not fully commutative for all $s \in J$.
(ii) Assume $\alpha_{1}, \beta_{2}, \gamma \in \operatorname{supp}(w), \beta_{1} \notin \operatorname{supp}(w)$ and $s \in J$. If sw is fully commutative then $s=\beta_{1}$.
(iii) Assume $g_{\alpha_{1}}(w) \geq 2$ and $s \in J$ such that sw is fully commutative. Then $w=$ $\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \ldots \alpha_{2} \alpha_{1}$ and $s=\beta_{1}$.
(iv) Assume $g_{\alpha_{1}}(w) \geq 3$ and $w \in{ }^{J} W \cap W^{J}$. Then there exists an element v of $W_{S-\left\{\alpha_{1}, \alpha_{2}\right\}}$ such that

$$
\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \alpha_{1} \beta_{1} v \beta_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}\right)
$$

is an extended reduced expression of w and that $\beta_{1} v \beta_{1} \in{ }^{S-\left\{\beta_{1}\right\}} W \cap W^{S-\left\{\beta_{1}\right\}}$.
Remark 4.7 Let (W, S) be a Coxeter system of type \tilde{E}_{7} with its relation defined by Figure 7. Then Lemma 4.6(i) cannot hold on this Coxeter system. For example, put $w:=\alpha_{1} \alpha_{2} \alpha_{3} u \beta_{3} \beta_{2} \gamma u \alpha_{3} \beta_{3} u \gamma \alpha_{2} \alpha_{3} u \beta_{3} \beta_{2} \beta_{1}$. Then w is fully commutative and we have $\alpha_{1}, \beta_{1}, \gamma \in \operatorname{supp}(w)$ and $w \in{ }^{S-\left\{\alpha_{1}\right\}} W$. However $\beta_{1} w$ is also fully commutative.

Proof of Lemma 4.6. In this proof, we sometimes denote u by α_{r+1}.
(i) If there exists a pair of not empty subsets S_{1} and S_{2} of S such that $\operatorname{supp}(w)=$ $S_{1} \cup S_{2}, S_{1} \cap S_{2}=\emptyset$, and that any element of S_{1} is commutative to any element of S_{2}, then w cannot be contained in ${ }^{J} W$. By $\alpha_{1}, \gamma, \beta_{1} \in \operatorname{supp}(w)$, we have $\operatorname{supp}(w)=S$. By Lemma 4.5 and $\left\{s \in S \mid \beta_{1} s \neq s \beta_{1}\right\}=\left\{\beta_{2}\right\}$, we can easily see that there exists an extended reduced expression of w which is $\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta_{2} \beta_{1} \gamma y$ for some $y \in W$. By a similar argument of the proof of Lemma 4.5(ii), it follows that $s w$ is not fully commutative.
(ii) Since w is fully commutative and we have $\beta_{1} \notin \operatorname{supp}(w), \beta_{1} w$ is fully commutative. If we have $s \in J-\left\{\beta_{1}\right\}$ then $s w$ is not fully commutative by Lemma 4.5(ii).
(iii) By our assumption and Corollary 3.4(ii), there exists a pair of elements x_{1} and x_{2} of W and exists an element z of $\left\langle\beta_{1}, \beta_{2}, \gamma\right\rangle$ such that we have $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\} \subseteq$ $\operatorname{supp}\left(x_{1}\right) \cap \operatorname{supp}\left(x_{2}\right)$ and that $x_{1} u z u x_{2}$ is an extended reduced expression of w. By Corollary 3.4(ii), we can obtain $z \in\left\{\beta_{2} \gamma, \beta_{1} \beta_{2} \gamma, \beta_{2} \beta_{1} \gamma\right\}$. Thus we have $\left\{\alpha_{1}, \alpha_{2}, \ldots\right.$, $\left.\alpha_{r}, u, \gamma, \beta_{2}\right\} \subseteq \operatorname{supp}(w)$. Since (i) holds and there exists $s \in J$ such that $s w$ is fully commutative, we have $\beta_{1} \notin \operatorname{supp}(w)$. By Lemma $4.5\left(\right.$ iii) and $g_{\alpha_{1}}(w) \geq 2$, we can obtain $w=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta_{2} \gamma u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}$. By using (ii), we have $s=\beta_{1}$.
(iv) By $w \in{ }^{J} W \cap W^{J}$ and $g_{\alpha_{1}}(w) \geq 3$, we have $s_{1}=s_{m}=\alpha_{1}$ and $\alpha_{1} \in \operatorname{supp}\left(s_{2} \ldots\right.$ s_{m-1}). If we write $s_{1} s_{2} \ldots s_{m-1}=w_{1} w_{2}$ by some $w_{1} \in W^{J}, w_{2} \in W_{J}$ then $w_{2} \neq e$ and $g_{\alpha_{1}}\left(w_{1}\right) \geq 2$. Let s be an element of J and let y be an element of W_{J} such that $w_{2}=s y$ and $\ell\left(w_{2}\right)=1+\ell(y)$. Note that $\ell\left(w_{1} s\right)=\ell\left(w_{1}\right)+1$. By using (iii), we have

$$
w_{1}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}
$$

and $s=\beta_{1}$. Hence $\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}\right) \beta_{1} y \alpha_{1}$ is an extended reduced expression of w. Rewrite $\alpha_{1} \beta_{1} y \alpha_{1}=w_{2}^{\prime} w_{1}^{\prime}$ for some $w_{1}^{\prime} \in{ }^{J} W$ and $w_{2}^{\prime} \in W_{J}$. By $\beta_{1} \alpha_{1}=\alpha_{1} \beta_{1}$, we have $w_{2}^{\prime} \neq e$ and $g_{\alpha_{1}}\left(w_{1}^{\prime}\right) \geq 2$. Let s^{\prime} be an element of J and let z be an element of W_{J} such that $w_{2}^{\prime}=z s^{\prime}$ and $\ell\left(w_{2}^{\prime}\right)=\ell(z)+1$. By using (iii), we have

$$
w_{1}^{\prime}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}
$$

and $s^{\prime}=\beta_{1}$. Hence $z \beta_{1}\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}\right)$ is an extended reduced expression of $\alpha_{1} \beta_{1} y \alpha_{1}$. Note that $z \beta_{1} w_{1}^{\prime}$ is also a fully commutative element and
$\alpha_{1} z \beta_{1} w_{1}^{\prime}<z \beta_{1} w_{1}^{\prime}$. By Proposition 3.2, we have $\alpha_{1} \notin \operatorname{supp}\left(z \beta_{1}\right)$. Thus α_{1} is commutative to any element of $\operatorname{supp}\left(z \beta_{1}\right)$. Hence we have $z \in W_{S-\left\{\alpha_{1}, \alpha_{2}\right\}}$. Therefore we have

$$
\begin{aligned}
w & =\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \ldots \alpha_{2}\right) z \beta_{1} \alpha_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \ldots \alpha_{1}\right) \\
& =\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \ldots \alpha_{2}\right) \alpha_{1} z \beta_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \ldots \alpha_{1}\right) .
\end{aligned}
$$

Assume that $z=e$. Then,

$$
\alpha_{2} z \beta_{1} \alpha_{1} \alpha_{2}=\alpha_{2} \beta_{1} \alpha_{1} \alpha_{2}=\beta_{1} \alpha_{2} \alpha_{1} \alpha_{2} .
$$

This is a contradiction. Thus we have $z \neq e$. Let $s^{\prime \prime}$ be an element of $S-\left\{\alpha_{1}, \alpha_{2}\right\}$ and let v be an element of $W_{S-\left\{\alpha_{1}, \alpha_{2}\right\}}$ such that $z=s^{\prime \prime} v$ and $\ell(z)=1+\ell(v)$. By using (iii), $s^{\prime \prime}=\beta_{1}$ and

$$
\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \alpha_{1} \beta_{1} v \beta_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}\right)
$$

is an extended reduced expression of w. Since $\alpha_{2} \notin \operatorname{supp}\left(\beta_{1} v \beta_{1}\right)$,

$$
\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \beta_{1} v \beta_{1} \alpha_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}\right)
$$

is also an extended reduced expression of w. Moreover, by using (iii), we can easily see the following for a fully commutative element x. If $\left(\alpha_{1} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \ldots \alpha_{1}\right) x$ (resp. $\left.x\left(\alpha_{1} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \ldots \alpha_{1}\right)\right)$ is an extended reduced expression then $x \in W^{S-\left\{\beta_{1}\right\}}$ (resp. $x \in^{S-\left\{\beta_{1}\right\}} W$). Thus, we can obtain $\beta_{1} v \beta_{1} \in{ }^{S-\left\{\beta_{1}\right\}} W \cap W^{S-\left\{\beta_{1}\right\}}$.

Proof of Theorem 4.1. Let w be a fully commutative element of $W\left(E_{r+4}\right)$. We shall prove that w is fully covering by induction on r. Note that we sometimes denote u by α_{r+1}.
Case $r=0$. It has been proven since we regard $W\left(E_{4}\right)$ as $W\left(A_{4}\right)$.
Case $r \geq 1$. If we have $\alpha_{1} \notin \operatorname{supp}(w)$ then we can regard $w \in W\left(E_{r+3}\right)$. By the inductive assumption, w is fully covering. By a similar way, if we have $u \notin \operatorname{supp}(w)$ or $\gamma \notin \operatorname{supp}(w)$ or $\beta_{2} \notin \operatorname{supp}(w)$ then w is fully covering. Thus we assume that we have $\alpha_{1}, u, \gamma, \beta_{2} \in \operatorname{supp}(w)$.

Assume that we have $\ell(w)=m$. We shall prove that w is fully covering by induction on m. It is easy to verify in cases $m \leq 2$. Thus we handle with cases $m \geq 3$. Put $J:=S-\left\{\alpha_{1}\right\}$ and we check the following three cases.

1. $w \notin W^{J}$, 2. $w \not{ }^{J} W, 3 . w \in{ }^{J} W \cap W^{J}$.

Case 1 By an assumption of this case, there exists a pair of $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$ such that $w_{J} \neq e$ and $w=w^{J} w_{J}$. Let $s_{1} s_{2} \ldots s_{m}$ be a reduced expression of w such that $s_{1} s_{2} \ldots s_{k}=w^{J}$ and $s_{k+1} \ldots s_{m}=w_{J}$. For $1 \leq i \leq m$, we shall prove that $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression. Note that by $w^{J}=s_{1} s_{2} \ldots s_{k} \in W^{J}$, $J=S-\left\{\alpha_{1}\right\}$ and $\alpha_{1} \in \operatorname{supp}(w)$, we have $s_{k}=\alpha_{1}$ and $\ell\left(w_{J}\right)<\ell(w)$.

Assume that we have $k+1 \leq i \leq m$. Then by Lemma 3.1(iv) w_{J} is fully commutative. By the inductive assumption on $m, s_{k+1} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression. By the definition of $W^{J}, s_{1} \ldots s_{k} s_{k+1} \ldots \widehat{s_{i}} \ldots s_{m}$ is also a reduced expression.

Next assume that we have $1 \leq i \leq k$.

Subcase 1-1 $\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right) \neq \operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)$. By a similar argument in the proof of Case 2 of Proposition 4.2, we can easily see that $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression.

Subcase 1-2 $\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right)=\operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)$ and $\alpha_{1} \notin \operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right)$. By $\alpha_{1} \in \operatorname{supp}(w)$, we have $s_{i}=\alpha_{1}$. By $s_{k}=\alpha_{1}$, we have $i=k$. By $\beta_{2}, \gamma \in \operatorname{supp}(w)$, we have $\alpha_{1}, \beta_{2}, \gamma \in \operatorname{supp}\left(s_{1} s_{2} \ldots s_{k}\right)$. Assume $\beta_{1} \in \operatorname{supp}\left(s_{1} s_{2} \ldots s_{k}\right)$. By $s_{1} s_{2} \ldots s_{k} \in$ W^{J} and Lemma 4.6(i), $s_{1} s_{2} \ldots s_{k} s_{k+1}$ is not fully commutative. This is a contradiction. Assume $\beta_{1} \notin \operatorname{supp}\left(s_{1} s_{2} \ldots s_{k}\right)$. By $s_{1} s_{2} \ldots s_{k} \in W^{J}$ and Lemma 4.6(ii), we have $s_{k+1}=\beta_{1}$. By $i=k$, we have

$$
\beta_{1} \in \operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)-\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right) .
$$

This is a contradiction.
Subcase 1-3 $\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right)=\operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)$ and $\alpha_{1} \in \operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right)$. By $i \leq k$ and $s_{k}=\alpha_{1}$, we have $g_{\alpha_{1}}\left(s_{1} s_{2} \ldots s_{k}\right) \geq 2$. Since $s_{1} s_{2} \ldots s_{k} \in W^{J}$ and Lemma 4.6(iii), we obtain

$$
s_{1} s_{2} \ldots s_{i} \ldots s_{k}=\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}
$$

and $s_{k+1}=\beta_{1}$. Thus

$$
\beta_{1} \in \operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)-\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right) .
$$

This is a contradiction.
Case 2 We omit the proof since we can state this case by a similar argument as in the proof of Case 1.

Case 3 Let $s_{1} s_{2} \ldots s_{m}$ be a reduced expression of w. For $1 \leq i \leq m$, we prove that $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression. By Lemma 3.7, it is enough to prove for cases $3 \leq i \leq m-2$. Note that by an assumption of this case we have $s_{1}=s_{m}=\alpha_{1}$ and $s_{2}=s_{m-1}=\alpha_{2}$.

Subcase 3-1 $\alpha_{1} \notin \operatorname{supp}\left(s_{2} s_{3} \ldots s_{m-1}\right)$. Assume that $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is not a reduced expression. By the inductive assumption on $m, s_{1} \ldots \widehat{s}_{i} \ldots s_{m-1}$ is a reduced expression. Thus there exists an integer j such that $1 \leq j \leq i-1$ and $s_{1} \ldots \widehat{s_{i}} \ldots s_{m-1}=$ $s_{1} \ldots \widehat{s_{j}} \ldots \widehat{s_{i}} \ldots s_{m-1} s_{m}$. It implies $s_{j} \ldots \widehat{s_{i}} \ldots s_{m-1}=s_{j+1} \ldots \widehat{s_{i}} \ldots s_{m}$. Accordingly $s_{j} \ldots \widehat{s_{i}} \ldots s_{m}$ is not a reduced expression. If $j>1$ then $s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is not a reduced expression. This is a contradiction. Thus $j=1$ and $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m-1}=$ $s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$. Put $x:=s_{3} \ldots \widehat{s_{i}} \ldots s_{m-1}$. Then $s_{2} s_{1} s_{2} x<s_{1} s_{2} x$ and $\alpha_{1} \notin \operatorname{supp}(x)$. By Lemma 3.6, we have $s_{1}=\alpha_{1}, s_{2}=\alpha_{2}$ and $\ell\left(\alpha_{2} \alpha_{1} \alpha_{2}\right)=3$. This is a contradiction. Hence $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression.

Subcase 3-2 $\alpha_{1} \in \operatorname{supp}\left(s_{2} s_{3} \ldots s_{m-1}\right)$. By Lemma 4.6(iv), there exists an element v of W such that we have $\alpha_{1}, \alpha_{2} \notin \operatorname{supp}(v)$ and that

$$
\left(\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \alpha_{1} \beta_{1} v \beta_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{1}\right)
$$

is an extended reduced expression of w. Note $v=s_{2 r+6} s_{2 r+7} \ldots s_{m-2 r-4}$. If $1 \leq$ $i \leq 2 r+5$ or $m-2 r-3 \leq i \leq m$ then $\operatorname{supp}\left(s_{1} s_{2} \ldots s_{i-1}\right) \neq \operatorname{supp}\left(s_{i+1} s_{i+2} \ldots s_{m}\right)$. By a similar discussion in the proof of Case 2 of Proposition 4.2, $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$
is a reduced expression. The rest case is $2 r+6 \leq i \leq m-2 r-4$. Assume that $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is not a reduced expression. By a similar discussion in Subcase 3-1, we have $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m-1}=s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$. Put $v^{\prime}:=s_{2 r+6} s_{2 r+7} \ldots \widehat{s_{i}} \ldots s_{m-2 r-4}$. Then

$$
\begin{aligned}
& \alpha_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \alpha_{1} \beta_{1} v^{\prime} \beta_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \\
& =\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \alpha_{1} \beta_{1} v^{\prime} \beta_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \alpha_{1}
\end{aligned}
$$

and both sides are extended reduced expressions.
By the subword property, we have

$$
\begin{aligned}
& \alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta_{2} \beta_{1} \\
& \leq\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \alpha_{1} \beta_{1} v^{\prime} \beta_{1}\left(\alpha_{2} \ldots \alpha_{r} u \gamma \beta_{2} u \alpha_{r} \alpha_{r-1} \ldots \alpha_{2}\right) \alpha_{1} .
\end{aligned}
$$

On the other hand, a reduced expression of $\alpha_{1} \alpha_{2} \ldots \alpha_{r} u \beta_{2} \beta_{1}$ is unique. This is a contradiction. Therefore $s_{1} s_{2} \ldots \widehat{s_{i}} \ldots s_{m}$ is a reduced expression.

Remark 4.8 Let w be an element of a Coxeter group. In [4], w is said to be shortbraid avoiding if and only if any reduced expression $s_{1} s_{2} \ldots s_{m}$ for w satisfies $s_{i} \neq s_{i+2}$ for all $i \in[m-2]$. It is easy to see that a fully covering element is short-braid avoiding, and that a short-braid avoiding element is fully commutative. By the same method as the one adopted in the proof of [4, Theorem 1] and Theorem 4.1, we can easily obtain the following which includes Fan's result [4, Theorem 1]. Let (W, S) be a Coxeter system and let $\left(W_{0}, S_{0}\right)$ be a Coxeter system defined by $S_{0}:=S$ as a set and $m(s, t):=3$ if $m(s, t)>3$ in W or $m(s, t)$ in W_{0} is defined as $m(s, t)$ in W if $m(s, t) \leq 3$ for $s, t \in S_{0}$. If W_{0} is a Coxeter group of type A, D or E then for $w \in W$, w is a short-braid avoiding element if and only if w is a fully covering element.

Although it is already shown by Fan that a Coxeter group of type E is an FC-finite Coxeter group, we give another proof.

Proposition 4.9 For $n \geq 3$, we have

$$
\max \left\{\ell(w) \mid w \in W\left(E_{n}\right)^{F C}\right\} \leq 2^{n-1}-1,
$$

where we put $W\left(E_{3}\right):=\left\langle\beta_{1}, \beta_{2}, \gamma\right\rangle$. In particular, we have $\left|W\left(E_{n}\right)^{F C}\right|<\infty$.
Note that the above inequality is not best possible (see the proof of this proposition).

Remark 4.10 In [10], H. Tagawa showed

$$
\max \left\{c^{-}(x) \mid x \in W\left(A_{n}\right)\right\}=\left\lfloor(n+1)^{2} / 4\right\rfloor,
$$

where $\lfloor a\rfloor$ is the largest integer equal or less than a. By the formula, it is easy to show

$$
\max \left\{\ell(x) \mid x \in W\left(A_{n}\right)^{F C}\right\}=\left\lfloor(n+1)^{2} / 4\right\rfloor .
$$

Note that it does not hold on case of type D. In fact, we have

$$
\max \left\{c^{-}(x) \mid x \in W\left(D_{4}\right)\right\}=8>6=\max \left\{\ell(x) \mid x \in W\left(D_{4}\right)^{F C}\right\} .
$$

Proof of Proposition 4.9. For $n \geq 3$, we put

$$
a_{n}:=\max \left\{\ell(w) \mid w \in W\left(E_{n}\right)^{F C}\right\}
$$

and we shall prove $a_{n} \leq 2^{n-1}-1$ by induction on n.
Case $n=3,4$. By Remark 4.10, we have

$$
a_{3}=3=2^{2}-1, \quad a_{4}=6<2^{3}-1 .
$$

Case $n \geq 5$. We claim $\ell(w) \leq 2^{n-1}-1$ for any $w \in W\left(E_{n}\right)^{F C}$. If $g_{\alpha_{1}}(w)=0$ then we can regard $w \in W\left(E_{n-1}\right)^{F C}$. Thus

$$
\ell(w) \leq a_{n-1} \leq 2^{n-2}-1<2^{n-1}-1 .
$$

Now we assume $g_{\alpha_{1}}(w) \geq 1$. Put $W:=W\left(E_{n}\right)$ and $J:=S-\left\{\alpha_{1}\right\}$.
Subcase $w \notin W^{J}$. Then there exists a pair of $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$ such that $w_{J} \neq e$ and $w=w^{J} w_{J}$. Assume $g_{\alpha_{1}}(w)=1$. Then since $w^{J} \in W^{J}$ and $J=S-\left\{\alpha_{1}\right\}$, there exists an element z of W such that $\alpha_{1} \notin \operatorname{supp}(z)$ and $w^{J}=z \alpha_{1}$. Then $z \alpha_{1} w_{J}$ is an extended reduced expression of w and we can regard $z, w_{J} \in W\left(E_{n-1}\right)^{F C}$. Thus

$$
\ell(w) \leq 2 a_{n-1}+1 \leq 2\left(2^{n-2}-1\right)+1=2^{n-1}-1 .
$$

Assume $g_{\alpha_{1}}(w) \geq 2$. Then by Lemma 4.6, we have $w^{J}=\alpha_{1} \alpha_{2} \ldots \alpha_{n-4} u \gamma \beta_{2} u \alpha_{n-4} \alpha_{n-5}$ $\ldots \alpha_{1}$. On the other hand, we can regard $w_{J} \in W\left(E_{n-1}\right)^{F C}$. Hence we have

$$
\ell(w) \leq 2 n-4+a_{n-1} \leq 2(n-2)+2^{n-2}-1 \leq 2^{n-1}-1 .
$$

Subcase $w \not{ }^{J} W$. We can prove this case by a similar discussion above.
Subcase $w \in{ }^{J} W \cap W^{J}$. Then there exists an element z of $W\left(E_{n}\right)$ such that $\alpha_{1} z \alpha_{1}$ is an extended reduced expression of w. If we have $g_{\alpha_{1}}(z)=0$ then we have $z \in W\left(E_{n-1}\right)^{F C}$. Thus we have

$$
\ell(w) \leq a_{n-1}+2 \leq 2^{n-2}+1 \leq 2^{n-1}-1 .
$$

Assume that we have $g_{\alpha_{1}}(z) \geq 1$. Then there exists an element v of $W\left(E_{n}\right)^{F C}$ such that $v \in W_{S-\left\{\alpha_{1}, \alpha_{2}\right\}}$ and that

$$
\left(\alpha_{1} \alpha_{2} \ldots \alpha_{n-4} u \gamma \beta_{2} u \alpha_{n-4} \alpha_{n-5} \ldots \alpha_{2}\right) \alpha_{1} \beta_{1} v \beta_{1}\left(\alpha_{2} \ldots \alpha_{n-4} u \gamma \beta_{2} u \alpha_{n-4} \alpha_{n-5} \ldots \alpha_{1}\right)
$$

is an extended reduced expression of w by Lemma 4.6(iv). Hence we have

$$
\ell(w) \leq 4 n-9+a_{n-2} \leq 4 n-9+2^{n-3}-1 \leq 2^{n-1}-1 .
$$

This completes the proof of the proposition.

5 Not bi-full Coxeter groups

Our aim of this section is to prove the following.
Theorem 5.1 Let W be an irreducible Coxeter group which is neither of type A, D nor E. Then W is not a bi-full Coxeter group. In other words, there is an element of W which is fully commutative and which is not fully covering. In particular, if W is a simply-laced Coxeter group then we have $\left|W^{F C}\right|=\infty$.

First we prove the following.
Proposition 5.2 Let $\left(W_{1}, S_{1}\right)$ (resp. $\left(W_{2}, S_{2}\right)$, $\left.\left(W_{3}, S_{3}\right),\left(W_{4}, S_{4}\right),\left(W_{5}, S_{5}\right)\right)$ be a Coxeter system of type $\tilde{A}_{n}(n \geq 2)$ (resp. $\tilde{D}_{r+3}(r \geq 1), \tilde{E}_{6}, \tilde{E}_{7}, I_{2}(m)(m \geq 4)$) with its relation defined by Figure 4 (resp Figure 5, Figure 6, Figure 7, Figure 8). Then for each $1 \leq i \leq 5$ there exists an element w_{i} of W_{i} such that w_{i} is fully commutative and w_{i} is not fully covering. Furthermore we have $\left|W_{i}^{F C}\right|=\infty$ for any $1 \leq i \leq 4$.

Figure 4: Coxeter diagram of type \tilde{A}_{n}

Figure 5: Coxeter diagram of type \tilde{D}_{r+3}

Figure 6: Coxeter diagram of type \tilde{E}_{6}.

Figure 7: Coxeter diagram of type \tilde{E}_{7}.

Figure 8: Coxeter diagram of type $I_{2}(m)$.

Proof. Case (1),(2),(3),(4). For $1 \leq i \leq 4$, let w_{i} and y_{i} be elements of W_{i} defined by putting as follows:

```
w
y
w
```



```
w3 := u\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{}\mp@subsup{\alpha}{2}{}u\mp@subsup{\beta}{2}{}\mp@subsup{\gamma}{2}{}u\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{1}{}\mp@subsup{\gamma}{1}{}\mp@subsup{\gamma}{2}{}u\mp@subsup{\alpha}{2}{}\mp@subsup{\beta}{2}{}u\mp@subsup{\gamma}{2}{}\mp@subsup{\gamma}{1}{}\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}u\mp@subsup{\gamma}{2}{}\mp@subsup{\alpha}{2}{}u\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{}\mp@subsup{\alpha}{1}{}\mp@subsup{\alpha}{2}{}u\mp@subsup{\beta}{2}{}\mp@subsup{\gamma}{2}{}u,
y3 :=u\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{}\mp@subsup{\alpha}{2}{}u\mp@subsup{\beta}{2}{}\mp@subsup{\gamma}{2}{}u\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{1}{}\mp@subsup{\gamma}{1}{}\mp@subsup{\gamma}{2}{}u\mp@subsup{\alpha}{2}{}\mp@subsup{\beta}{2}{}\widehat{u}\mp@subsup{\gamma}{2}{}\mp@subsup{\gamma}{1}{}\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}u\mp@subsup{\gamma}{2}{}\mp@subsup{\alpha}{2}{}u\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{}\mp@subsup{\alpha}{1}{}\mp@subsup{\alpha}{2}{}u\mp@subsup{\beta}{2}{}\mp@subsup{\gamma}{2}{}u,
w4 := \beta}\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{3}{}u\mp@subsup{\alpha}{3}{}\gammau\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{}\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{3}{}u\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\gammau\mp@subsup{\alpha}{3}{}\mp@subsup{\beta}{3}{}u\gamma\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{3}{}u\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{
         }\mp@subsup{\alpha}{1}{}\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{3}{}u\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\gammau\mp@subsup{\alpha}{3}{}\mp@subsup{\beta}{3}{}u\gamma\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{3}{}u\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{}\mathrm{ ,
y4 := \beta}\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{3}{}u\mp@subsup{\alpha}{3}{}\gammau\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{}\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{3}{}u\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\gammau\mp@subsup{\alpha}{3}{}\mp@subsup{\beta}{3}{}u\gamma\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{3}{}u\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{
    \widehat{\mp@subsup{\alpha}{1}{}}\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{3}{}u\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\gammau\mp@subsup{\alpha}{3}{}\mp@subsup{\beta}{3}{}u\gamma\mp@subsup{\alpha}{2}{}\mp@subsup{\alpha}{3}{}u\mp@subsup{\beta}{3}{}\mp@subsup{\beta}{2}{}\mp@subsup{\beta}{1}{}.
```

By Corollary 3.4, we can easily see that all w_{i} are fully commutative. By direct calculation, we can obtain

$$
\begin{aligned}
y_{1}= & \widehat{\alpha_{1}} \alpha_{2} \ldots \alpha_{n} \widehat{\alpha_{0}} \alpha_{1} \alpha_{2} \ldots \widehat{\alpha_{n}}, \\
y_{2}= & \widehat{u_{r}} u_{r-1} \ldots u_{1} \alpha \beta u_{1} u_{2} \ldots u_{r} \gamma \delta \widehat{u_{r}} u_{r-1} \ldots u_{1} \alpha \beta u_{1} u_{2} \ldots u_{r} \gamma \delta \widehat{u_{r}}, \\
y_{3}= & \widehat{u} \beta_{2} \beta_{1} \alpha_{2} u \beta_{2} \gamma_{2} u \alpha_{2} \alpha_{1} \gamma_{1} \gamma_{2} u \alpha_{2} \beta_{2} \widehat{u} \gamma_{2} \gamma_{1} \beta_{1} \beta_{2} u \gamma_{2} \alpha_{2} u \beta_{2} \beta_{1} \alpha_{1} \alpha_{2} u \beta_{2} \gamma_{2} \widehat{u}, \\
y_{4}= & \left.\widehat{\beta_{1} \beta_{2} \beta_{3} u \alpha_{3} \gamma u \beta_{3} \beta_{2} \beta_{1} \alpha_{2} \alpha_{3} u \beta_{3} \beta_{2} \gamma u \alpha_{3} \beta_{3} u \gamma \alpha_{2} \alpha_{3} u \beta_{3} \beta_{2} \beta_{1}} \begin{array}{rl}
& \times \widehat{\alpha_{1}} \alpha_{2} \alpha_{3} u \beta_{3} \beta_{2} \gamma u \alpha_{3} \beta_{3} u \gamma \alpha_{2} \alpha_{3} u \beta_{3} \beta_{2} \widehat{\beta_{1}} .
\end{array} . . \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

Thus, y_{i} is not covered by w_{i}, that is, w_{i} is not fully covering for $1 \leq i \leq 4$. For $1 \leq i \leq 4$, let x_{i} be an element of W_{i} defined by putting as follows:

$$
\begin{aligned}
& x_{1}:=\alpha_{0} \alpha_{1} \ldots \alpha_{n}, \\
& x_{2}:=u_{r} u_{r-1} \ldots u_{1} \alpha \beta u_{1} u_{2} \ldots u_{r} \gamma \delta, \\
& x_{3}:=u \beta_{2} \gamma_{2} u \alpha_{2} \alpha_{1} \gamma_{1} \gamma_{2} u \alpha_{2} \beta_{2} u \gamma_{2} \gamma_{1} \beta_{1} \beta_{2} u \gamma_{2} \alpha_{2} u \beta_{2} \beta_{1} \alpha_{1} \alpha_{2}, \\
& x_{4}:=\alpha_{1} \alpha_{2} \alpha_{3} u \beta_{3} \beta_{2} \gamma u \alpha_{3} \beta_{3} u \gamma \alpha_{2} \alpha_{3} u \beta_{3} \beta_{2} \beta_{1} .
\end{aligned}
$$

Then we can easily see that x_{i}^{2} is also fully commutative and that we have $\ell\left(x_{i}^{2}\right)=$ $2 \ell\left(x_{i}\right)$ for $1 \leq i \leq 4$. Therefore we have $\left|W_{i}^{F C}\right|=\infty$ for any $1 \leq i \leq 4$ by Corollary 3.5.

Case (5). Put $w_{5}:=\alpha_{1} \alpha_{2} \alpha_{1}$. By Lemma 3.1(iii), w_{5} is fully commutative. Since $\alpha_{1} \widehat{\alpha_{2}} \alpha_{1}(=e)$ is not covered by w_{5}, w_{5} is not fully covering.

Proof of Theorem 5.1. Recall that W is neither of type A, D, nor E. It is easy to show that a Coxeter diagram associated to W contains at least one of the Coxeter diagrams in Figure $4,5,6,7$ and 8. Therefore W is not a bi-full Coxeter group, by Proposition 5.2. Furthermore if W is a simply-laced Coxeter group then we can easily see that there are infinite its fully commutative elements by Proposition 5.2.

References

[1] S. Billey, W. Jockusch, and R. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993) 345-374.
[2] M. Dyer, Hecke algebras and reflections in Coxeter groups, Ph.D. Thesis, University of Sydney, 1987.
[3] C. K. Fan, A Hecke algebra quotient and properties of commutative elements of a Weyl group, Ph. D. Thesis, MIT, 1995.
[4] C. K. Fan, Schubert Varieties and Short Braidedness, Transformation Groups 3 (1) (1998) 51-56.
[5] R. M. Green, On 321-avoiding permutations in affine Weyl groups, J. Algebraic Combin. 15 (2002) 241-252.
[6] M. Hagiwara, Minuscule heaps over Dynkin diagrams of type \tilde{A}, Elect. J. Combin. 11 (2004) $\sharp R 3$.
[7] M. Hagiwara, Minuscule heaps over simply-laced, star-shaped Dynkin diagrams, preprint.
[8] J. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990.
[9] J. R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996) 353-385.
[10] H. Tagawa, On the maximum value of the first coefficients of Kazhdan-Lusztig polynomials for symmetric groups, J. Math. Sci. Univ. Tokyo 1 (1994) 461-469.

[^0]: *Partially supported by Grant-in-Aid for Scientific Research (C)(2) No. 15540028, Japan Society for the Promotion of Science.

