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( ABSTRACT. In this paper we find new classes of posets which generalize the d-complete posets. In
fact the d-complete posets are classified into 15 irreducible classes in the paper “Dynkin diagram classi-
fication of A-minuscule Bruhat lattices and of d-complete posets” (J. Algebraic Combin. 9 (1999), 61
—94) by R. A. Proctor. Here we present six new classes of posets of hook-length property which gener-
alize the 15 irreducible classes. Our method to prove the hook-length property is based on R. P. Stan-
ley’s (P,w)-partitions and Schur function identities.

INTRODUCTION

In [2] R. A. Proctor defined d-complete posets, which include shapes, shifted shapes and trees, by certain local structural
conditions and showed that arbitrary connected d-complete poset is decomposed into a slant sum of irreducible ones.
He also classified 15 exhaustive classes of irreducible d-complete components and described all of the members of each
class. In this paper we define six types of posets, and these six types generalize the 15 types of irreducible d-complete
posets. First we enumerate eight product formulas involving the Schur functions, which will be applied to obtain the
hook formulas of the new posets, which we call “leat posets”.

SCHUR FUNCTION IDENTITIES

In this section we state eight Cauchy type identities of the Schur functions, which will be applied in the following sections.
The Schur function sy(x1,x9,...,xy) of variables 1, x9,...,xy with respect to a partition A\ = (A1, A9, ..., Ap) is

defined to be
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For a positive integer m, we write Xy, = (1,22, ...,Tm), Ym = (Y1,Y2,--.,ym) and Zy, = (21, 29, ..., Zm) in short.
Let &2 denote the set of all partitions. If A = (Aq, A9, ... ) is a partition and a and b are positive integers such that a < b,
then we write Ala, b], in short, for the partition (Ag, Agt1, ..., Ap). If Xon = (21,29, ..., 2y,) is an m-tuple of variables,
then we use the notation || Xy, := [ [ z; for brevity. We proved the following variants of the Cauchy identity.

Theorem 2.1. Let m be a positive integer. (i) If m > 1, then we have
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(ii) If m > 2, and v = 1 or 2, then we have
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(iii) If v = 1 or 2, then we have
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(iv) If v =1 or 2, then we have
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(v) If v =1 or 2, then we have

r r

Mo Doy
> 2w s\ (Xopr1) | [ sapic1.20(Y2) | ] sapiisn(Z2)
| ] | ]
)\:()\1,)\2,...,)\%4_1)692 1=1 1=1

2
[T (X = 2oyl Xora [ Y2l "l Z2]")
2r4+1 172 '
(1 = wao || Xor Y2l Zol") T T (1 = 2iziz0) Ili<ic jeopa (1 — zizj | Yalll| Z2]))
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(vi)) f r > 1, v € {1,2} and 1 < s # t < 3, then we have
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RESUME. Dans cet article nous trouvons des nouvelles classes de posets qui généralisent les posets |

d-complets. En fait, les posets d-completes sont classés en 15 classes irréducibles dans 'article “Dynkin
diagram classification of A-minuscule Bruhat lattices and of d-complete posets™ (J. Algebraic Combin.
9 (1999), 61 — 94) par R. A. Proctor. Dans cet article nous présentons six nouvelles classes de posets
ayant la proprié¢té de longueur de crochet, qui généralisent les 15 classes irréductibles. Notre méthode
pour prover la propriété de longueur de crochet est basée sur les (P, w)-partitions de R. P. Stanley et
identités de fonctions de Schur.

Hook LENGTH POSETS

The aim of this section is to define six new classes of hook length posets which include any irreducible d-complete poset.
We call these classes basic leaf posets. Let P be a partilly ordered set (poset). A P-partition is a map ¢ from P
to {0,1,2,...} satisfying that o(x) > ¢(y) if < y in P, i.e. ¢ is order reversing map. We denote the set of all
P-partitions by <7 (P). We say that P is a hook-length poset if there exists a map h from P to {1,2,...} satisfying

. 1
Z quEP p(z) — H — qh<x)'
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It is well known that shapes, shifted shapes and trees are hook length posets. From now on, we denote the set of the
strictly decreasing sequences of nonnegative integers by .. Basic leaf posets are defined as follows:

Definition 3.1. (i) Let m > 2 be an integer, and let o = (a1, a9, ..., ) and B = (81,32, . .., Bm) be elements
of .. Let 0 and f be nonnegative integers which satisty f > ¢ > 0. Then, a ginkgo & f(a, B,6) is a poset defined by
the diagram in Figure 1. In the diagram cs denotes the chain of length 0.
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Figure 1: A gingko Figure 2: A bamboo

(ii) Let m > 3 be an integer, and let a« = (a1, 9, ..., am), B = (61,52, -- -, Bm—1), ¥ = (71,72) be elements of .#.
Let 0 and f be nonnegative integers which satisty f > 814+ 90 > 0. For v = 1,2, we define a poset %f(a,ﬂ,'y, 0, v)
called a bamboo by the diagram of Figure 2.

(iii) Let a = (a1, a9,a3), B = (61, B2, 03, B4, B5) and v = (71,72) be elements of .. Let § and f be nonnegative
integers which satisty f > 01+ 9 > 0. For v = 1,2, an ivy J¢(a, 8,7, 0,v) is a poset defined by the diagram of Figure
3.
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Figure 3: An ivy Figure 4: A wisteria

(iv) Let m > 4 be a positive integer, and let ¢ = (g, @9, ..., ), B = (81, B2) and v = (71, 72) be elements of .. Let
0 and f be nonnegative integers which satisty f > v + 9 > 0. Assume v = 1 or 2. We define a poset 20 f(a, B,,0,v)
called a wisteria by the diagram of Figure 4. In the diagram, 3 and -« appear alternately in the place under the left and
cx equals ¢, 45 (resp. cg ) if m is even (resp. m is odd).

(v) Let m > 4 be a positive integer, let o = (a1, a9, a3), B = (81,52, ---, Om—1) and v = (v1,72) be elements of .7.
Let 0 and f be nonnegative integers which satisty f > 140 > 0. Fix positive integers s, t which satisty 1 < s <t < 3,
and let v € {s,t} if m is even, and let v € {1,2} if m is odd. Write a := (as, a¢). Then, a poset §¢(e, 3,7,9, s,t,v)
called a fir is defined in the diagram of Figure 5. In the diagram, - and a appear alternatively in the place following
upper right @, and ¢ equals ¢, 4§ (resp. ¢, 1) if m is even (resp. m is odd).
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Figure 5: A fir Figure 6: A chrysanthemum

(vi) Let av = (a1, 9, 3), B = (81, B2, B3, B4) and v = (71, 72) be elements of .. Let § and f be nonnegative integers
which satisty f > 814+ 0 > 0. For v =1,2,3,4, a chrysanthemum Qf(oz, B,7,0,v) is a poset defined by the diagram
in Figure 6. We call these new classes of posets, i.e. ginkgoes, bamboos, ivies, wisterias, firs and chrysantemums, basic
leaf posets.

By applying our Cauchy type identities described in Theorem 2.1, lattice path method and R. P. Stanley’s (P,w)-
partitions, we obtained the following.

Corollary 3.2. Any basic leaf poset is a hook length poset. In particular, any d-complete poset is a hook length
poset since it can be realized as a leaf poset.

A general leaf poset defined from the basic ones by using an operation called “joint sum”, which is a similar operation
called “slant sum” introduced in [2] in order to combine two irreducible d-complete posets to generate a general d-complete
poset. We conclude that any leaf poset is a hook length poset.
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