Littlewood's (Cauchy's) formulae of Schur functions and constant term expressions for the refined enumeration problems of TSSCPPs

Masao Ishikawa ${ }^{\dagger}$

\dagger Department of Mathematics
Tottori University

Combinatorics and Statistical Physics,
ESI, Vienna, Austria

Introduction

Abstract

We consider several enumeration problems of TSSCPPs (totally symmetric self-complementary plane partitions) and establish certain bijections with (domino) plane partitions under some conditions. We show that the enumaration of the (domino) plane partitions is closely related to Littlewood's formulae or Cauchy's formulae of Schur functions.

Plan of My Talk

(1) Plane partitions
(2) Schur functions

3 RCSPPs (Restricted column-strict plane partitions)

Plan of My Talk

(1) Plane partitions
(2) Schur functions
(3) RCSPPs (Restricted column-strict plane partitions)

Plan of My Talk

(1) Plane partitions
(2) Schur functions
(3) RCSPPs (Restricted column-strict plane partitions)

Twisted Bender-Knuth involutions
© RCSDPPs (Restricted column-strict Domino plane partitions) with all rows of even lenth

Plan of My Talk

(1) Plane partitions
(2) Schur functions
(3) RCSPPs (Restricted column-strict plane partitions)
(4) Twisted Bender-Knuth involutions

RCSDPPs (Restricted column-strict Domino plane partitions) with all rows of even lenth
a Tixicted domino plane nartitions

Plan of My Talk

(1) Plane partitions
(2) Schur functions
(3) RCSPPs (Restricted column-strict plane partitions)
(4) Twisted Bender-Knuth involutions
(6) RCSDPPs (Restricted column-strict Domino plane partitions) with all rows of even lenth
© Twisted domino plane partitions
(7) RCSDPPs (Restricted column-strict Domino plane partitions) with all columns of even lenth

Plan of My Talk

(1) Plane partitions
(2) Schur functions
(3) RCSPPs (Restricted column-strict plane partitions)
(4) Twisted Bender-Knuth involutions
(6) RCSDPPs (Restricted column-strict Domino plane partitions) with all rows of even lenth
(6) Twisted domino plane partitions

RCSDPPs (Restricted column-strict Domino plane partitions)
with all columns of even lenth
© RCSPPs (Restricted column-stric plane partitions) with restricted row length

Plan of My Talk

(1) Plane partitions
(2) Schur functions
(3) RCSPPs (Restricted column-strict plane partitions)
(4) Twisted Bender-Knuth involutions
(5) RCSDPPs (Restricted column-strict Domino plane partitions) with all rows of even lenth
(6) Twisted domino plane partitions
(7) RCSDPPs (Restricted column-strict Domino plane partitions) with all columns of even lenth

Plan of My Talk

(1) Plane partitions
(2) Schur functions
(3) RCSPPs (Restricted column-strict plane partitions)
(4) Twisted Bender-Knuth involutions
(5) RCSDPPs (Restricted column-strict Domino plane partitions) with all rows of even lenth
(6) Twisted domino plane partitions
(1) RCSDPPs (Restricted column-strict Domino plane partitions) with all columns of even lenth
(8) RCSPPs (Restricted column-strict plane partitions) with restricted row length

Bijections

TSSCPPs	RCSPPs		RCSPPs
	RCSPPs invariant under $\tilde{\rho}$	Twisted Domino PPs	RCSDPPs with all columns of even Cength
	RCSPPs invariant under $\widetilde{\gamma}$		RCSDPPS with all rows of even length

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns.
then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i, j \geq 1} \pi_{i j}=n$, then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the weight n.

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i, j \geq 1} \pi_{i j}=n$, then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the weight n.

Example

A plane partition of 14

3	2	1	1	0	\ldots
2	2	1	0	\ldots	
1	1	0	0	\ldots	
0	0	0	\ddots		

Shape

Definition
Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.

The shape of π is the ordinary partition λ for which π has λ_{i}
nonzero parts in the ith row.

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i}
nonzero parts in the ith row.

$$
\text { - We sav that } \pi \text { has } r \text { rows if } r=\ell(\lambda) \text {. Similarly, } \pi \text { has } s
$$

Shape

Definition
Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s A plane partition of shape (432) with 3 rows and 4 columns:

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s columns if $s=\ell\left(\lambda^{\prime}\right)$.

[^0]
Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s columns if $s=\ell\left(\lambda^{\prime}\right)$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of $1: 1$
- Plane partitions of 2 :

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of $1: 1$
- Plane partitions of 2:
- Plane partitions of 3 :

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of 1 : 1
- Plane partitions of 2 :

$$
\begin{array}{|l|l|l|}
\hline 2 & 1 & 1 \\
\hline & & \begin{array}{|l|}
\hline 1 \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Plane partitions of 3 :

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of 1 : 1
- Plane partitions of 2 :

$$
\begin{array}{|l|l|l|}
\hline 2 & 1 & 1 \\
\hline & & \begin{array}{|l|}
\hline 1 \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Plane partitions of 3 :

Ferrers graph

Definition

The Ferrers graph $D(\pi)$ of π is the subset of \mathbb{P}^{3} defined by

$$
D(\pi)=\left\{(i, j, k): k \leq \pi_{i j}\right\}
$$

Ferrers graph

Definition

The Ferrers graph $D(\pi)$ of π is the subset of \mathbb{P}^{3} defined by

$$
D(\pi)=\left\{(i, j, k): k \leq \pi_{i j}\right\}
$$

Example

Ferrers graph

TSSCPP

Definition

In the paper "Self-complementary totally symmetric plane partitions" (J. Combin. Theory Ser. A 42, (1986), 277-292), W.H. Mills, D.P. Robbins and H. Rumsey have defined totally symmetric self-complementary plane partitions (TSSCPPs).
\qquad plane partitions of size $2 n$ by

TSSCPP

Definition

In the paper "Self-complementary totally symmetric plane partitions" (J. Combin. Theory Ser. A 42, (1986), 277-292), W.H. Mills, D.P. Robbins and H. Rumsey have defined totally symmetric self-complementary plane partitions (TSSCPPs). A plane partition is said to be totally symmetric self-complementary plane parition of size $2 n$ if it is totally symmetric and ($2 n, 2 n, 2 n$)-self-complementary.
We denote the set of all self-complementary totally symmetric

TSSCPP

Definition

In the paper "Self-complementary totally symmetric plane partitions" (J. Combin. Theory Ser. A 42, (1986), 277-292), W.H. Mills, D.P. Robbins and H. Rumsey have defined totally symmetric self-complementary plane partitions (TSSCPPs).
A plane partition is said to be totally symmetric self-complementary plane parition of size $2 n$ if it is totally symmetric and ($2 n, 2 n, 2 n$)-self-complementary.
We denote the set of all self-complementary totally symmetric plane partitions of size $2 n$ by \mathscr{S}_{n}.

Column-strictness

Definition

A plane partition is said to be column-strict if it is strictly decreasing in coulumns.

is a column-strict plane partition.

Column-strictness

Definition

A plane partition is said to be column-strict if it is strictly decreasing in coulumns.

Example

5	5	4	3	3	3	1
4	4	2	2	1	1	
3	2	1	1			
1	1					

is a column-strict plane partition.

Column-strictness

Definition

A plane partition is said to be column-strict if it is strictly decreasing in coulumns.

Example

is a column-strict plane partition.
We write $\boldsymbol{x}^{\pi}=x_{1}^{6} x_{2}^{3} x_{3}^{4} x_{4}^{3} x_{5}^{2}$, where $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots\right)$ is a tuple of variables.

Schur functions

Schur functions

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple of variables.

where the sum runs over all column-strict plane partitions of shape

\qquad

Schur functions

Schur functions

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple of variables.

where the sum runs over all column-strict plane partitions of shape

\qquad

Schur functions

Schur functions

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple of variables.
The Schur function $s_{\lambda}(x)$ is, by definition,

$$
s_{\lambda}(\boldsymbol{x})=\sum_{\pi} \boldsymbol{x}^{\pi}
$$

where the sum runs over all column-strict plane partitions of shape λ and each part $\leq n$.

Schur functions

Schur functions

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple of variables.
The Schur function $s_{\lambda}(x)$ is, by definition,

$$
s_{\lambda}(\boldsymbol{x})=\sum_{\pi} \boldsymbol{x}^{\pi}
$$

where the sum runs over all column-strict plane partitions of shape λ and each part $\leq n$.

- Schur functions are symmetric functions.

Schur functions

Schur functions

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple of variables.
The Schur function $s_{\lambda}(x)$ is, by definition,

$$
s_{\lambda}(\boldsymbol{x})=\sum_{\pi} \boldsymbol{x}^{\pi}
$$

where the sum runs over all column-strict plane partitions of shape λ and each part $\leq n$.

- Schur functions are symmetric functions.
- $s_{\lambda}(\boldsymbol{x})=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}}$

Schur functions are known as the irreducible characters of the

Schur functions

Schur functions

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple of variables.
The Schur function $s_{\lambda}(x)$ is, by definition,

$$
s_{\lambda}(\boldsymbol{x})=\sum_{\pi} \boldsymbol{x}^{\pi}
$$

where the sum runs over all column-strict plane partitions of shape λ and each part $\leq n$.

- Schur functions are symmetric functions.
- $s_{\lambda}(\boldsymbol{x})=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}}{\operatorname{det}\left(x_{i}^{n-j}\right)_{1 \leq i, i \leq n}}$
- Schur functions are known as the irreducible characters of the general linear groups.

An Example of Schur functions

Example

If $\lambda=(22)$ and $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then the followings are column-strict plane partitions with all parts ≤ 3.

2	2
1	1

3	3
1	1

3	2
2	1

3	3
2	1

3	3
2	2

Hence we have
$s_{\left(2^{2}\right)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}$.

Littlewood type identities

Littlewood's identity

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be n-tuple of variables. Then

$$
\sum_{\lambda} s_{\lambda}(\boldsymbol{x})=\prod_{i=1}^{n}\left(1-x_{i}\right)^{-1} \prod_{1 \leq i<j \leq n}\left(1-x_{i} x_{j}\right)^{-1}
$$

where the sum runs over all partitions λ such that $\ell(\lambda) \leq n$.
where the sum runs over all partitions λ contained in the rectangle

Littlewood type identities

Littlewood's identity

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be n-tuple of variables. Then

$$
\sum_{\lambda} s_{\lambda}(\boldsymbol{x})=\prod_{i=1}^{n}\left(1-x_{i}\right)^{-1} \prod_{1 \leq i<j \leq n}\left(1-x_{i} x_{j}\right)^{-1}
$$

where the sum runs over all partitions λ such that $\ell(\lambda) \leq n$.
A Littlewood type identity (the bounded version)

$$
\sum_{\substack{\lambda \\ \lambda_{1} \leq k}} s_{\lambda}(\boldsymbol{x})=\frac{\operatorname{det}\left(x_{i}^{j-1}-x_{i}^{k+2 n-j}\right)_{1 \leq i, j \leq n}}{\prod_{i=1}^{n}\left(1-x_{i}\right) \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(1-x_{i} x_{j}\right)},
$$

where the sum runs over all partitions λ contained in the rectangle $n \times k$.

Caushy type identities

The Caushy identity

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ be n-tuples of variables.

$$
\sum_{\lambda} s_{\lambda}(\boldsymbol{x}) s_{\lambda}(\boldsymbol{y})=\prod_{i, j=1}^{n}\left(1-x_{i} y_{j}\right)^{-1}
$$

where the sum runs over all partitions λ such that $\ell(\lambda) \leq n$.

Caushy type identities

The Caushy identity

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ be n-tuples of variables.

$$
\sum_{\lambda} s_{\lambda}(\boldsymbol{x}) s_{\lambda}(\boldsymbol{y})=\prod_{i, j=1}^{n}\left(1-x_{i} y_{j}\right)^{-1}
$$

where the sum runs over all partitions λ such that $\ell(\lambda) \leq n$.

A Cauchy type identity

An easy consequence of the above identity is the following:

$$
\sum_{(\lambda, \mu)} s_{\lambda}(\boldsymbol{x}) s_{\mu}(\boldsymbol{y})=\prod_{i=1}^{n}\left(1-x_{i}\right)^{-1} \prod_{i, j=1}^{n}\left(1-x_{i} y_{j}\right)^{-1}
$$

where the sum runs over all pair (λ, μ) of partitions such that $\lambda \supseteq \mu$ and $\lambda \backslash \mu$ is a horizontal strip.

Caushy type identities

The Caushy identity

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ be n-tuples of variables.

$$
\sum_{\lambda} s_{\lambda}(\boldsymbol{x}) s_{\lambda}(\boldsymbol{y})=\prod_{i, j=1}^{n}\left(1-x_{i} y_{j}\right)^{-1}
$$

where the sum runs over all partitions λ such that $\ell(\lambda) \leq n$.

A Cauchy type identity

An easy consequence of the above identity is the following:

$$
\sum_{(\lambda, \mu)} s_{\lambda}(\boldsymbol{x}) s_{\mu}(\boldsymbol{y})=\prod_{j=1}^{n}\left(1+y_{j}\right) \prod_{i, j=1}^{n}\left(1-x_{i} y_{j}\right)^{-1}
$$

where the sum runs over all pair (λ, μ) of partitions such that $\lambda \subseteq \mu$ and $\mu \backslash \lambda$ is a vertical strip.

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition.

Example

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{1} consists of the single element \emptyset.

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{2} consists of the following 2 elements:

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{2} consists of the following 2 elements:

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{3} consists of the followng 7 elements:

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{3} consists of the followng 7 elements:

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $m+n-j$.

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $m+n-j$.
(C3) c has at most n columns.

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $m+n-j$.
(C3) c has at most n columns.

Example

$\mathscr{P}_{0,4}$ consists of the followng 1 element:
\emptyset

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $m+n-j$.
(C3) c has at most n columns.

Example

$\mathscr{P}_{1,3}$ consists of the followng 8 elements:

$$
\begin{array}{lll|}
\hline 0 & 1 & 2 & \frac{3}{3} \\
\hline
\end{array}
$$

More General Definition

Example

$\mathscr{P}_{2,2}$ consists of the followng 25 elements:

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
0 & 1 & 1 & 1 & 2 & 2 & 1 & 2 & 2 & \left.\begin{array}{|l|l|l|}
\hline 2 & 2 & 1 \\
\hline 1 & & \\
\hline 1 & &
\end{array} \right\rvert\,
\end{array}
\end{aligned}
$$

$\mathscr{P}_{3,1}=\mathscr{P}_{4,0}$ consists of 42 elements.

Another bijection

Theorem

Let n be a positive integer.
Then we can consruct a bijection from \mathscr{S}_{n} to \mathscr{P}_{n}.

Another bijection

Theorem

Let n be a positive integer.
Then we can consruct a bijection from \mathscr{S}_{n} to \mathscr{P}_{n}.

Example

$$
n=3
$$

Another bijection

Theorem

Let n be a positive integer.
Then we can consruct a bijection from \mathscr{S}_{n} to \mathscr{P}_{n}.

Example

$$
n=3
$$

Another bijection

Theorem

Let n be a positive integer.
Then we can consruct a bijection from \mathscr{S}_{n} to \mathscr{P}_{n}.

Example

Another bijection

Theorem

Let n be a positive integer.
Then we can consruct a bijection from \mathscr{S}_{n} to \mathscr{P}_{n}.

Example

$$
n=3
$$

Another bijection

Theorem

Let n be a positive integer.
Then we can consruct a bijection from \mathscr{S}_{n} to \mathscr{P}_{n}.

Example

$$
n=3
$$

Another bijection

Theorem

Let n be a positive integer.
Then we can consruct a bijection from \mathscr{S}_{n} to \mathscr{P}_{n}.

Example

Another bijection

Theorem

Let n be a positive integer.
Then we can consruct a bijection from \mathscr{S}_{n} to \mathscr{P}_{n}.

Example

$$
n=3
$$

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example
$n=7, c \in \mathscr{P}_{3}$, Saturated parts

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example
$n=7, c \in \mathscr{P}_{3}, k=1, \bar{U}_{1}(c)=3$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example

$$
n=7, c \in \mathscr{P}_{3}, k=2, \bar{U}_{2}(c)=5
$$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example

$$
n=7, c \in \mathscr{P}_{3}, k=3, \bar{U}_{3}(c)=3
$$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example

$$
n=7, c \in \mathscr{P}_{3}, k=4, \bar{U}_{4}(c)=4
$$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example

$$
n=7, c \in \mathscr{P}_{3}, k=5, \bar{U}_{5}(c)=4
$$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example
$n=7, c \in \mathscr{P}_{3}, k=6, \bar{U}_{6}(c)=3$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

Mills-Robbins-Rumsey statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k.

Example

$$
n=7, c \in \mathscr{P}_{3}, k=7, \bar{U}_{7}(c)=3
$$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1$)'s, for each k.

```
parts of c equal to }k\mathrm{ or }k-1\mathrm{ . If both of }k\mathrm{ and }k-1\mathrm{ appear in the
same column, we say k and k - 1 paired.
```


The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$.

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$. If both of k and $k-1$ appear in the same column, we say k and $k-1$ paired.
acts on the following column-strict plane partitions:

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$. If both of k and $k-1$ appear in the same column, we say k and $k-1$ paired. The other unpaired k 's and $k-1$'s are swaped in each row.
acts on the following column-strict plane partitions:

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$. If both of k and $k-1$ appear in the same column, we say k and $k-1$ paired. The other unpaired k 's and $k-1$'s are swaped in each row.

Example

f_{2} acts on the following column-strict plane partitions:

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$. If both of k and $k-1$ appear in the same column, we say k and $k-1$ paired. The other unpaired k 's and $k-1$'s are swaped in each row.

Example

f_{2} acts on the following column-strict plane partitions:

The Bender-Knuth involution

Remark

f_{2} gives a proof of

$$
s_{\lambda}\left(x_{2}, x_{1}, x_{3}, \ldots, x_{n}\right)=s_{\lambda}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) .
$$

Hence $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a symmetric function.

Twisted Bender-Knuth involution

Definition

If $k \geq 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_{k}$ on \mathscr{P}_{n} which swaps k 's and $(k-1)$'s where we ignore saturated $(k-1)$ when we perform a swap.

Twisted Bender-Knuth involution

Definition

If $k \geq 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_{k}$ on \mathscr{P}_{n} which swaps k 's and $(k-1)$'s where we ignore saturated $(k-1)$ when we perform a swap.

Example

$n=7$ Apply $\widetilde{\pi}_{3}$ to the following $c \in \mathscr{P}_{3}$.

5	5				2
4	4				
3	2				
2	1				
1					

Twisted Bender-Knuth involution

Definition

If $k \geq 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_{k}$ on \mathscr{P}_{n} which swaps k 's and $(k-1)$'s where we ignore saturated $(k-1)$ when we perform a swap.

Example

$n=7$ Apply $\widetilde{\pi}_{3}$ to the following $c \in \mathscr{P}_{3}$.

5	5	4			2
4	4				
3	2				
2	1				
1					

Twisted Bender-Knuth involution

Definition

If $k \geq 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_{k}$ on \mathscr{P}_{n} which swaps k 's and $(k-1)$'s where we ignore saturated $(k-1)$ when we perform a swap.

Example

$n=7 \quad$ Then we obtain the following $\widetilde{\pi}_{3}(c) \in \mathscr{P}_{3}$.

5	5	4			2
4	4	3			
3	3	2			
2	1				
1					

Twisted Bender-Knuth involution

Definition

We define an involution $\tilde{\pi}_{1}$ on \mathscr{P}_{n} similarly assuming the outside of the shape is filled with 0 .

Twisted Bender-Knuth involution

Definition

We define an involution $\tilde{\pi}_{1}$ on \mathscr{P}_{n} similarly assuming the outside of the shape is filled with 0 .

Example

$n=7$ Apply $\widetilde{\pi}_{1}$ to the following $c \in \mathscr{P}_{3}$.

Twisted Bender-Knuth involution

Definition

We define an involution $\tilde{\pi}_{1}$ on \mathscr{P}_{n} similarly assuming the outside of the shape is filled with 0 .

Example

$n=7$ Apply $\widetilde{\pi}_{1}$ to the following $c \in \mathscr{P}_{3}$.

5	5	4	3	2	1
4	4	3	2		
3	1	1			

Flips in words of RCSPP

Definition

We define involutions on \mathscr{P}_{n}

$$
\begin{aligned}
& \widetilde{\rho}=\widetilde{\pi}_{2} \widetilde{\pi}_{4} \widetilde{\pi}_{6} \cdots, \\
& \widetilde{\gamma}=\widetilde{\pi}_{1} \widetilde{\pi}_{3} \widetilde{\pi}_{5} \cdots,
\end{aligned}
$$

and we put $\mathscr{P}_{n}^{\widetilde{\rho}}$ (resp. $\mathscr{P}_{n}^{\widetilde{\gamma}}$) the set of elements \mathscr{P}_{n} invariant under $\widetilde{\rho}$ (resp. $\widetilde{\gamma}$).

Flips in words of RCSPP

Definition

We define involutions on \mathscr{P}_{n}

$$
\begin{aligned}
& \widetilde{\rho}=\widetilde{\pi}_{2} \widetilde{\pi}_{4} \widetilde{\pi}_{6} \cdots, \\
& \widetilde{\gamma}=\widetilde{\pi}_{1} \widetilde{\pi}_{3} \widetilde{\pi}_{5} \cdots,
\end{aligned}
$$

and we put $\mathscr{P}_{n}^{\widetilde{\rho}}$ (resp. $\mathscr{P}_{n}^{\widetilde{\gamma}}$) the set of elements \mathscr{P}_{n} invariant under $\widetilde{\rho}$ (resp. $\widetilde{\gamma}$).

Conjecture 4 (Conjiecture 4 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions", J. Combin. Theory Ser. A 42, (1986).)
Let $n \geq 2$ and $r, 0 \leq r \leq n$ be integers. Then the number of elements c in \mathscr{P}_{n} with $\widetilde{\rho}(c)=c$ and $\bar{U}_{1}(c)=r$ would be the same as the number of n by n alternating sign matrices a invariant under the half turn in their own planes (that is $a_{i j}=a_{n+1-i, n+1-i}$ for $1 \leq i, j \leq n)$ and satisfying $a_{1, r}=1$.

Flips in words of RCSPP

Definition

We define involutions on \mathscr{P}_{n}

$$
\begin{aligned}
& \widetilde{\rho}=\widetilde{\pi}_{2} \widetilde{\pi}_{4} \widetilde{\pi}_{6} \cdots, \\
& \widetilde{\gamma}=\widetilde{\pi}_{1} \widetilde{\pi}_{3} \widetilde{\pi}_{5} \cdots,
\end{aligned}
$$

and we put $\mathscr{P}_{n}^{\widetilde{\rho}}$ (resp. $\mathscr{P}_{n}^{\widetilde{\gamma}}$) the set of elements \mathscr{P}_{n} invariant under $\widetilde{\rho}$ (resp. $\widetilde{\gamma}$).

Conjecture 6 (Conijecture 6 of Mills, Robbins and Rumsey, "Sell-complementary totally symmetric plane partitions", J. Combin. Theory Ser. A 42, (1986).)
Let $n \geq 3$ an odd integer and $i, 0 \leq i \leq n-1$ be an integer. Then the number of c in \mathscr{P}_{n} with $\gamma(c)=c$ and $\bar{U}_{2}(c)=i$ would be the same as the number of n by n alternating sign matrices with $a_{i 1}=1$ and which are invariant under the vertical flip (that is $a_{i j}=a_{i, n+1-j}$ for $\left.1 \leq i, j \leq n\right)$.

Invariants under $\widetilde{\rho}$

Example

$\mathscr{P}_{1}^{\widetilde{\rho}}=\{\emptyset\}$

Invariants under $\widetilde{\rho}$

Example
 $\mathscr{P}_{2}^{\tilde{\rho}}=\{0, \square\}$

Invariants under $\widetilde{\rho}$

Example

$\mathscr{P}_{3}^{\widetilde{\rho}}$ is composed of the following 3 RCSPPs:

Invariants under $\widetilde{\rho}$

Example

$\mathscr{P}_{4}^{\tilde{\rho}}$ is composed of the following 10 elements:

Invariants under $\widetilde{\rho}$

Example

$\mathscr{P}_{5}^{\widetilde{\rho}}$ has 25 elements, and $\mathscr{P}_{6}^{\widetilde{\rho}}$ has 140 elements.

Invariants under $\widetilde{\gamma}$

Proposition

If $c \in \mathscr{P}_{n}$ is invariant under $\widetilde{\gamma}$, then n must be an odd integer.

[^1]
Invariants under $\widetilde{\gamma}$

Proposition

If $c \in \mathscr{P}_{n}$ is invariant under $\widetilde{\gamma}$, then n must be an odd integer.

Example

Thus we have $\mathscr{P}_{3}^{\tilde{\gamma}}=\{\boxed{1}\}$,
$\mathscr{P}_{5}^{\bar{\gamma}}$ is composed of the following 3 RCSPPs:

and $\mathscr{P}_{5}^{\tilde{\gamma}}$ has 26 elements.

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

The following $c \in \mathscr{P}_{11}$ is invariant under $\tilde{\gamma}$:

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Remove all 1's from $c \in \mathscr{P}_{11}^{\tilde{\gamma}}$.

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Then we obtain a PP in which each row has even length.

7	7	6	6	3	2
5	5	4	3		
4	3	2	2		

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Identify 3 with 2,5 with 4 , and 7 with 6 .

7	7	6	6	3	2
5	5	4	3		
4	3	2	2		

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Repace 3 and 2 by dominos containing 1,5 and 4 by dominos containing 2, 7 and 6 by dominos containing 3 .

Column-strict domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{D}_{n, m}$ denote the set of column-strict domino plane partitions $d=\left(d_{i j}\right)_{1 \leq i, j}$ such that

Column-strict domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{D}_{n, m}$ denote the set of column-strict domino plane partitions $d=\left(d_{i j}\right)_{1 \leq i, j}$ such that
(D1) d has at most n columns;
(D2)

If a number in a domino which cross the fth column of c is equal to

Column-strict domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{D}_{n, m}$ denote the set of column-strict domino plane partitions $d=\left(d_{i j}\right)_{1 \leq i, j}$ such that
(D1) d has at most n columns;
(D2) each number in a domino which cross the jth column does not exceed $\lceil(n+m-j) / 2\rceil$.

each row (resp. column) of d has even length

Column-strict domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{D}_{n, m}$ denote the set of column-strict domino plane partitions $d=\left(d_{i j}\right)_{1 \leq i, j}$ such that
(D1) d has at most n columns;
(D2) each number in a domino which cross the jth column does not exceed $\Gamma(n+m-j) / 2\rceil$.
If a number in a domino which cross the j th column of c is equal to $\lceil(n+m-j) / 2\rceil$, we call it a saturated part.

Column-strict domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{D}_{n, m}$ denote the set of column-strict domino plane partitions $d=\left(d_{i j}\right)_{1 \leq i, j}$ such that
(D1) d has at most n columns;
(D2) each number in a domino which cross the jth column does not exceed $\Gamma(n+m-j) / 2\rceil$.
If a number in a domino which cross the j th column of c is equal to $\Gamma(n+m-j) / 2\rceil$, we call it a saturated part. Let $\mathscr{D}_{n, m}^{\mathrm{R}}\left(\right.$ resp. $\left.\mathscr{D}_{n, m}^{\mathrm{C}}\right)$ denote the set of all $d \in \mathscr{D}_{n, m}$ which satisfy the condition that
(D3) each row (resp. column) of d has even length.

Column-strict domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{D}_{n, m}$ denote the set of column-strict domino plane partitions $d=\left(d_{i j}\right)_{1 \leq i, j}$ such that
(D1) d has at most n columns;
(D2) each number in a domino which cross the jth column does not exceed $\lceil(n+m-j) / 2\rceil$.
If a number in a domino which cross the j th column of c is equal to $\lceil(n+m-j) / 2\rceil$, we call it a saturated part. Let $\mathscr{D}_{n, m}^{\mathrm{R}}$ (resp. $\left.\mathscr{D}_{n, m}^{\mathrm{C}}\right)$ denote the set of all $d \in \mathscr{D}_{n, m}$ which satisfy the condition that
(D3) each row (resp. column) of d has even length.
When $m=0$, we write \mathscr{D}_{n} for $\mathscr{D}_{n, 0}, \mathscr{D}_{n}^{R}$ for $\mathscr{D}_{n, 0}^{\mathrm{R}}$ and \mathscr{D}_{n}^{C} for $\mathscr{D}_{n, 0}^{C}$.

A bijection

Theorem

Let n be a positive integer. Let $\tau_{2 n+1}$ denote our bijection of $\mathscr{P}_{2 n+1}^{\widetilde{\gamma}}$ onto $\mathscr{D}_{2 n-1}^{\mathrm{R}}$.

A bijection

Theorem

Let n be a positive integer. Let $\tau_{2 n+1}$ denote our bijection of $\mathscr{P}_{2 n+1}^{\tilde{\gamma}}$ onto $\mathscr{D}_{2 n-1}^{\mathrm{R}}$. Then we have $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$.

A bijection

Theorem

Let n be a positive integer. Let $\tau_{2 n+1}$ denote our bijection of $\mathscr{P}_{2 n+1}^{\tilde{\gamma}}$ onto $\mathscr{D}_{2 n-1}^{R}$. Then we have $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$.

Example

$\mathscr{D}_{1}^{\mathrm{R}}=\{\emptyset\}$ is the set of column-strict domino plane partitions with all columns ≤ 0.

A bijection

Theorem

Let n be a positive integer. Let $\tau_{2 n+1}$ denote our bijection of $\mathscr{P}_{2 n+1}^{\widetilde{\gamma}}$ onto $\mathscr{D}_{2 n-1}^{\mathrm{R}}$. Then we have $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$.

Example

$\mathscr{D}_{3}^{\mathrm{R}}$ is composed of the following 3 elements:

This is the set of column-strict domino plane partitions with the first and second columns ≤ 1, other columns ≤ 0 and each row of even length.

Example

Example

$\mathscr{D}_{5}^{\mathrm{R}}$ is the set of column-strict domino plane partitions with the 1st and 2 nd columns ≤ 2, the 3rd and 4th columns ≤ 1, other columns ≤ 0 and each row of even length (26 elements):

Example

Example

$\mathscr{D}_{7}^{\mathrm{R}}$ is the set of column-strict domino plane partitions with the 1st and 2 nd columns ≤ 3, the 3rd and 4 th columns ≤ 2, the 5 rd and 6 th columns ≤ 1, other columns ≤ 0 and each row of even length (646 elements).

Statistics on Domino plane partitions

Definition

For $d \in \mathscr{D}_{n, m}$ and a positive integer $r \geq 1$, let $\bar{U}_{r}(d)$ denote the number of parts equal to r plus the number of saturated parts less than r.

Example

Theorem (Stanton-White, Carré-Leclerc)

We can define a map which associate a pair of column-strict plane partitions in $\mathscr{P}_{n, m}$ with a domino plane partition in $\mathscr{D}_{n, m}$.

Color 0

Color 0

Color 1

Color 1

Example

Theorem (Stanton-White, Carré-Leclerc)

We can define a map which associate a pair of column-strict plane partitions in $\mathscr{P}_{n, m}$ with a domino plane partition in $\mathscr{D}_{n, m}$. Let Φ denote the map which associate the pair $\left(c_{0}, c_{1}\right)$ of column-strict plane partitions with a column-strict domino plane partition d.

Color 0

Color 0

Color 1

Color 1

Domino plane partition

Example

For example, we associate the column-strict domino plane partition

the pair

of plane partitions.

Conditions on shape

Theorem

Let d be a column-strict domino plane partition, and let $\left(c_{0}, c_{1}\right)=\Phi(d)$. Then

Conditions on shape

Theorem

Let d be a column-strict domino plane partition, and let $\left(c_{0}, c_{1}\right)=\Phi(d)$. Then
(i) All columns of d have even length if, and only if, $\operatorname{sh} c_{1} \subseteq \operatorname{sh} c_{0}$ and sh $c_{0} \backslash$ sh c_{1} is a vertical strip.
All rows of d have even length if, and only if, sh $c_{0} \subseteq \operatorname{sh} c_{1}$ and $\operatorname{sh} C_{1} \backslash \operatorname{sh} C_{0}$ is a horizontal strip.

Conditions on shape

Theorem

Let d be a column-strict domino plane partition, and let $\left(c_{0}, c_{1}\right)=\Phi(d)$. Then
(i) All columns of d have even length if, and only if, $\operatorname{sh} c_{1} \subseteq \operatorname{sh} c_{0}$ and sh $c_{0} \backslash \operatorname{sh} c_{1}$ is a vertical strip.
(ii) All rows of d have even length if, and only if, sh $c_{0} \subseteq \operatorname{sh} c_{1}$ and $\operatorname{sh} c_{1} \backslash \operatorname{sh} c_{0}$ is a horizontal strip.

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
Let $u_{j}=(n-j, n-j)$ and $v_{j}=\left(\lambda_{j}+n-j, 0\right)$ for $j=1, \ldots, n$, and let u

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
Let $u_{j}=(n-j, n-j)$ and $v_{j}=\left(\lambda_{j}+n-j, 0\right)$ for $j=1, \ldots, n$, and let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$.

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
Let $u_{j}=(n-j, n-j)$ and $v_{j}=\left(\lambda_{j}+n-j, 0\right)$ for $j=1, \ldots, n$, and let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$. We claim that the $c \in \mathscr{P}_{n}$ of shape λ^{\prime} can be identified with n-tuples of nonintersecting
D-paths in $\mathscr{P}(\boldsymbol{u}, \boldsymbol{v})$.

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
Let $u_{j}=(n-j, n-j)$ and $v_{j}=\left(\lambda_{j}+n-j, 0\right)$ for $j=1, \ldots, n$, and let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$. We claim that the $c \in \mathscr{P}_{n}$ of shape λ^{\prime} can be identified with n-tuples of nonintersecting D-paths in $\mathscr{P}(\boldsymbol{u}, \boldsymbol{v})$.

Example of lattice paths

Example

$n=7, c \in \mathscr{P}_{7}:$ RCSPP

5	5			2	2
4	4			1	
3	2				
2	1				
1					

Example of lattice paths

Example

Lattice paths

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.
(1) We assign the weight

$$
\begin{cases}\prod_{k=j}^{n} t_{k} \cdot x_{j} & \text { if } j=i \\ t_{j} x_{j} & \text { if } j<i,\end{cases}
$$

to the horizontal edge from $u=(i, j)$ to $v=(i+1, j-1)$.

(2) We assign the weight 1 to the vertical edge from $u=(i, j)$ to

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.
(1) We assign the weight

$$
\begin{cases}\prod_{k=j}^{n} t_{k} \cdot x_{j} & \text { if } j=i \\ t_{j} x_{j} & \text { if } j<i\end{cases}
$$

to the horizontal edge from $u=(i, j)$ to $v=(i+1, j-1)$.
(2) We assign the weight 1 to the vertical edge from $u=(i, j)$ to $v=(i, j-1)$.

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.
(1) We assign the weight

$$
\begin{cases}\prod_{k=j}^{n} t_{k} \cdot x_{j} & \text { if } j=i \\ t_{j} x_{j} & \text { if } j<i,\end{cases}
$$

to the horizontal edge from $u=(i, j)$ to $v=(i+1, j-1)$.
(2) We assign the weight 1 to the vertical edge from $u=(i, j)$ to

$$
v=(i, j-1) .
$$

We write

$$
t^{\bar{U}(c)} \boldsymbol{x}^{c}=t_{1}^{\bar{U}_{1}(c)} \cdots t_{n}^{\bar{U}_{n}(c)} x_{1}^{\sharp 1 \text { 's in } c} \cdots x_{n}^{\sharp n ' s ~ i n ~} c .
$$

Generating function

Theorem

Let n be a positive integer.
Then the generating function of all plane partitions $c \in \mathscr{P}_{n}$ of shape λ^{\prime} with the weight $\boldsymbol{t}^{\bar{U}}(c) X^{c}$ is given by

[^2]
Generating function

Theorem

Let n be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$. Then the generating function of all plane partitions $c \in \mathscr{P}_{n}$ of shape λ^{\prime} with the weight $\boldsymbol{t}^{\bar{U}(c)} \boldsymbol{x}^{c}$ is given by
\qquad

Generating function

Theorem

Let n be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$. Then the generating function of all plane partitions $c \in \mathscr{P}_{n}$ of shape λ^{\prime} with the weight $\boldsymbol{t}^{\overline{(c)}} \boldsymbol{x}^{c}$ is given by

$$
\sum_{\substack{c \in \mathscr{P}_{n} \\ \text { shc }=\lambda^{\prime}}} \boldsymbol{t}^{\bar{U}(c)} \boldsymbol{x}^{c}=\operatorname{det}\left(e_{\lambda_{j}-j+i}^{(n-i)}\left(t_{1} x_{1}, \ldots, t_{n-i-1} x_{n-i-1}, T_{n-i} x_{n-i}\right)\right)_{1 \leq i, j \leq n}
$$

where $T_{i}=\prod_{k=i}^{n} t_{k}$.

Generating function

Theorem

Let n be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$. Then the generating function of all plane partitions $c \in \mathscr{P}_{n}$ of shape λ^{\prime} with the weight $\boldsymbol{t}^{\bar{U}(c)} \boldsymbol{x}^{c}$ is given by

$$
\sum_{\substack{c \in \mathscr{P}_{n} \\ \text { shc }=\lambda^{\prime}}} \boldsymbol{t}^{\bar{U}(c)} \boldsymbol{x}^{c}=\operatorname{det}\left(e_{\lambda_{j}-j+i}^{(n-i)}\left(t_{1} x_{1}, \ldots, t_{n-i-1} x_{n-i-1}, T_{n-i} x_{n-i}\right)\right)_{1 \leq i, j \leq n}
$$

where $T_{i}=\prod_{k=i}^{n} t_{k}$.
\emptyset
1

1	1

2

2	1

$1 \quad t_{1} x_{1} \quad t_{1}^{2} t_{2} t_{3} x_{1}^{2} \quad t_{2} t_{3} x_{1} x_{2} \quad t_{1} t_{2} t_{3} x_{1} x_{2} \quad t_{1} t_{2} t_{3} x_{1} x_{2} \quad t_{1}^{2} t_{2}^{2} t_{3}^{2} x_{1}^{2} x_{2}$

A determinantal expression

Theorem

Let n be a positive integer. Then there is a bijection

A determinantal expression

Theorem

Let n be a positive integer. Then there is a bijection $\tau_{2 n+1}$ from $\mathscr{P}_{2 n+1}^{\bar{\gamma}}$ to $\mathscr{D}_{2 n-1}^{\mathrm{R}}$

A determinantal expression

Theorem

Let n be a positive integer. Then there is a bijection $\tau_{2 n+1}$ from $\mathscr{P}_{2 n+1}^{\bar{\gamma}}$ to $\mathscr{D}_{2 n-1}^{\mathrm{R}}$ such that $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$ for $c \in \mathscr{P}_{2 n+1}^{\bar{\gamma}}$.

A determinantal expression

Theorem

Let n be a positive integer. Then there is a bijection $\tau_{2 n+1}$ from $\mathscr{P}_{2 n+1}^{\bar{\gamma}}$ to $\mathscr{D}_{2 n-1}^{\mathrm{R}}$ such that $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$ for $c \in \mathscr{P}_{2 n+1}^{\bar{\gamma}}$.

Theorem

Let $n \geq 2$ be a positive integer.

$$
\text { with the convention that } R_{0,0}^{\circ}
$$

A determinantal expression

Theorem

Let n be a positive integer. Then there is a bijection $\tau_{2 n+1}$ from $\mathscr{P}_{2 n+1}^{\bar{\gamma}}$ to $\mathscr{D}_{2 n-1}^{\mathrm{R}}$ such that $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$ for $c \in \mathscr{P}_{2 n+1}^{\bar{\gamma}}$.

Theorem

Let $n \geq 2$ be a positive integer. Let $R_{n}^{\circ}(t)=\left(R_{i, j}^{0}\right)_{0 \leq i, j \leq n-1}$ be the $n \times n$ matrix where

$$
R_{i, j}^{0}=\binom{i+j-1}{2 i-j}+\left\{\binom{i+j-1}{2 i-j-1}+\binom{i+j-1}{2 i-j+1}\right\} t+\binom{i+j-1}{2 i-j} t^{2}
$$

with the convention that $R_{0,0}^{\circ}=R_{0,1}^{\circ}=1$.

A determinantal expression

Theorem

Let n be a positive integer. Then there is a bijection $\tau_{2 n+1}$ from $\mathscr{P}_{2 n+1}^{\bar{\gamma}}$ to $\mathscr{D}_{2 n-1}^{\mathrm{R}}$ such that $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$ for $c \in \mathscr{P}_{2 n+1}^{\bar{\gamma}}$.

Theorem

Let $n \geq 2$ be a positive integer. Let $R_{n}^{\circ}(t)=\left(R_{i, j}^{\circ}\right)_{0 \leq i, j \leq n-1}$ be the $n \times n$ matrix where

$$
R_{i, j}^{0}=\binom{i+j-1}{2 i-j}+\left\{\binom{i+j-1}{2 i-j-1}+\binom{i+j-1}{2 i-j+1}\right\} t+\binom{i+j-1}{2 i-j} t^{2}
$$

with the convention that $R_{0,0}^{\circ}=R_{0,1}^{\circ}=1$.

A determinantal expression

Theorem

Let n be a positive integer. Then there is a bijection $\tau_{2 n+1}$ from $\mathscr{P}_{2 n+1}^{\bar{\gamma}}$ to $\mathscr{D}_{2 n-1}^{\mathrm{R}}$ such that $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$ for $c \in \mathscr{P}_{2 n+1}^{\bar{\gamma}}$.

Theorem

Let $n \geq 2$ be a positive integer. Let $R_{n}^{\circ}(t)=\left(R_{i, j}^{\circ}\right)_{0 \leq i, j \leq n-1}$ be the $n \times n$ matrix where

$$
R_{i, j}^{0}=\binom{i+j-1}{2 i-j}+\left\{\binom{i+j-1}{2 i-j-1}+\binom{i+j-1}{2 i-j+1}\right\} t+\binom{i+j-1}{2 i-j} t^{2}
$$

with the convention that $R_{0,0}^{\circ}=R_{0,1}^{\circ}=1$. Then we obtain

$$
\sum_{c \in \mathscr{P}_{2 n+1}^{\gamma}} t^{\bar{U}_{2}(c)}=\operatorname{det} R_{n}^{\circ}(t)
$$

The determinants

Example

If $n=2$, then $\sum_{c \in \mathscr{P}_{5}^{\widetilde{5}}} \bar{t}^{\bar{U}_{2}(c)}$ is given by

$$
\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
0 & 1+t+t^{2}
\end{array}\right)
$$

which is equal to $1+t+t^{2}$.

The determinants

Example

If $n=3$, then $\sum_{c \in \mathscr{P} \tilde{\mathcal{F}}_{7} t} \bar{U}_{2}(c)$ is given by

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1+t+t^{2} & 1+2 t+t^{2} \\
0 & t & 3+4 t+3 t^{2}
\end{array}\right)
$$

which is equal to $3+6 t+8 t^{2}+6 t^{3}+3 t^{4}$.

The determinants

Example

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1+t+t^{2} & 1+2 t+t^{2} & t \\
0 & t & 3+4 t+3 t^{2} & 4+7 t+4 t^{2} \\
0 & 0 & 1+4 t+t^{2} & 10+15 t+10 t^{2}
\end{array}\right)
$$

which is equal to $26+78 t+138 t^{2}+162 t^{3}+138 t^{4}+78 t^{5}+26 t^{6}$.

A constant term expression for the determinant

Theorem

Let $n \geq 2$ be a positive integer, and r be a positive integer such that $1 \leq r \leq n$. Then the generating function $\sum_{b \in \mathscr{P}_{2 n-1}^{\bar{y}}} t^{\bar{U}_{r}(b)}$ is given by

$$
\begin{aligned}
\mathrm{CT}_{\boldsymbol{x}} \mathrm{CT}_{\boldsymbol{y}} & \prod_{1 \leq i<j \leq n}\left(1-\frac{x_{i}}{x_{j}}\right) \prod_{1 \leq i<j \leq n}\left(1-\frac{y_{i}}{y_{j}}\right) \prod_{i=2}^{n}\left(1+\frac{1}{x_{i}}\right)^{i-2}\left(1+\frac{t}{x_{i}}\right) \\
& \times \prod_{j=2}^{n}\left(1+\frac{1}{y_{j}}\right)^{j-2}\left(1+\frac{t}{y_{j}}\right) \prod_{j=1}^{n}\left(1+y_{j}\right) \prod_{i, j=1}^{n} \frac{1}{1-x_{i} y_{j}} .
\end{aligned}
$$

Generalized domino plane partitions

Generalized domino plane partitions

A domino is a special kind of skew shape consists of two squares. A 1×2 domino is called a horizontal domino while a 2×1 domino is called a vertical domino.

Generalized domino plane partitions

Generalized domino plane partitions

A domino is a special kind of skew shape consists of two squares. A 1×2 domino is called a horizontal domino while a 2×1 domino is called a vertical domino. A generalized domino plane partition of shape λ consists of a tiling of the shape λ by means of ordinary 1×1 squares or dominoes, and a filling of each square or domino with a positive integer so that the integers are weakly decreasing along either rows or columns.

Generalized domino plane partitions

Generalized domino plane partitions

A domino is a special kind of skew shape consists of two squares. A 1×2 domino is called a horizontal domino while a 2×1 domino is called a vertical domino. A generalized domino plane partition of shape λ consists of a tiling of the shape λ by means of ordinary 1×1 squares or dominoes, and a filling of each square or domino with a positive integer so that the integers are weakly decreasing along either rows or columns. Further we call it a domino plane partition if the shape λ is tiled with only dominoes.

Generalized domino plane partitions

Example

The left-below is a column-strict generalized domino plane partition of shape $(4,3,2,1)$, and the right-below is a column-strict domino plane partition of shape $(4,4,2)$.

Twisted domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n, m}^{\mathrm{HTS}}$ denote the set of column-strict generalized domino plane partitions c subject to the constraints that
(E1) c has at most n columns;

We call an element in $\mathscr{P}_{n, m}^{\text {HTS }}$ a twisted domino plane partition, and we simply write $\mathscr{P}_{n}^{\mathrm{HTS}}$ for $\mathscr{P}_{n, 0}^{\mathrm{HTS}}$.

Twisted domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n, m}^{\mathrm{HTS}}$ denote the set of column-strict generalized domino plane partitions c subject to the constraints that
(E1) c has at most n columns;
(E2) each part in the jth column does not exceed $\Gamma(n+m-j) / 2\rceil$;

We call an element in $\mathscr{P}_{n, m}^{\mathrm{HTS}}$ a twisted domino plane partition, and we simply write $\mathscr{P}_{n}^{\mathrm{HTS}}$ for $\mathscr{P}_{n, 0}^{\mathrm{HTS}}$.

Twisted domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n, m}^{\mathrm{HTS}}$ denote the set of column-strict generalized domino plane partitions c subject to the constraints that
(E1) c has at most n columns;
(E2) each part in the jth column does not exceed $\lceil(n+m-j) / 2\rceil$;
(E3) A domino containing $\lceil(n+m-j) / 2\rceil$ must not cross the j th column for any j such that $n+m-j$ is odd.

We call an element in $\mathscr{P}_{n, m}^{\text {HTS }}$ a twisted domino plane partition, and we simply write $\mathscr{P}_{n}^{\mathrm{HTS}}$ for $\mathscr{P}_{n, 0}^{\mathrm{HTS}}$.

Twisted domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n, m}^{\mathrm{HTS}}$ denote the set of column-strict generalized domino plane partitions c subject to the constraints that
(E1) c has at most n columns;
(E2) each part in the jth column does not exceed $\lceil(n+m-j) / 2\rceil$;
(E3) A domino containing $\lceil(n+m-j) / 2\rceil$ must not cross the j th column for any j such that $n+m-j$ is odd.
(E4) A single box can appear only when it contains $\lceil(n+m-j) / 2\rceil$ and it is in the j th column such that $n+m-j$ is odd.
We call an element in $\mathscr{P}_{n, m}^{\text {HTS }}$ a twisted domino plane partition, and we simply write $\mathscr{P}_{n}^{\mathrm{HTS}}$ for $\mathscr{P}_{n, 0}^{\mathrm{HTS}}$.

Twisted domino plane partitions

Example
$\mathscr{P}_{1}^{\mathrm{HTS}}=\{\emptyset\}$
$\mathscr{P}_{2}^{\mathrm{HTS}}=\{\emptyset, \mathbf{1}\}$
$\mathscr{P}_{3}^{\mathrm{HTS}}$ is composed of the following 3 elements:
\emptyset

Twisted domino plane partitions

Example

$\mathscr{P}_{4}^{\mathrm{HTS}}$ is composed of the following 10 elements:

$\mathscr{P}_{5}^{\mathrm{HTS}}$ has 25 elements and $\mathscr{P}_{6}^{\mathrm{HTS}}$ has 140 elements.

Twisted domino PPs and RCSDPPs with all columns even length

Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and \mathscr{D}_{n}^{C} (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;

Twisted domino PPs and RCSDPPs with all columns even length

Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and \mathscr{D}_{n}^{C} (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;
(1) the numeber of 1 's is kept invariant;

Twisted domino PPs and RCSDPPs with all columns even length

Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and \mathscr{D}_{n}^{C} (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;
(1) the numeber of 1 's is kept invariant;
(2) the number of columns is kept invariant.

Twisted domino PPs and RCSDPPs with all columns even length

General Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n, m}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and $\mathscr{D}_{n, m}^{C}$ (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;

Twisted domino PPs and RCSDPPs with all columns even length

General Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n, m}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and $\mathscr{D}_{n, m}^{C}$ (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;
(1) the numeber of 1 's is kept invariant;

Twisted domino PPs and RCSDPPs with all columns even length

General Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n, m}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and $\mathscr{D}_{n, m}^{C}$ (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;
(1) the numeber of 1 's is kept invariant;
(2) the number of columns of each PP is kept invariant.

RCSDPPs with all columns of even length

Example

$\mathscr{D}_{1}^{C}=\{\emptyset\}$
$\mathscr{D}_{2}^{C}=\{\emptyset, \boxed{1}\}$
$\mathscr{D}_{3}^{\mathrm{C}}$ has the following 3 elements:

RCSDPPs with all columns of even length

Example

$\mathscr{D}_{4}^{\mathrm{C}}$ has the following 10 elements:

$\mathscr{D}_{5}^{\mathrm{C}}$ has 25 elements, $\mathscr{D}_{6}^{\mathrm{C}}$ has 140 elements, and $\mathscr{D}_{7}^{\mathrm{C}}$ has 588 elements.

A determinantal expression

Theorem

Let n be a positive integer and let r be a integer such that $0 \leq r \leq n$.

A determinantal expression

Theorem

Let n be a positive integer and let r be a integer such that $0 \leq r \leq n$. If n is even, let $C_{n}^{e}(t)=\left(C_{i, j}^{e}\right)_{0 \leq i, j \leq n / 2-1}$ be the $n / 2 \times n / 2$ matrix where

$$
\begin{aligned}
C_{i j}^{e} & =\left\{2\binom{i+j-2}{2 i-j-1}+\binom{i+j-2}{2 i-j}\right\}\left(1+t^{2}\right) \\
& +\left\{2\binom{i+j-2}{2 i-j-2}+\binom{i+j-2}{2 i-j-1}+2\binom{i+j-2}{2 i-j}+\binom{i+j-2}{2 i-j+1}\right\} t
\end{aligned}
$$

with the convention that $C_{0,0}^{e}=1+t, C_{0,1}^{e}=t$ and $C_{1,0}^{e}=0$.

A determinantal expression

Theorem

Let n be a positive integer and let r be a integer such that $0 \leq r \leq n$. If n is even, let $C_{n}^{e}(t)=\left(C_{i, j}^{e}\right)_{0 \leq i, j \leq n / 2-1}$ be the $n / 2 \times n / 2$ matrix where

$$
\begin{aligned}
C_{i j}^{\mathrm{e}} & =\left\{2\binom{i+j-2}{2 i-j-1}+\binom{i+j-2}{2 i-j}\right\}\left(1+t^{2}\right) \\
& +\left\{2\binom{i+j-2}{2 i-j-2}+\binom{i+j-2}{2 i-j-1}+2\binom{i+j-2}{2 i-j}+\binom{i+j-2}{2 i-j+1}\right\} t
\end{aligned}
$$

with the convention that $C_{0,0}^{e}=1+t, C_{0,1}^{e}=t$ and $C_{1,0}^{e}=0$.
Then we obtain

$$
\sum_{d \in \mathscr{D}_{n}^{\mathrm{C}}} t^{\bar{U}_{r}(d)}=\operatorname{det} C_{n}^{\mathrm{e}}(t)
$$

A determinantal expression

Theorem

Let n be a positive integer and let r be a integer such that $0 \leq r \leq n$. If n is odd, let $C_{n}^{\circ}(t)=\left(C_{i, j}^{0}\right)_{0 \leq i, j \leq(n-1) / 2}$ be the $(n+1) / 2 \times(n+1) / 2$ matrix where

$$
\begin{aligned}
C_{i j}^{\circ} & =\left\{2\binom{i+j-3}{2 i-j-2}+\binom{i+j-3}{2 i-j-1}\right\}\left(1+t^{2}\right) \\
& +\left\{2\binom{i+j-3}{2 i-j-3}+\binom{i+j-3}{2 i-j-2}+2\binom{i+j-3}{2 i-j-1}+\binom{i+j-3}{2 i-j}\right\} t
\end{aligned}
$$

with the convention that $C_{0,0}^{\circ}=1, C_{0,1}^{\circ}=C_{0,2}^{\circ}=C_{2,0}^{\circ}=0$, $C_{1,0}^{\circ}=1+t$ and $C_{1,1}^{\circ}=1+t+t^{2}$.

A determinantal expression

Theorem

Let n be a positive integer and let r be a integer such that $0 \leq r \leq n$. If n is odd, let $C_{n}^{\circ}(t)=\left(C_{i, j}^{\circ}\right)_{0 \leq i, j \leq(n-1) / 2}$ be the $(n+1) / 2 \times(n+1) / 2$ matrix where

$$
\begin{aligned}
C_{i j}^{\circ} & =\left\{2\binom{i+j-3}{2 i-j-2}+\binom{i+j-3}{2 i-j-1}\right\}\left(1+t^{2}\right) \\
& +\left\{2\binom{i+j-3}{2 i-j-3}+\binom{i+j-3}{2 i-j-2}+2\binom{i+j-3}{2 i-j-1}+\binom{i+j-3}{2 i-j}\right\} t
\end{aligned}
$$

with the convention that $C_{0,0}^{\circ}=1, C_{0,1}^{\circ}=C_{0,2}^{\circ}=C_{2,0}^{\circ}=0$, $C_{1,0}^{\circ}=1+t$ and $C_{1,1}^{\circ}=1+t+t^{2}$. Then we obtain

$$
\sum_{d \in \mathscr{D}_{n}^{C}} t^{\bar{U}_{r}(d)}=\operatorname{det} C_{n}^{\circ}(t)
$$

A constant term expression for the determinant

Theorem

Let $n \geq 2$ be a positive integer, and r be a positive integer such that $1 \leq r \leq n$. Then the generating function $\sum_{b \in \mathscr{P}_{2 n-1}^{\bar{Y}}} t^{\bar{U}_{r}(b)}$ is given by

$$
\begin{aligned}
\mathrm{CT}_{\boldsymbol{x}} \mathrm{CT}_{\boldsymbol{y}} & \prod_{1 \leq i<j \leq n}\left(1-\frac{x_{i}}{x_{j}}\right) \prod_{1 \leq i<j \leq n}\left(1-\frac{y_{i}}{y_{j}}\right) \prod_{i=2}^{n}\left(1+\frac{1}{x_{i}}\right)^{i-2}\left(1+\frac{t}{x_{i}}\right) \\
& \times \prod_{j=2}^{n}\left(1+\frac{1}{y_{j}}\right)^{j-2}\left(1+\frac{t}{y_{j}}\right) \prod_{i=1}^{n}\left(1-x_{i}\right)^{-1} \prod_{i, j=1}^{n} \frac{1}{1-x_{i} y_{j}} .
\end{aligned}
$$

Monotone triangle conjecture

Definition

Let \mathscr{A}_{n}^{k} denote the set of $n \times n$ alternating sign matrices
$a=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ such that

Monotone triangle conjecture

Definition

Let \mathscr{A}_{n}^{k} denote the set of $n \times n$ alternating sign matrices
$a=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ such that

- $a_{i j}=0$ if $i-j>k$.

Monotone triangle conjecture

Definition

Let \mathscr{A}_{n}^{k} denote the set of $n \times n$ alternating sign matrices
$a=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ such that

- $a_{i j}=0$ if $i-j>k$.

Example
$n=3, k=0$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The generating function is 1 .

Monotone triangle conjecture

Definition

Let \mathscr{A}_{n}^{k} denote the set of $n \times n$ alternating sign matrices
$a=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ such that

- $a_{i j}=0$ if $i-j>k$.

Example
$n=3, k=1$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

The generating function is $2+2 t+t^{2}$.

Monotone triangle conjecture

Definition

Let \mathscr{A}_{n}^{k} denote the set of $n \times n$ alternating sign matrices
$a=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ such that

- $a_{i j}=0$ if $i-j>k$.

Example
$n=3, k=2$:

$$
\begin{array}{ll}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{array}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

The generating function is $2+3 t+2 t^{2}$.

Definition

Let $\mathscr{P}_{n, m}^{k}$ denote the set of RCSPPs $c \in \mathscr{P}_{n, m}$ such that - chas at most k rows.

Definition

Let $\mathscr{P}_{n, m}^{k}$ denote the set of RCSPPs $c \in \mathscr{P}_{n, m}$ such that

- c has at most k rows.

Definition

Let $\mathscr{P}_{n, m}^{k}$ denote the set of RCSPPs $c \in \mathscr{P}_{n, m}$ such that

- c has at most k rows.

We write \mathscr{P}_{n}^{k} for $\mathscr{P}_{n, 0}^{k}$.

Example

If $n=3$ and $k=0, \mathscr{P}_{3}^{0}$ consists of the single PP:
\emptyset.
$\sum_{c \in \mathscr{P}_{3}^{0}} t^{\bar{U}_{r}(c)}=1$

Definition

Let $\mathscr{P}_{n, m}^{k}$ denote the set of RCSPPs $c \in \mathscr{P}_{n, m}$ such that

- c has at most k rows.

We write \mathscr{P}_{n}^{k} for $\mathscr{P}_{n, 0}^{k}$.

Example

If $n=3$ and $k=1, \mathscr{P}_{3}^{1}$ consists of the following 5 PPs :

$$
\begin{array}{llllll|}
0 & 1 & \begin{array}{llll}
1 & 1 \\
\hline
\end{array} & \begin{array}{ll}
2 & 2 \\
\hline
\end{array} &
\end{array}
$$

$\sum_{c \in \mathscr{P}_{3}^{1}} t^{\bar{U}_{r}(c)}=2+2 t+t^{2}$

Definition

Let $\mathscr{P}_{n, m}^{k}$ denote the set of RCSPPs $c \in \mathscr{P}_{n, m}$ such that

- c has at most k rows.

We write \mathscr{P}_{n}^{k} for $\mathscr{P}_{n, 0}^{k}$.

Example

If $n=3$ and $k=2, \mathscr{B}_{3}^{2}$ consists of the followng 7 PPs
$\sum_{c \in \mathscr{P}_{3}^{2}} t^{\bar{U}_{r}(c)}=2+3 t+2 t^{2}$

The Mills-Robins-Rumsey conjecture in words of RCSPPs

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",
J. Combin. Theory Ser. A 42, (1986).)

Let n, k and r be integers such that $n \geq 2,0 \leq k \leq n-1$ and $0 \leq r \leq n$.

The Mills-Robins-Rumsey conjecture in words of RCSPPs

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",
J. Combin. Theory Ser. A 42, (1986).)

Let n, k and r be integers such that $n \geq 2,0 \leq k \leq n-1$ and $0 \leq r \leq n$. Then the number of c in \mathscr{P}_{n}^{k} with $\bar{U}_{r}(c)=j$ would be the same as the number of alternating sign matrices
$a=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \mathscr{A}_{n}^{k}$ such that $a_{1 j}=1$.

A Pfaffian formula

Theorem

Let $n \geq 2$ be a positive integer, and k be a positive integer such that $1 \leq k \leq n$. If r is a positive integer such that $1 \leq r \leq n$, then the generating function for all plane partitions $c \in \mathscr{P}_{n}^{k}$ with the weight $t^{\bar{U}_{r}(c)}$ is given by

$$
\sum_{c \in \mathscr{P}_{n}^{k}} t^{\bar{U}_{r}(c)}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\left\lfloor\frac{k}{2}\right\rfloor} \operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n}^{N}(t) \\
-B_{n}^{N}(t) J_{n} & \bar{L}_{n+N}^{(n, k)}(\varepsilon)
\end{array}\right)
$$

Definition

A Pfaffian formula

Theorem

Let $n \geq 2$ be a positive integer, and k be a positive integer such that $1 \leq k \leq n$. If r is a positive integer such that $1 \leq r \leq n$, then the generating function for all plane partitions $c \in \mathscr{P}_{n}^{k}$ with the weight $t^{\bar{U}_{r}(c)}$ is given by

$$
\sum_{c \in \mathscr{P}_{n}^{k}} t^{\bar{U}_{r}(c)}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\left\lfloor\frac{k}{2}\right\rfloor} \operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n}^{N}(t) \\
-B_{n}^{N}(t) J_{n} & \bar{L}_{n+N}^{(n, k)}(\varepsilon)
\end{array}\right)
$$

Definition

For positive integers n and N, let $B_{n}^{N}(t)=\left(b_{i j}(t)\right)_{0 \leq i \leq n-1,0 \leq j \leq n+N-1}$ be the $n \times(n+N)$ matrix whose (i, j) th entry is

$$
b_{i j}(t)= \begin{cases}\delta_{0, j} & \text { if } i=0 \\ \binom{i-1}{j-i}+\binom{i-1}{j-i-1} t & \text { otherwise }\end{cases}
$$

A Pfaffian formula

Theorem

Let $n \geq 2$ be a positive integer, and k be a positive integer such that $1 \leq k \leq n$. If r is a positive integer such that $1 \leq r \leq n$, then the generating function for all plane partitions $c \in \mathscr{P}_{n}^{k}$ with the weight $t^{(c)}$ is given by

$$
\sum_{c \in \mathscr{P}_{n}^{k}} t^{\bar{U}_{r}(c)}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\left\lfloor\frac{k}{2}\right\rfloor} \operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n}^{N}(t) \\
-B_{n}^{N}(t) J_{n} & \bar{L}_{n+N}^{(n, k)}(\varepsilon)
\end{array}\right)
$$

Definition

For positive integers n, let $J_{n}=\left(\delta_{i, n+1-j}\right)_{1 \leq i, j \leq n}$ be the $n \times n$ anti-diagonal matrix.

A Pfaffian formula

Theorem

Let $n \geq 2$ be a positive integer, and k be a positive integer such that $1 \leq k \leq n$. If r is a positive integer such that $1 \leq r \leq n$, then the generating function for all plane partitions $c \in \mathscr{P}_{n}^{k}$ with the weight $t^{\bar{U}_{r}(c)}$ is given by

$$
\sum_{c \in \mathscr{P}_{n}^{k}} t^{\bar{U}_{r}(c)}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\left\lfloor\frac{k}{2}\right\rfloor} \operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n}^{N}(t) \\
-B_{n}^{N}(t) J_{n} & \bar{L}_{n+N}^{(n, k)}(\varepsilon)
\end{array}\right)
$$

Definition

$$
\begin{aligned}
& \bar{L}_{n}^{(m, k)}(\varepsilon)=\left(\bar{\tau}_{i j}^{(m, k)}(\varepsilon)\right)_{1 \leq i, j \leq n}(k \text { is even }) \\
& \quad \bar{\tau}_{i j}^{(m, k)}(\varepsilon)= \begin{cases}(-1)^{j-i-1} \varepsilon & \text { if } 1 \leq i<j \leq n \text { and } i \leq m+k, \\
(-1)^{j-i-1} & \text { if } m+k<i<j \leq n .\end{cases}
\end{aligned}
$$

A Pfaffian formula

Theorem

Let $n \geq 2$ be a positive integer, and k be a positive integer such that $1 \leq k \leq n$. If r is a positive integer such that $1 \leq r \leq n$, then the generating function for all plane partitions $c \in \mathscr{P}_{n}^{k}$ with the weight $t^{\bar{U}_{r}(c)}$ is given by

$$
\sum_{c \in \mathscr{P}_{n}^{k}} t^{\bar{U}_{r}(c)}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\left\lfloor\frac{k}{2}\right\rfloor} \operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n}^{N}(t) \\
-B_{n}^{N}(t) J_{n} & \bar{L}_{n+N}^{(n, k)}(\varepsilon)
\end{array}\right)
$$

Definition

$$
\begin{aligned}
& \bar{L}_{n}^{(m, k)}(\varepsilon)=\left(\bar{T}_{i j}^{(m, k)}(\varepsilon)\right)_{1 \leq i, j \leq n}(k \text { is odd }) \\
& \quad \bar{T}_{i j}^{(m, k)}(\varepsilon)= \begin{cases}(-1)^{j-i-1} \varepsilon & \text { if } 1 \leq i<j \leq m+k, \\
(-1)^{j-i-1} & \text { if } 1 \leq i<j \leq n \text { and } m+k<j .\end{cases}
\end{aligned}
$$

A constant term identity

Theorem

Let n be a positive integer. If $0 \leq k \leq n-1$ and $1 \leq r \leq n$, then $\sum_{c \in \mathscr{P}_{n}^{k}} t^{\bar{U}_{r}(c)}$ is equal to

$$
\begin{aligned}
\mathrm{CT}_{\boldsymbol{x}} & \prod_{1 \leq i<j \leq n}\left(1-\frac{x_{i}}{x_{j}}\right) \prod_{i=2}^{n}\left(1+\frac{1}{x_{i}}\right)^{i-2}\left(1+\frac{t}{x_{i}}\right) \\
& \times \frac{\operatorname{det}\left(x_{i}^{j-1}-x_{i}^{k+2 n-j}\right)_{1 \leq i, j \leq n}}{\prod_{i=1}^{n}\left(1-x_{i}\right) \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(1-x_{i} x_{j}\right)} .
\end{aligned}
$$

Example of $n=3$

Example

If $n=3$ and $k=0$, then the constant term of

$$
\begin{aligned}
& \left(1-\frac{x_{1}}{x_{2}}\right)\left(1-\frac{x_{1}}{x_{3}}\right)\left(1-\frac{x_{2}}{x_{3}}\right)\left(1+\frac{t}{x_{2}}\right)\left(1+\frac{1}{x_{3}}\right)\left(1+\frac{t}{x_{3}}\right) \\
& \times \frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)} \\
& \times \frac{\operatorname{det}\left(\begin{array}{lll}
1-x_{1}^{5} & x_{1}-x_{1}^{4} & x_{1}^{2}-x_{1}^{3} \\
1-x_{2}^{5} & x_{2}-x_{1}^{4} & x_{2}^{2}-x_{2}^{3} \\
1-x_{3}^{5} & x_{3}-x_{1}^{4} & x_{3}^{2}-x_{3}^{3}
\end{array}\right)}{\times \frac{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(1-x_{1} x_{2}\right)\left(1-x_{1} x_{3}\right)\left(1-x_{2} x_{3}\right)}{(1)}}
\end{aligned}
$$

is equal to 1 .

Example of $n=3$

Example

If $n=3$ and $k=1$, then the constant term of

$$
\begin{aligned}
& \left(1-\frac{x_{1}}{x_{2}}\right)\left(1-\frac{x_{1}}{x_{3}}\right)\left(1-\frac{x_{2}}{x_{3}}\right)\left(1+\frac{t}{x_{2}}\right)\left(1+\frac{1}{x_{3}}\right)\left(1+\frac{t}{x_{3}}\right) \\
& \times \frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)} \\
& \times \frac{\operatorname{det}\left(\begin{array}{lll}
1-x_{1}^{6} & x_{1}-x_{1}^{5} & x_{1}^{2}-x_{1}^{5} \\
1-x_{2}^{6} & x_{2}-x_{1}^{5} & x_{2}^{2}-x_{2}^{5} \\
1-x_{3}^{6} & x_{3}-x_{1}^{5} & x_{3}^{2}-x_{3}^{5}
\end{array}\right)}{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(1-x_{1} x_{2}\right)\left(1-x_{1} x_{3}\right)\left(1-x_{2} x_{3}\right)}
\end{aligned}
$$

is equal to $2+2 t+t^{2}$.

Example of $n=3$

Example

If $n=3$ and $k=2$, then the constant term of

$$
\begin{aligned}
& \left(1-\frac{x_{1}}{x_{2}}\right)\left(1-\frac{x_{1}}{x_{3}}\right)\left(1-\frac{x_{2}}{x_{3}}\right)\left(1+\frac{t}{x_{2}}\right)\left(1+\frac{1}{x_{3}}\right)\left(1+\frac{t}{x_{3}}\right) \\
& \times \frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)} \\
& \times \frac{\operatorname{det}\left(\begin{array}{lll}
1-x_{1}^{7} & x_{1}-x_{1}^{6} & x_{1}^{2}-x_{1}^{5} \\
1-x_{2}^{7} & x_{2}-x_{1}^{6} & x_{2}^{2}-x_{2}^{5} \\
1-x_{3}^{7} & x_{3}-x_{1}^{6} & x_{3}^{2}-x_{3}^{5}
\end{array}\right)}{\times \frac{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(1-x_{1} x_{2}\right)\left(1-x_{1} x_{3}\right)\left(1-x_{2} x_{3}\right)}{(1)}}
\end{aligned}
$$

is equal to $2+3 t+2 t^{2}$.

References

Main papers

(1) M. Ishikawa, "On refined enumerations of totally symmetric self-complementary plane partitions l", arXiv:math. C0/0602068.
(2) M. Ishikawa, "On refined enumerations of totally symmetric self-complementary plane partitions II", arXiv:math.C0/0606082.

The end

Thank you!

[^0]: Example
 A plane partition of shape (432) with 3 rows and 4 columns:

[^1]: and \mathscr{P}_{5}^{γ} has 26 elements.

[^2]: where $T_{i}=\prod_{k=i}^{n} t_{k}$

