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The ring of symmetric functions

The ring A of symmetric functions in countably many variables x, x,,
. is defined by the inverse limit. (See Macdonald’s book “Symmetric

functions and Hall polynomials, 2nd Edition”, Oxford University Press, I,
2.)

Here we use the convention that f(x) stands for a symmetric function
in countably many variables * = (¢, x2,...), whereas f(X) stands
for a symmetric function in finitely many variables X = (x1,...,x,).




The Schur functions

For X = (x1,...,x;) and a partition X\ such that
L(A) <, let

sx(X) is called the Schur function corresponding to .




Power Sum Symmetric Functions

Let » denote a positive integer.

pr(X)=a] +x5+ -+

iIs called the rth power sum symmetric function.

pi(X)=z1+x2+ -+,
p2(X) =al+xi+ - +
ps(X) =23+ + o+ o




The four parameter weight

Given a partition )\, define w(\) by

w()\) — azq:zl [A2;—1/2] bzizl [A2i—1/2] D751 [A2:/2] dzizl | X2i /2] ’

where a, b, ¢ and d are indeterminates, and [x ] (resp. |« ]) stands for the smallest
(resp. largest) integer greater (resp. less) than or equal to x for a given real number
x. For example, if A = (5,4,4, 1) then w(A) is the product of the entries in the
following diagram for \, which is equal to a®b*c3d?.




An open problem by Richard Stanley

In FPSAC’03 R.P. Stanley gave the following conjecture in the open
problem session:

Theorem

Let

z = Z w(A)sxa(x),

A
where the sum runs over all partitions \.

Then we have

1
log z — Z —a"(b" — c")p2, —
o1 21

€ Q_[[p19p39p57°"”‘




Strategy of the proof

1. Stepl. Express w(\) and z by a single Pfaffian.

Use the minor summation formula of Pfaffians.

2. Step2. Express z by a single determinant.

Use the homogenious version of Okada’s gereralization of
Schur’s Pfaffian.

3. Step3. Show that

1 1
log z — Z —a"(b" — c"™)pan, — Z —a"b"c"d"
n>1 2n n>1 an

< Q[[plap?n D5y« ]]

Use Stembridge’s criterion.




The goal of the proof
Put
1 1
w = log z — Z —a"™(b" — c")pa, — Z —a"b"c"d"

w1 2n o1 4n

and use the following Stembridge’s criterion to w.

Proposition (Stembridge)

Let f(x1,x2,...) be a symmetric function with infinite variables.
Then

f S Q[p19p39p59 ° ]
if and only if

f(t, —t, L1g L2 e ) = f(.’,Bl, L2 oo ).




The aim of Stepl

Can we write z by a Pfaffian?
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Theorem A

Let n be a positive integer. Let

Zn = Z w(A)sa(Xan)

L(A)<2n

be the sum restricted to 27 variables. Then we have

1 n
H1§i<j§2n(aji — in) 171<1<53<2n ?

ot z; +ax? 1— a(b+ c)x; — abcx?
C
azj—l—a,mgz. 1—a(b+ c)x; — abcx?

(1 — abz])(1 — abzi)(1 — abedxix;

J
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The key idea to prove Theorem A

Can we write the four parameter weight w () by a
Pfaffian?
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Notation

Let m, n and r be integers such that » < m,n. Let A
be an m by n matrix. For any index sets

I={i1,... 5 }< C [m],
J = {j19°°°9jr}< C [n’

let A’ (A) denote the submatrix obtained by selecting the
rows indexed by I and the columns indexed by J. If r = m
and I = [m], we simply write A ;(A) for AT](A).




Notation

Fix a positive integer n.
If X = (A1,...,A,) is a partition such that £(\) < n,

then we put

l:(ll,...,ln):>\‘|‘5n:()\1‘|‘n_17“°7)‘n)7

where §, = (n —1,n — 2,...,1,0),
and we write
In()\) — {ln, ln—la oo o o ll}.

We regard this set as a set of row/column indices.
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Example

If n = 6 and A\ = (5,4,4,1,0,0), then

l =X+ 66 = (10,8,7,3,1,0),

Is(\) = {0,1,3,7,8,10}.

15



From now we restrict our attention to the case where n is
even so that n will be replaced by 2n hereafter.

Theorem

Define a skew-symmetric array A = (o;5)o0<i,j by

aij = alG=D/21plG=1/2] [i/2] gli/2,

for 1 < 3.
Then we have

Pf [Agzm — (abed)Bw(N).
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Example

A= (ai.’i)OSi,j:

1
0

17



The idea of the proof of Theorem A

e Write the Schur function s)(X5,,) by the quotient of
determinants. (The denominator is the Vandermonde
determinant.)

e Write the weight w () by the Pfaffian.

e Take the product of the Pfaffian and the determinant,
and sum up over all columns.
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Theorem (Minor summation formula)

Let n» and IN be non-negative integers such that 2n < IN. Let
T = (ti5)1<i<2n,1<j<n~ be a 2n by N rectangular matrix, and let
A = (a;5)1<i,j<n be a skew-symmetric matrix of size IN. Then

> Pf(A(A))det (A[(T)) =Pf (TA'T).
re(LY]

If we put Q@ = (Qij)1<; j<2, = TA'T, then its entries are given by

Qi = Z ar; det (A;’gl (T)) .

1<k<I<N

(1 < 4,5 < 2n). Here we write A% (T") for

i ti tu
AEkﬁ (T) = y

tjk, tjl




The aim of Step?2

Can we express the Pfaffian by a determinant?
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Schur’s Pfaffian

wi—mj

I —

|

T; + ‘”J 1<ij<2n  1<icj<an Ti T L

(1. Schur, “Uber die Darstellung der symmetrischen und der

alternirenden Gruppe durch gebrochene lineare Substitutionen”, J. Reine

Angew. Math. 139 (1911), 155-250.)
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A generalization

M. Ishikawa, S. Okada, H. Tagawa and J. Zeng

“Generalizations of Cauchy’s determinant and Schur’s
Pfaffian”, arXiv:math.C0/0411280.

We gathered more generalizations of Cauchy’s determinant

and Schur’s Pfaffian and their applications.
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A homogeneous generalized Vandermonde determinants

Let X = (3319”' 9337«). Y = (yb"' 9yr)v A= (a19°" 9a~r)
and B = (by,+-- ,b,) be four vectors of variables of length r. For

nonnegative integers p and g with p + g = r, define a generalized
Vandermonde matrix UP?(X, Y ; A, B) by the » X r matrix with zth
row

—1 p—2 p—1 qg—1 p—2 qg—1
(aimi s Qi L,  Yiyc* o, AY; ] bzwz ’ bzwz Yigc bzyz )

In this talk we restrict our attention to the case where p = q = n.
Thus we write U™(X,Y; A, B) for U™ (X,Y; A, B).




Example

When n = 1,

U'(X,Y;A,B) =

When n = 2,

U*(X,Y;A,B) =
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Whenn = 3, U(X,Y; A, B) is

2
alazl

2
a2m2

2

azxq

2
CL4LE4

2
a5a:5
2
6

Agd

ai1T1Y1
A2T2Y2
a3zr3ys
A4T4Yq
A5T5Ys

aegTeYe

2
a1y,

2
azyz

2
as yg

2
asy,

2
a5y5

2
Age y6
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A generalized Schur’s Pfaffian

Theorem (A homogeneous version, a special case)

For six vectors of variables

X:(w]_’...
B:(b1,°°

we have

Pf

yT2n)s ¥ = (Y1, ,Y2n)y, A= (a1, ,a2n),

) 9b2n)a C = (Cla”' 7C2n)9 D = (dla"' 7d2n)7

_ detU™(X,Y;A,B)detU™(X,Y;C, D)

1<i<j<2n

11

1<i<j<2n
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Application to this problem

Corollary

For three vectors of variables

in = (CBl,...

we have

yX2n)y, Aan = (@1,...,0a2n), Ban = (b1,...,b2n)

i0; — a;0; ay ydet U™ (Xs,, 1 +tX2 : As,,, Boy,
P [t it gyt St o L X A B

1<i<j<2n

2 __ 2
where X3 = (x%,..

1 — ta:ia:j

1<icj<an(l — tTix;)

xs )and 1+ tXs, = (14 22,...,1+ 23 ).

)
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Answer to the question in Step?2:

Theorem B

Let X = (x1,...,2x2,) be a 2n-tuple of variables. Then

2n(Xzn) = (-1))

det U™(X?,1 + abcdX?*; X +aX?,1 — a(b+ ¢)X? — abcX?)
HfZl(l — abx?) [L<icj<on(®i —z5)(1 — abedxiz?
where X2 = (x2,...,22 ), 14+ abcdX* = (1 4+ abedxy, ..., 1+ abedxy,),

X +aX? = (x, + aa:f, ooy Ton + amgn) and1l — a(b+ c)X? — abeX?® =
(1 —a(b+ c)x? —abcx?,...,1 —a(b+ c)x3 — abcxs ).

X
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Example

When n = 2,
U?(X?,14 abcdX*; X +aX?1—a(b+ ¢c)X? — abcX?)
looks as follows:

a1x? ai(1+ abedx?) bix?

2 by (1 + abedz?)
az(1 + abedx?) bax? bao(l + abedxl)

as(1 4+ abedx?) bsx? bs(l 4+ abedxsy)
as(1l + abedx?) byx? by(1l + abedx?)

2
4

where a; = x; + ax? and b; = 1 — a(b + c)x? — abcxs.




The aim of Step3

Prove Stanley’s open problem by evaluating the

determinant obtained in Theorem B (Use

Stembridge’s criterion).
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Criterion

Proposition (Stembridge)

Let f(x1, x2,...) be a symmetric function with infinite variables.
Then

f S @[p17p39p59 ° ]
if and only if

f(t, —t, AR HTRER ) = f(ZL’l, L9 oo ).

See Stanley’s book “Enumerative Combinatorics Il”, p.p. 450, Exercise
7.7, or Stembridge’s paper “Enriched P-partitions”, Trans. Amer.
Math. Soc. 349 (1997), 763-788.
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Method of the proof

Put

1
wn(X2n) — lOg Z'n,(XZn) - Z ﬂa’k(bk — k)p2k(X2n)

k>1

1
_ Z Ealcbk: kdk:p2k(X2n)2.
k>1

Our goal is to show

wn—l—l(ta _t7 X2n) — wn(XZn)°

32



The end of the proof

To finish the proof, it is enough to show tha following:

Let X = X5, = (®1,...,2T2,) be a 2n-tuple of variables.
Put

frn(X2n) = detU™(X?%,1+abcdX*; X +aX?,1—a(b+c) X2 —abcX?®).

Then f,,(X5,,) satisfies

Fri1(t, —t, Xo,) = (—=1)" - 2t(1 — abt?)(1 — act?)

2n 2n
x 11> —22) [ [ (1 — abedt®a?) - f(X2n)-
1—=1 1=1
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Corollaries and conjectures
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The Big Schur functions

Let Sx(x;t) = det(gx,—i+; (x;t)) denote the big Schur function corresponding to
the partition .

Corollary

Let

Z(zit) = Y w(X)Sa(zst),

A
Here the sum runs over all partitions .

Then we have

1
log Z(x;t) — g 2—an(bn — ™) (1 — ") pan
n>1 n

1
. Z —amb™ ndn(l . t2n)2p§n c Q[[pl,p3,p5, .o ]]

1 4n
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Certain symmetric functions related to the Macdonald polynomials

Definition

Define T\ (x; q,t) by

Th (x5 q,t) = det (Qx;—i+j) (3 q, t))lgi,jgﬁ()\) ’

where Q(x; g, t) stands for the Macdonald polynomial corresponding
to the partition A, and Q) (x; g, t) is the one corresponding to the
one row partition () (See Macdonald’s book, IV, sec.4).




Corollary

Let

Z(z3q,t) = > w(A)Ta(ms q,t),
A

Here the sum runs over all partitions .

Then we have

1_t2n
]__an

D2n

1
lo Z(x14,8) — 3" —a” (b7 — ™)

_ t2’n)2

— q2n)2

2

D5, € Q[[pP1,p3,P5,-..]].
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Conjectures

Conjecture

Let

w(z;t) = ) w(A)Pa(z;t),

A
where Py (x;t) denote the Hall-Littlewood function corresponding to
the partition A, and the sum runs over all partitions A. Then

n>2 even

would hold.
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Conjecture

Let
w(z;q,t) = Y w(A)Pa(w;q,t).
A
where Py (x; q,t) denote the Macdonald polynomial corresponding to
the partition A, and the sum runs over all partitions A. Then

log w(x;q,—1) + Z —a " Don

n>1 odd 2n

(23

_|_ Z az % % % o 2b%d%)p2n S Q(Q)[[p17p39p57° .

n>2 even

would hold.

-]
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Further results afterward

M. Ishikawa and Jiang Zeng, “The Andrews-Stanley
partition function and Al-Salam-Chihara polynomials”,
arXiv:math.C0/0506128.

A generalization of the main result by G.E. Andrews in “On
a Partition Function of Richard Stanley”, a weighted sum of

Schur’s P-funstions and Q-functions.




Thank youl!
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