Refined Enumerations of Totally Symmetric Self-Complementary Plane Partitions and Constant Term Identities

Masao Ishikawa[†]

[†]Department of Mathematics Tottori University

The 19th International Conference on Formal Power Series and Algebraic Combinatorics 2007, Nankai University, Tianjin, China

< D > < P > < P > < P > < P > < P >

Introduction

Abstract

In this talk we give Pfaffian or determinant expressions, and constant term identities for the conjectures in the paper "Self-complementary totally symmetric plane partitions" (*J. Combin. Theory Ser. A* **42**, (1986), 277–292) by W.H. Mills, D.P. Robbins and H. Rumsey. We also settle a weak version of Conjecture 6 in the paper, i.e., the number of shifted plane partitions invariant under a certain involution is equal to the number of alternating sign matrices invariant under the vertical flip.

Conjecture 2 (The refined TSSCPP conjecture)

- Onjecture 3 (The doubly refined TSSCPP conjecture)
- Conjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- Conjecture 6 (Related to vertical symmetric ASMs)

A (1) > A (1) > A (1) >

Conjecture 2 (The refined TSSCPP conjecture)
Conjecture 3 (The doubly refined TSSCPP conjecture)
Conjecture 7, 7' (Related to the monotone triangles)
Conjecture 4 (Related to half-turn symmetric ASMs)
Conjecture 6 (Related to vertical symmetric ASMs)

A (1) > A (1) > A (1) >

- Conjecture 2 (The refined TSSCPP conjecture)
- Conjecture 3 (The doubly refined TSSCPP conjecture)
- Onjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- Onjecture 6 (Related to vertical symmetric ASMs)

- Conjecture 2 (The refined TSSCPP conjecture)
- Conjecture 3 (The doubly refined TSSCPP conjecture)
- Onjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- Onjecture 6 (Related to vertical symmetric ASMs)

- Conjecture 2 (The refined TSSCPP conjecture)
- Conjecture 3 (The doubly refined TSSCPP conjecture)
- Onjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- Conjecture 6 (Related to vertical symmetric ASMs)

Plane partitions

Definition

A *plane partition* is an array $\pi = (\pi_{ij})_{i,j\geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i,j\geq 1} \pi_{ij} = n$, then we write $|\pi| = n$ and say that π is a plane partition of n, or π has the *weight* n.

Plane partitions

Definition

A *plane partition* is an array $\pi = (\pi_{ij})_{i,j\geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i,j\geq 1} \pi_{ij} = n$, then we write $|\pi| = n$ and say that π is a plane partition of n, or π has the *weight* n.

Plane partitions

Definition

A *plane partition* is an array $\pi = (\pi_{ii})_{i,i\geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i,i>1} \pi_{ii} = n$, then we write $|\pi| = n$ and say that π is a plane partition of n, or π has the *weight n*.

Example

A plane partition of 14

۰.

イロン 不得 とくほう くほう

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The *shape* of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.
- We say that π has r rows if r = ℓ(λ). Similarly, π has s columns if s = ℓ(λ').

Example

A plane partition of shape (432) with 3 rows and 4 columns:

・ロト ・留ト ・ ヨト ・ ヨト ・

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The shape of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.

• We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

イロン イロン イヨン イヨン

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The shape of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.
- We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

イロト イロト イヨト イヨト

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The shape of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.
- We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

э

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The shape of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.
- We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

3	2	1	1
2	2	1	
1	1		

ヘロマ ふぼう ヘロマ

Example of plane partitions

Example

- Plane partitions of 0: Ø
- Plane partitions of 1: 1
- Plane partitions of 2:

Plane partitions of 3:

Example of plane partitions

Example

- Plane partitions of 0: Ø
- Plane partitions of 1: 1
- Plane partitions of 2:

Plane partitions of 3:

Example of plane partitions

Example

- Plane partitions of 0: Ø
- Plane partitions of 1: 1
- Plane partitions of 2:

Plane partitions of 3:

Example of plane partitions

Example

- Plane partitions of 0: Ø
- Plane partitions of 1: 1
- Plane partitions of 2:

• Plane partitions of 3:

Ferrers graph

Definition

The *Ferrers graph* $D(\pi)$ of π is the subset of \mathbb{P}^3 defined by

$$D(\pi) = \left\{ (i, j, k) : k \leq \pi_{ij} \right\}$$

Ferrers graph

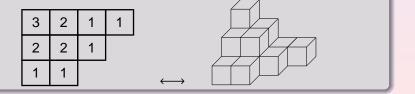
Definition

The *Ferrers graph* $D(\pi)$ of π is the subset of \mathbb{P}^3 defined by

$$D(\pi) = \left\{ (i, j, k) : k \leq \pi_{ij} \right\}$$

Example

Ferrers graph



・ロン ・四 と ・ ヨン ・ ヨン ・

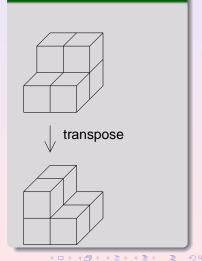
æ

Definition

If $\pi = (\pi_{ij})$ is a plane partition, then the *transpose* π^* of π is defined by $\pi^* = (\pi_{ji})$.

- π is symmetric if $\pi = \pi^*$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called *totally symmetric* if it is cyclically symmetric and symmetric.

Example



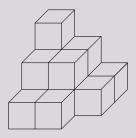
Definition

If $\pi = (\pi_{ij})$ is a plane partition, then the *transpose* π^* of π is defined by $\pi^* = (\pi_{ji})$.

- π is symmetric if $\pi = \pi^*$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called *totally symmetric* if it is cyclically symmetric and symmetric.

Example

A symmetric PP



イロト イロト イヨト イヨト

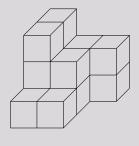
Definition

If $\pi = (\pi_{ij})$ is a plane partition, then the *transpose* π^* of π is defined by $\pi^* = (\pi_{ji})$.

- π is symmetric if $\pi = \pi^*$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called *totally symmetric* if it is cyclically symmetric and symmetric.

Example

A cyclicaly symmetric PP



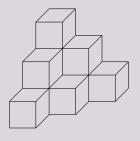
Definition

If $\pi = (\pi_{ij})$ is a plane partition, then the *transpose* π^* of π is defined by $\pi^* = (\pi_{ji})$.

- π is symmetric if $\pi = \pi^*$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- *π* is called *totally symmetric* if it is cyclically symmetric and symmetric.

Example

A totally symmetric PP



Complement

Definition

Let $\pi = (\pi_{ij})$ be a plane partition contained in the box $B(r, s, t) = [r] \times [s] \times [t]$. Define the *complement* π^c of π by $\pi^c = \{ (r+1-i, s+1-j, t+1-k) : (i, j, k) \notin \pi \}$. • π is said to be (r, s, t)-self-complementary if $\pi = \pi^c$. i.e $(i, j, k) \in \pi \Leftrightarrow (r+1-i, s+1-j, t+1-k) \notin \pi$.

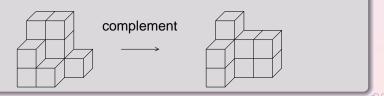
Example

Complement

Definition

Let $\pi = (\pi_{ij})$ be a plane partition contained in the box $B(r, s, t) = [r] \times [s] \times [t].$ Define the *complement* π^c of π by $\pi^c = \{(r + 1 - i, s + 1 - j, t + 1 - k) : (i, j, k) \notin \pi\}.$ • π is said to be (r, s, t)-self-complementary if $\pi = \pi^c$.

Example



Masao Ishikawa Refined Enumerations of TSSCPPs

Complement

Definition

Let $\pi = (\pi_{ij})$ be a plane partition contained in the box $B(r, s, t) = [r] \times [s] \times [t]$. Define the *complement* π^c of π by $\pi^c = \{ (r + 1 - i, s + 1 - j, t + 1 - k) : (i, j, k) \notin \pi \}$. • π is said to be (r, s, t)-self-complementary if $\pi = \pi^c$. i.e. $(i, j, k) \in \pi \Leftrightarrow (r + 1 - i, s + 1 - j, t + 1 - k) \notin \pi$.

Example

A (2, 3, 3)-self-complementary PP

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation c and the group S_{3} generate a group T of order 12. The group T has ten conjugacy classes of subgroups, giving rise to ten enumeration problems.

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation c and the group S_{3} generate a group T of order 12. The group T has ten conjugacy classes of subgroups, giving rise to ten enumeration problems.

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation c and the group S_{3} generate a group T of order 12. The group T has ten conjugacy classes of subgroups, giving rise to ten enumeration problems.

Table	(R. P. Stanley, "Sy	mmetries of Plane Partitions", J. Combin. Theory Ser. A 43, 103-113 (1986))	
1	B(r, s, t)	Any	
2	B(r, r, t)	Symmetric	
3	B(r, r, r)	Cyclically symmetric	
4	B(r, r, r)	Totally symmetric	
5	B(r, s, t)	Self-complementary	
6	B(r, r, t)	Complement = transpose	
7	B(r, r, t)	Symmetric and self-complementary	
8	B(r, r, r)	Cyclically symmetric and complement = transpose	
9	B(r, r, r)	Cyclically symmetric and self-complementary	
10	B(r, r, r)	Totally symmetric and self-complementary	

Definition

A plane partition is said to be *totally symmetric* self-complementary plane parition of size 2n if it is totally symmetric and (2n, 2n, 2n)-self-complementary.

plane partitions of size 2n by \mathscr{I}_n .

Definition

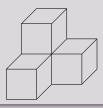
A plane partition is said to be *totally symmetric* self-complementary plane parition of size 2n if it is totally symmetric and (2n, 2n, 2n)-self-complementary. We denote the set of all self-complementary totally symmetric plane partitions of size 2n by \mathscr{S}_n .

Definition

A plane partition is said to be *totally symmetric* self-complementary plane parition of size 2n if it is totally symmetric and (2n, 2n, 2n)-self-complementary. We denote the set of all self-complementary totally symmetric plane partitions of size 2n by \mathscr{S}_n .

Example

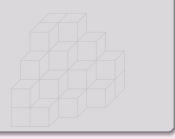
 \mathscr{S}_1 consists of the single partition



TSSCPPs of size 4

Example

 \mathcal{S}_2 consists of the following two partitions:



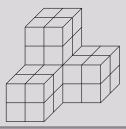
・ロン ・四 と ・ ヨン ・ ヨン ・

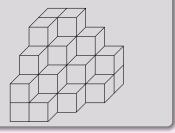
æ

TSSCPPs of size 4

Example

 \mathcal{S}_2 consists of the following two partitions:

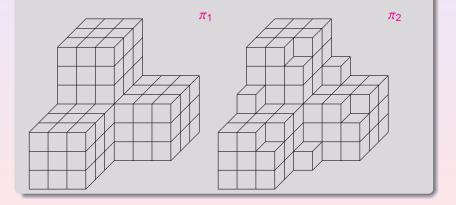




・ロト ・四ト ・ヨト ・ヨト

Example

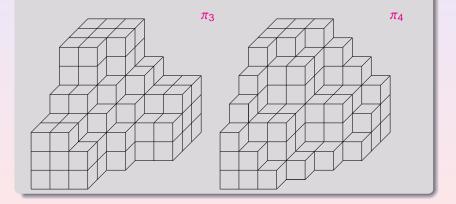
\mathscr{S}_3 consists of the following seven partitions:



ヘロン 人間 とくほ とくほ とう

Example

\mathcal{S}_3 consists of the following seven partitions:

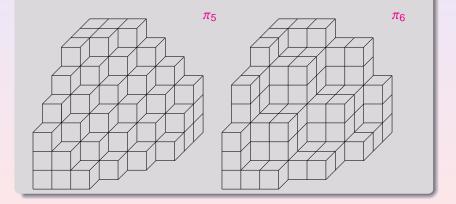


ヘロン 人間 とくほ とくほ とう

æ

Example

\mathcal{S}_3 consists of the following seven partitions:

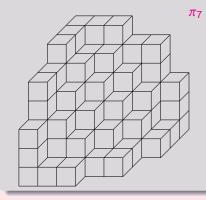


ヘロン 人間 とくほ とくほ とう

æ

Example

 \mathcal{S}_3 consists of the following seven partitions:



ヘロト ヘロト ヘヨト ヘヨト

æ

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

- (B1) the shifted shape of b is $(n-1, n-2, \ldots, 1)$;
- (B2) $n i \le b_{ij} \le n$ for $1 \le i \le j \le n 1$.

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of *b* is (n-1, n-2, ..., 1);

(B2) $n - i \le b_{ij} \le n$ for $1 \le i \le j \le n - 1$.

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is (n-1, n-2, ..., 1);

(B2) $n - i \le b_{ij} \le n$ for $1 \le i \le j \le n - 1$.

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is (n-1, n-2, ..., 1);

(B2) $n - i \le b_{ij} \le n$ for $1 \le i \le j \le n - 1$.

We call an element of \mathscr{B}_n a triangular shifted plane partition.

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is (n-1, n-2, ..., 1);

(B2)
$$n - i \le b_{ij} \le n$$
 for $1 \le i \le j \le n - 1$.

We call an element of \mathscr{B}_n a triangular shifted plane partition.

Example

 \mathscr{B}_1 consists of the single PP \emptyset .

イロト イ理ト イヨト イヨ

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is (n-1, n-2, ..., 1);

(B2)
$$n - i \le b_{ij} \le n$$
 for $1 \le i \le j \le n - 1$.

We call an element of \mathscr{B}_n a triangular shifted plane partition.

Example

 \mathscr{B}_2 consists of the following 2 PPs:

イロト イポト イヨト イヨ

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is (n-1, n-2, ..., 1);

(B2)
$$n - i \le b_{ij} \le n$$
 for $1 \le i \le j \le n - 1$.

We call an element of \mathscr{B}_n a triangular shifted plane partition.

Example

 \mathscr{B}_3 consists of the followng 7 PPs

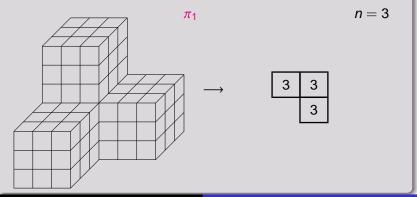
イロト イ理ト イヨト イヨ

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer. Then there is a bijection from \mathcal{S}_n to \mathcal{B}_n .

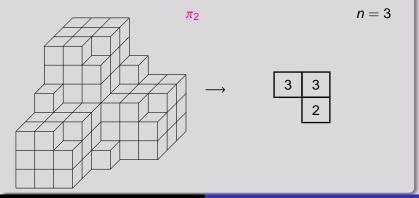
Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{B}_n .



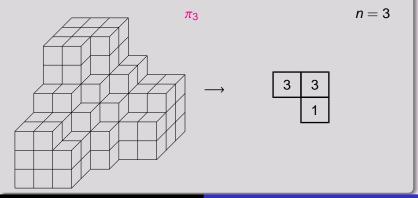
Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{B}_n .



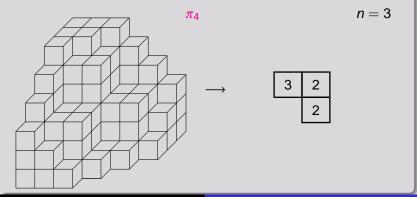
Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{B}_n .



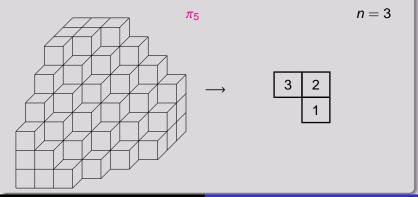
Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{B}_n .



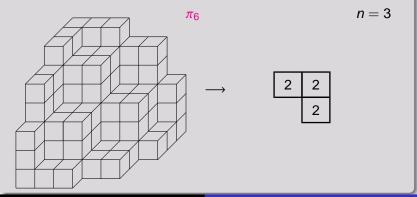
Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{B}_n .



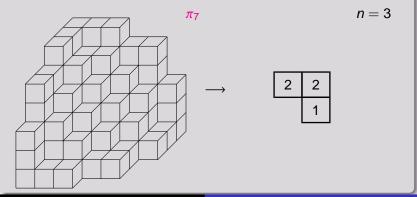
Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{B}_n .



Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{B}_n .



Definition (Mills, Robbins and Rumsey)

Let $b = (b_{ij})_{1 \le i \le j \le n-1}$ be in \mathscr{B}_n and k = 1, ..., n, Let

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Here We set $b_{tn} = n - t$ for all t = 1, ..., n - 1 by convention, and $\chi \{...\}$ has value 1 when the statement "..." is true and 0 otherwise.

・ロト ・四ト ・ヨト ・ヨト

Definition (Mills, Robbins and Rumsey)

Let $b = (b_{ij})_{1 \le i \le j \le n-1}$ be in \mathscr{B}_n and k = 1, ..., n, Let

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Here We set $b_{tn} = n - t$ for all t = 1, ..., n - 1 by convention, and $\chi \{...\}$ has value 1 when the statement "..." is true and 0 otherwise.

Masao Ishikawa Refined Enumerations of TSSCPPs

Definition (Mills, Robbins and Rumsey)

Let $b = (b_{ij})_{1 \le i \le j \le n-1}$ be in \mathscr{B}_n and k = 1, ..., n, Let

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Here We set $b_{tn} = n - t$ for all t = l, ..., n - 1 by convention, and $\chi \{...\}$ has value 1 when the statement "..." is true and 0 otherwise.

Masao Ishikawa Refined Enumerations of TSSCPPs

Definition (Mills, Robbins and Rumsey)

Let $b = (b_{ij})_{1 \le i \le j \le n-1}$ be in \mathscr{B}_n and k = 1, ..., n, Let

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Here We set $b_{tn} = n - t$ for all t = 1, ..., n - 1 by convention, and $\chi \{...\}$ has value 1 when the statement "..." is true and 0 otherwise.

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Example

n = 7, k = 1, $U_1(b) = 3$

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 1$, $U_1(b) = 3$

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Example

$$n = 7$$
, $k = 2$, $U_2(b) = 1$



$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 3$, $U_3(b) = 3$

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7, k = 4, U_4(b) = 2$$

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7, k = 5, U_5(b) = 2$$

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 6$, $U_6(b) = 3$

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 7$, $U_7(b) = 3$

The refined TSSCPP conjecture

Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $0 \le r \le n-1$ and $1 \le k \le n$. Then the number of elements *b* of \mathscr{B}_n such that $U_k(b) = r$ is the same as the number of *n* by *n* alternating sign matrices $a = (a_{ij})$ such that $a_{1,r+1} = 1$.

The refined TSSCPP conjecture

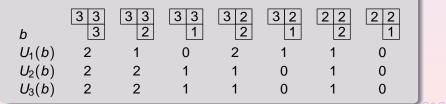
Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $0 \le r \le n - 1$ and $1 \le k \le n$. Then the number of elements *b* of \mathscr{B}_n such that $U_k(b) = r$ is the same as the number of *n* by *n* alternating sign matrices $a = (a_{ij})$ such that $a_{1,r+1} = 1$.

Example

$$n = 3, b \in \mathscr{B}_3$$



Masao Ishikawa Refined Enumerations of TSSCPPs

The refined TSSCPP conjecture

Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $0 \le r \le n-1$ and $1 \le k \le n$. Then the number of elements *b* of \mathscr{B}_n such that $U_k(b) = r$ is the same as the number of *n* by *n* alternating sign matrices $a = (a_{ij})$ such that $a_{1,r+1} = 1$.

Example

For k = 1, 2, 3, we have

$$\sum_{b\in\mathscr{B}_3}t^{U_k(b)}=2+3t+2t^2.$$

The refined enumeration of ASM

Zeilberger (1996), Kuperberg (1996)

The number of *n* by *n* alternating sign matrices $a = (a_{ij})$ such that $a_{1,r+1} = 1$ is equal to

$$\frac{\binom{n+r-2}{n-1}\binom{2n-r-1}{n-1}}{\binom{2n-2}{n-1}}A_{n-1} = \frac{\binom{n+r-2}{n-1}\binom{2n-1-r}{n-1}}{\binom{3n-2}{n-1}}A_n.$$

Here A_n is

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

Masao Ishikawa Refined Enumerations of TSSCPPs

The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, s with $0 \le r$, $s \le n - 1$ be integers. Then the number of partitions in \mathscr{B}_n with $U_1(b) = r$ and $U_2(b) = s$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ with

$$a_{1,r+l} = a_{n,n-s} = 1.$$

The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, s with $0 \le r$, $s \le n - 1$ be integers. Then the number of partitions in \mathcal{B}_n with $U_1(b) = r$ and $U_2(b) = s$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ with

$$a_{1,r+l} = a_{n,n-s} = 1.$$

Example 33 3 3 2 2 31 3 3 2 $b \in \mathcal{B}_3$ $U_1(b)$ 2 2 $U_2(b)$ 2 2 0 $U_3(b)$ 2 2 0

The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, s with $0 \le r$, $s \le n - 1$ be integers. Then the number of partitions in \mathscr{B}_n with $U_1(b) = r$ and $U_2(b) = s$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ with

$$a_{1,r+l} = a_{n,n-s} = 1.$$

Example

Thus we have

$$\sum_{b\in\mathscr{B}_3} t^{U_1(b)} u^{U_2(b)} = 1 + t + u + tu + t^2 u + tu^2 + t^2 u^2.$$

The doubly refined enumeration of ASM

Di Francesco and Zinn-Justin (2004)

The doubly-refined ASM number generating function is given by

$$A_n(t,u) = \frac{\{\omega^2(\omega+t)(\omega+u)\}^{n-1}}{3^{n(n-1)/2}} \times s^{(2n)}_{\delta(n-1,n-1)}\left(\frac{1+\omega t}{\omega+t},\frac{1+\omega u}{\omega+u},1,\ldots,1\right)$$

Here $s_{\lambda}^{(n)}(x_1, \ldots, x_n)$ stands for the Schur function in the *n* variables x_1, \ldots, x_n , corresponding to the partition λ , and $\delta(n-1, n-1) = (n-1, n-1, n-2, n-2, \ldots, 1, 1)$ and $\omega = e^{2i\pi/3}$. (The coefficient of $t^{j-1}s^{k-1}$ is the number of $n \times n$ ASM with a 1 in position *r* on the top row (counted from left to right) and *k* on the bottom row (counted from right to left).)

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathscr{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathscr{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n. Then the cardinality of \mathscr{B}_{nk} is equal to the cardinality of the set of the monotone triangles with all entries m_{ij} in the first n - 1 - k columns equal to their minimum values j - i + 1.

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathscr{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathscr{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

n = 3, k = 0: The first 2 columns are equal to the maximum values 3.

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathscr{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathscr{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

For k = 1, 2, 3, we have

$$\sum_{b\in\mathscr{B}_{3,0}}t^{U_k(b)}=t^2.$$

Masao Ishikawa Refined Enumerations of TSSCPPs

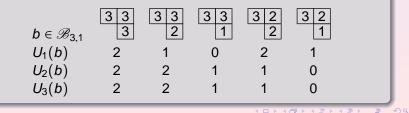
Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathscr{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathscr{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

n = 3, k = 1: The first column equals the maximum values 3.



Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathscr{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathscr{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

For k = 1, 2, 3, we have

$$\sum_{D \in \mathscr{B}_{3,1}} t^{U_k(b)} = 1 + 2t + 2t^2.$$

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathscr{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathscr{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

$$n = 3, k = 2$$
: No restriction.

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathscr{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathscr{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

For k = 1, 2, 3, we have

$$\sum_{b \in \mathscr{B}_{3,2}} t^{U_k(b)} = 2 + 3t + 2t^2.$$

Definition (Mills, Robbins and Rumsey)

Let *b* be an element of \mathscr{B}_n .

If b_{ij} is a part of b off the main diagonal, then by the flip of b_{ij} we mean the operation of replacing b_{ij} by b'_{ij} where b_{ij} and b'_{ij} are related by

 $b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$

• Similarly, the *flip* of a part *b_{ii}* is the operation of replacing *b_{ii}* by *b'_{ii}* where

$$b'_{ii} + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

In the above expression we take $b_{O,j} = n$ for all *j* and $b_{i,n} = n - i$ for all *i*.

Definition (Mills, Robbins and Rumsey)

Let *b* be an element of \mathcal{B}_n .

If b_{ij} is a part of b off the main diagonal, then by the flip of b_{ij} we mean the operation of replacing b_{ij} by b'_{ij} where b_{ij} and b'_{ij} are related by

 $b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$

• Similarly, the *flip* of a part *b_{ii}* is the operation of replacing *b_{ii}* by *b'_{ii}* where

$$b'_{ii} + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

In the above expression we take $b_{O,j} = n$ for all *j* and $b_{i,n} = n - i$ for all *i*.

Definition (Mills, Robbins and Rumsey)

Let *b* be an element of \mathcal{B}_n .

If b_{ij} is a part of b off the main diagonal, then by the flip of b_{ij} we mean the operation of replacing b_{ij} by b'_{ij} where b_{ij} and b'_{ij} are related by

$$b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$$

• Similarly, the *flip* of a part *b_{ii}* is the operation of replacing *b_{ii}* by *b'_{ii}* where

$$b'_{ii} + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

In the above expression we take $b_{O,j} = n$ for all *j* and $b_{i,n} = n - i$ for all *i*.

Definition (Mills, Robbins and Rumsey)

Let *b* be an element of \mathcal{B}_n .

If b_{ij} is a part of b off the main diagonal, then by the flip of b_{ij} we mean the operation of replacing b_{ij} by b'_{ij} where b_{ij} and b'_{ij} are related by

 $b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$

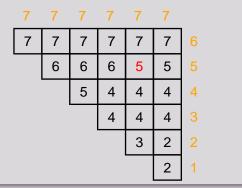
• Similarly, the *flip* of a part b_{ii} is the operation of replacing b_{ii} by b'_{ii} where

$$b'_{ii} + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

In the above expression we take $b_{O,j} = n$ for all *j* and $b_{i,n} = n - i$ for all *i*.

Example

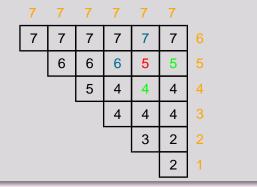
n = 7, Flip on the off-diagonal part $b_{2,4} = 5$



・ロン ・四 と ・ 回 と ・ 回 と

Example

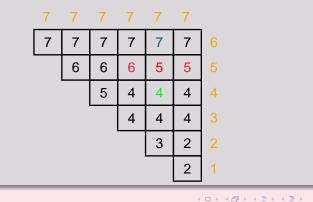
$$n = 7$$
, $5 + b'_{2,4} = \min(7, 6) + \max(5, 4)$



・ロン ・四 と ・ 回 と ・ 回 と

Example

$$n = 7$$
, $5 + b'_{24} = 6 + 5$



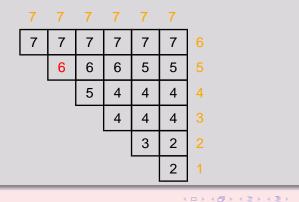
Example

$$n = 7$$
, Change $b_{2,4} = 5$ to $b'_{2,4} = 6$.

Masao Ishikawa Refined Enumerations of TSSCPPs

Example

n = 7, Flip on the diagonal part $b_{2,1} = 6$



а.

Example

$$n = 7$$
, $6 + b'_{21} = 7 + 6$



Example

$$n = 7$$
, Change $b_{2,1} = 6$ to $b'_{2,1} = 7$.

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

э

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 1, Apply π_1 to the following $b \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
		5	4	4	4
			4	4	4
				3	2
					2

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 1, Then we obtain the following $\pi_1(b) \in \mathscr{B}_3$.

7	7	7	7	7	7
	6	6	6	5	5
		5	4	4	4
			4	4	4
				3	2
					1

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 2, Apply π_2 to the following $b \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
		5	4	4	4
			4	4	4
				3	2
					2

문에 세 문어 ...

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 2, Then we obtain the following $\pi_2(b) \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	7	6	5	5
		5	5	4	4
			4	4	4
				3	3
					2

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 3, Apply π_3 to the following $b \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
		5	4	4	4
			4	4	4
				3	2
					2

∃ ► < ∃ ► ...</p>

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 3, Then we obtain the following $\pi_3(b) \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	6	5	5	5
		5	4	4	4
			4	4	3
				3	2
					2

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 4, Apply π_4 to the following $b \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
		5	4	4	4
			4	4	4
				3	2
					2

문에 세 문어 ...

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 4, Then we obtain the following $\pi_4(b) \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	6	5
		5	4	4	4
			4	4	4
				3	2
					2

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 5, Apply π_5 to the following $b \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
		5	4	4	4
			4	4	4
				3	2
					2

프 () 이 프 () 이

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 5, Then we obtain the following $\pi_5(b) \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
		5	4	4	4
			4	4	4
				3	2
					2

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 6, Apply π_6 to the following $b \in \mathscr{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
		5	4	4	4
			4	4	4
				3	2
					2

∃ ► < ∃ ► ...</p>

Definition

For each k = l, ..., n - 1, we define an operation π_k from \mathscr{B}_n to itself. Let *b* be an element of \mathscr{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n - k$.

Example n = 7, k = 6, Then we obtain the following $\pi_6(b) \in \mathscr{B}_6$.

7	7	7	7	7	6
	7	6	6	5	5
		5	4	4	4
			4	4	4
		'		3	2
					2

Conjecture 4

Definition

Define the involution $\rho : \mathscr{B}_n \to \mathscr{B}_n$ by

 $\rho=\pi_2\pi_4\pi_6\cdots.$

 ${\sf Conjecture}$ (Conjecture 4 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, $0 \le r \le n$ be integers. Then the number of elements of \mathscr{B}_n with p(b) = b and $U_1(b) = r$ is the same as the number of n by n alternating sign matrices a invariant under the half turn in their own planes (that is $a_{ij} = a_{n+1-i,n+1-i}$ for 1 < i, j < n) and satisfying $a_{1,r} = 1$.

Conjecture 4

Definition

Define the involution $\rho : \mathscr{B}_n \to \mathscr{B}_n$ by

$$\rho=\pi_2\pi_4\pi_6\cdots.$$

Conjecture (Conjecture 4 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and $r, 0 \le r \le n$ be integers. Then the number of elements of \mathscr{B}_n with p(b) = b and $U_1(b) = r$ is the same as the number of n by n alternating sign matrices a invariant under the half turn in their own planes (that is $a_{ij} = a_{n+1-i,n+1-i}$ for 1 < i, j < n) and satisfying $a_{1,r} = 1$.

Conjecture 6

Definition

Define the involution $\gamma : \mathscr{B}_n \to \mathscr{B}_n$ by

 $\gamma=\pi_1\pi_3\pi_5\cdots.$

 ${\sf CON}$ ecture (Conjecture 6 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions"

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 3$ an odd integer and i, $0 \le i \le n - 1$ be an integer. Then the number of b in \mathcal{B}_n with $\gamma(b) = b$ and $U_2(b) = i$ is the same as the number of n by n alternating sign matrices with $a_{i1} = 1$ and which are invariant under the vertical flip (that is $a_{ij} = a_{i,n+1-j}$ for $1 \le i, j \le n$).

Conjecture 6

Definition

Define the involution $\gamma : \mathscr{B}_n \to \mathscr{B}_n$ by

$$\gamma=\pi_1\pi_3\pi_5\cdots.$$

Conjecture (Conjecture 6 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 3$ an odd integer and i, $0 \le i \le n - 1$ be an integer. Then the number of b in \mathscr{B}_n with $\gamma(b) = b$ and $U_2(b) = i$ is the same as the number of n by n alternating sign matrices with $a_{i1} = 1$ and which are invariant under the vertical flip (that is $a_{ij} = a_{i,n+1-j}$ for $1 \le i, j \le n$).

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

We call an element of \mathcal{P}_n a *restricted column-strict plane partition*. A part c_{ij} of c is said to be *saturated* if $c_{ij} = n - j$.

Example

æ

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
 - C2) *j*th column is less than or equal to n j.

We call an element of \mathcal{P}_n a restricted column-strict plane partition. A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Example

< ロ > < 四 > < 回 > < 回 > < 回 > <</p>

æ

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

We call an element of \mathscr{P}_n a *restricted column-strict plane partition*. A part c_{ij} of c is said to be *saturated* if $c_{ij} = n - j$.

Example

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

We call an element of \mathcal{P}_n a restricted column-strict plane partition.

A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Example

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

We call an element of \mathcal{P}_n a restricted column-strict plane partition. A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Example

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

We call an element of \mathcal{P}_n a *restricted column-strict plane partition*. A part c_{ij} of c is said to be *saturated* if $c_{ij} = n - j$.

Example

 \mathscr{P}_1 consists of the single PP \emptyset .

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

We call an element of \mathcal{P}_n a *restricted column-strict plane partition*. A part c_{ij} of c is said to be *saturated* if $c_{ij} = n - j$.

\mathcal{P}_2 consists of the following	2 PP	s:		
	Ø	1		
			1 1 1 1	a

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

We call an element of \mathcal{P}_n a *restricted column-strict plane partition*. A part c_{ij} of c is said to be *saturated* if $c_{ij} = n - j$.

\mathscr{P}_2 consists of the following	2 PP	's:					
	Ø	1					
	_		• • • • • • • • • • • • • • • • • • •		€ ×	Ð	うく

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

We call an element of \mathcal{P}_n a *restricted column-strict plane partition*. A part c_{ij} of c is said to be *saturated* if $c_{ij} = n - j$.

Definition

Let \mathcal{P}_n denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) *j*th column is less than or equal to n j.

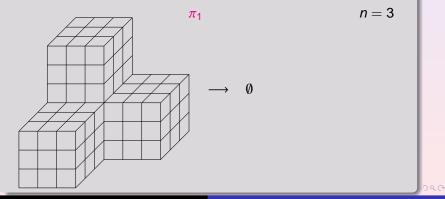
We call an element of \mathcal{P}_n a *restricted column-strict plane partition*. A part c_{ij} of c is said to be *saturated* if $c_{ij} = n - j$.

Theorem

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{P}_n .

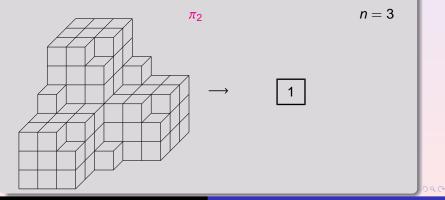
Theorem

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{P}_n .



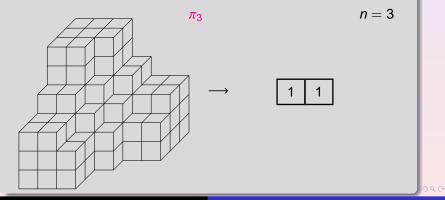
Theorem

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{P}_n .



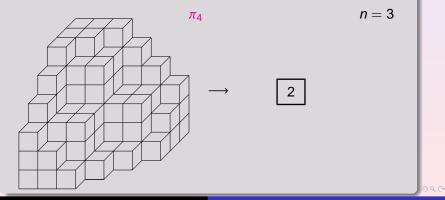
Theorem

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{P}_n .



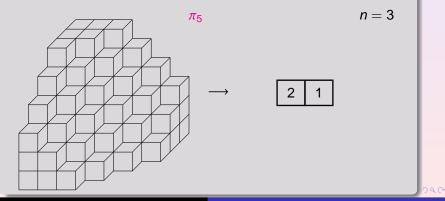
Theorem

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{P}_n .



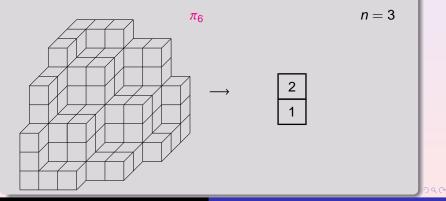
Theorem

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{P}_n .



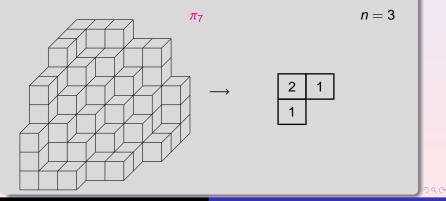
Theorem

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{P}_n .



Theorem

Let *n* be a positive integer. Then there is a bijection from \mathscr{S}_n to \mathscr{P}_n .



Composition of the bijectons

Corollary

Let *n* be a positive integer. Then there is a bijection φ_n from \mathscr{B}_n to \mathscr{P}_n .

Composition of the bijectons

Corollary

Let *n* be a positive integer. Then there is a bijection φ_n from \mathscr{B}_n to \mathscr{P}_n .

Example

The statistics in words of RCSPP

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and $k = 1, \ldots, n$,

Let $U_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

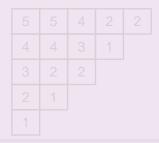
Example

Masao Ishikawa Refined Enumerations of TSSCPPs

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.



Definition

Let
$$\boldsymbol{c} = (\boldsymbol{c}_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \dots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

Example

 $n = 7, c \in \mathcal{P}_3$, Saturated parts

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 1, \overline{U}_1(c) = 3$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 2, \overline{U}_2(c) = 5$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1		-		

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 3, \overline{U}_3(c) = 3$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 4, \overline{U}_4(c) = 4$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 5, \overline{U}_5(c) = 4$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1		-		

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 6, \overline{U}_6(c) = 3$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1		-		

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, \ldots, n$,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 7, \overline{U}_7(c) = 3$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Relation between $U_k(\overline{b})$ and $\overline{U_k(c)}$

Theorem

For $n \ge 1$ and k = 1, ..., n, assume that the bijection φ_n maps $b \in \mathscr{B}_n$ to $c = \varphi(b) \in \mathscr{P}_n$. Then

$$\overline{U}_k(c)=n-1-U_k(b).$$

・ロト ・四ト ・ヨト ・ヨト

3

Relation between $U_k(b)$ and $\overline{U}_k(c)$

Theorem

For $n \ge 1$ and k = 1, ..., n, assume that the bijection φ_n maps $b \in \mathscr{B}_n$ to $c = \varphi(b) \in \mathscr{P}_n$. Then

$$\overline{U}_k(c)=n-1-U_k(b).$$

Example

 $n=3, b\in \mathcal{B}_3$ 33 32 33 3 33 2 2 b $U_2(b)$ 2 2 $U_3(b)$ 2 2 2 1 0 0 1 0 0

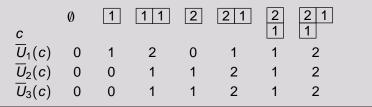
Relation between $U_k(b)$ and $U_k(c)$

Theorem

For $n \ge 1$ and k = 1, ..., n, assume that the bijection φ_n maps $b \in \mathscr{B}_n$ to $c = \varphi(b) \in \mathscr{P}_n$. Then

$$\overline{U}_k(c)=n-1-U_k(b).$$

$$n = 3, c \in \mathscr{P}_3$$



Theorem

Let $V = \{(x, y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1, -1) or (0, -1). Let $u_j = (n - j, n - j)$ and $v_j = (\lambda_j + n - j, 0)$ for j = 1, ..., n, and let $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$. We claim that the $c \in \mathscr{P}_n$ of shape λ' can be identified with n-tuples of nonintersecting D-paths in $\mathscr{P}(u, v)$.

・ロト ・四ト ・ヨト ・ヨト

Theorem

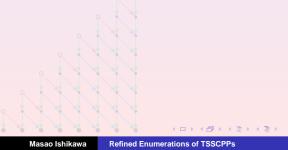
Let $V = \{(x, y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1, -1) or (0, -1). Let $u_j = (n - j, n - j)$ and $v_j = (\lambda_j + n - j, 0)$ for j = 1, ..., n, and let $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$. We claim that the $c \in \mathcal{P}_n$ of shape λ' can be identified with n-tuples of nonintersecting *D*-paths in $\mathcal{P}(u, v)$.

Theorem

Let $V = \{(x, y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1, -1) or (0, -1). Let $u_j = (n - j, n - j)$ and $v_j = (\lambda_j + n - j, 0)$ for j = 1, ..., n, and let $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$. We claim that the $c \in \mathscr{P}_n$ of shape λ' can be identified with n-tuples of nonintersecting D-paths in $\mathscr{P}(u, v)$.

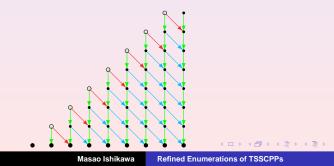
Theorem

Let $V = \{(x, y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1, -1) or (0, -1). Let $u_j = (n - j, n - j)$ and $v_j = (\lambda_j + n - j, 0)$ for j = 1, ..., n, and let $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$. We claim that the $c \in \mathscr{P}_n$ of shape λ' can be identified with n-tuples of nonintersecting D-paths in $\mathscr{P}(u, v)$.



Theorem

Let $V = \{(x, y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1, -1) or (0, -1). Let $u_j = (n - j, n - j)$ and $v_j = (\lambda_j + n - j, 0)$ for j = 1, ..., n, and let $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$. We claim that the $c \in \mathscr{P}_n$ of shape λ' can be identified with n-tuples of nonintersecting D-paths in $\mathscr{P}(u, v)$.



Example of lattice paths

Example

 $n = 7, c \in \mathscr{P}_7$: RCSPP

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

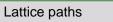
Masao Ishikawa Refined Enumerations of TSSCPPs

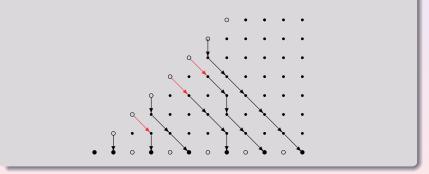
(日)

æ

Example of lattice paths

Example





・ロト ・四ト ・ヨト ・ヨト

æ

Weight of each edge

Definition

```
Let u \rightarrow v be an edge in from u to v.
```


ヘロト ヘロト ヘヨト ヘヨト

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.

We assign the weight

$$\begin{cases} \prod_{k=j}^{n} t_k \cdot x_j & \text{if } j = i, \\ t_j x_j & \text{if } j < i, \end{cases}$$

to the horizontal edge from u = (i, j) to v = (i + 1, j - 1).

We assign the weight 1 to the vertical edge from u = (i, j) to v = (i, j - 1).

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.

We assign the weight

$$\begin{cases} \prod_{k=j}^{n} t_k \cdot x_j & \text{ if } j = i, \\ t_j x_j & \text{ if } j < i, \end{cases}$$

to the horizontal edge from u = (i, j) to v = (i + 1, j - 1).

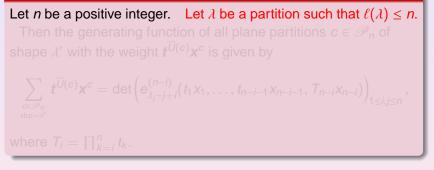
• We assign the weight 1 to the vertical edge from u = (i, j) to v = (i, j - 1).

Theorem

Let *n* be a positive integer. Let λ be a partition such that $\ell(\lambda) \le n$. Then the generating function of all plane partitions $c \in \mathscr{P}_n$ of shape λ' with the weight $t^{\overline{U}(c)} \mathbf{x}^c$ is given by

where $T_i = \prod_{k=i}^n t_k$.

Theorem



Theorem

Let *n* be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$. Then the generating function of all plane partitions $c \in \mathscr{P}_n$ of shape λ' with the weight $t^{\overline{U}(c)} \mathbf{x}^c$ is given by

$$\sum_{\boldsymbol{x} \in \mathscr{P}_n \atop hc = \lambda'} \boldsymbol{t}^{\overline{U}(c)} \boldsymbol{x}^c = \det\left(\boldsymbol{e}_{\lambda_j - j + i}^{(n-i)}(\boldsymbol{t}_1 \boldsymbol{x}_1, \dots, \boldsymbol{t}_{n-i-1} \boldsymbol{x}_{n-i-1}, \boldsymbol{T}_{n-i} \boldsymbol{x}_{n-i})\right)_{1 \le i,j \le n},$$

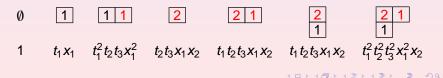
where $T_i = \prod_{k=i}^n t_k$.

Theorem

Let *n* be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$. Then the generating function of all plane partitions $c \in \mathscr{P}_n$ of shape λ' with the weight $t^{\overline{U}(c)} \mathbf{x}^c$ is given by

$$\sum_{\boldsymbol{x} \in \mathscr{P}_n \atop hc = \lambda'} \boldsymbol{t}^{\overline{U}(c)} \boldsymbol{x}^c = \det \left(\boldsymbol{e}_{\lambda_j - j + i}^{(n-i)} (\boldsymbol{t}_1 \boldsymbol{x}_1, \dots, \boldsymbol{t}_{n-i-1} \boldsymbol{x}_{n-i-1}, \boldsymbol{T}_{n-i} \boldsymbol{x}_{n-i}) \right)_{1 \le i,j \le n},$$

where $T_i = \prod_{k=i}^n t_k$.



Definition

For positive integers *n* and *N*, let $B_n^N(t) = (b_{ij}(t))_{0 \le i \le n-1, 0 \le j \le n+N-1}$ be the $n \times (n + N)$ matrix whose (i, j)th entry is

$$egin{aligned} b_{ij}(t) = egin{cases} \delta_{0,j} & ext{if } i = 0, \ inom{(i-1)}{j-i} + inom{(i-1)}{j-i-1}t & ext{otherwise.} \end{aligned}$$

Definition

For positive integers *n* and *N*, let $B_n^N(t) = (b_{ij}(t))_{0 \le i \le n-1, 0 \le j \le n+N-1}$ be the $n \times (n + N)$ matrix whose (i, j)th entry is

$$egin{aligned} b_{ij}(t) = egin{cases} \delta_{0,j} & ext{if } i = 0, \ inom{(i-1)}{j-i} + inom{(i-1)}{j-i-1}t & ext{otherwise.} \end{aligned}$$

Example

If n = 3 and N = 2, then

$$B_3^2(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & 0 & 0 \\ 0 & 0 & 1 & 1+t & t \end{pmatrix}$$

Masao Ishikawa Refined Enumerations of TSSCPPs

Definition

For positive integers *n*, let $J_n = (\delta_{i,n+1-j})_{1 \le i,j \le n}$ be the $n \times n$ anti-diagonal matrix.

Definition

For positive integers *n*, let $J_n = (\delta_{i,n+1-j})_{1 \le i,j \le n}$ be the $n \times n$ anti-diagonal matrix.

Example

If n = 4, then

$$J_4=egin{pmatrix} 0&0&0&1\ 0&0&1&0\ 0&1&0&0\ 1&0&0&0 \end{pmatrix}$$

Masao Ishikawa Refined Enumerations of TSSCPPs

Definition

For positive integers *n*, let $\overline{S}_n = (\overline{s}_{i,j})_{1 \le i,j \le n}$ be the $n \times n$ skew-symmetricl matrix whose (i, j)th entry is

$$\overline{s}_{i,j} = \begin{cases} (-1)^{j-i-1} & \text{if } i < j, \\ 0 & \text{if } i = j, \\ (-1)^{j-i} & \text{if } i > j. \end{cases}$$

Definition

For positive integers *n*, let $\overline{S}_n = (\overline{s}_{i,j})_{1 \le i,j \le n}$ be the $n \times n$ skew-symmetricl matrix whose (i, j)th entry is

$$\overline{s}_{i,j} = \begin{cases} (-1)^{j-i-1} & \text{if } i < j, \\ 0 & \text{if } i = j, \\ (-1)^{j-i} & \text{if } i > j. \end{cases}$$

Example

If n = 4, then

$$\overline{\mathbf{S}}_4 = \begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & -1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & -1 & 0 \end{pmatrix}$$

Masao Ishikawa Refined Enumerations of TSSCPPs

Theorem

Let *n* be a positive integer and let *N* be an even integer such that $N \ge n - 1$. If *k* is an integer such that $1 \le k \le n$, then

$$\sum_{c \in \mathscr{P}_n} t^{\overline{U}_k(c)} = \Pr \begin{pmatrix} O_n & J_n B_n^N(t) \\ -{}^t B_n^N(t) J_n & \overline{S}_{n+N} \end{pmatrix}$$

Example

If n = 3 and N = 2 then

Pf	(0	0	0	0	0	1	1 + <i>t</i>	t	
	0	0	0	0	1	t	0	0	
	0	0	0	1	0	0	0	0	
	0	0					1	-1	
	0	-1	0	-1	0	1	-1	1	•
	-1	- <i>t</i>	0	1	-1		1	-1	
	−1 − <i>t</i>	0	0	-1	1	-1	0	1	
	(− <i>t</i>	0	0	1	-1	1	-1	0)	

Masao Ishikawa Refined Enumerations of TSSCPPs

A constant term identity for the refined TSSCPP conj.

Theorem

Let *n* be a positive integer. If *k* is an integer such that $1 \le k \le n$, then $\sum_{c \in \mathscr{P}_n} t^{\overline{U}_k(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \le i < j \le n} \left(1 - \frac{x_i}{x_j}\right) \prod_{i=2}^n \left(1 + \frac{1}{x_i}\right)^{i-2} \left(1 + \frac{t}{x_i}\right) \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \le i < j \le n} \frac{1}{1 - x_i x_j}.$$

Example

If n = 3, then the constant term of

$$\begin{pmatrix} 1 - \frac{x_1}{x_2} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_1}{x_3} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_2}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_2} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_3} \end{pmatrix} \\ \times \frac{1}{(1 - x_1)(1 - x_2)(1 - x_3)(1 - x_1x_2)(1 - x_1x_3)(1 - x_2x_3)}$$

A constant term identity for the refined TSSCPP conj.

Theorem

Let *n* be a positive integer. If *k* is an integer such that $1 \le k \le n$, then $\sum_{c \in \mathscr{P}_n} t^{\overline{U}_k(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \le i < j \le n} \left(1 - \frac{x_i}{x_j}\right) \prod_{i=2}^n \left(1 + \frac{1}{x_i}\right)^{i-2} \left(1 + \frac{t}{x_i}\right) \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \le i < j \le n} \frac{1}{1 - x_i x_j}.$$

Example

If n = 3, then the constant term of

$$\begin{pmatrix} 1 - \frac{x_1}{x_2} \end{pmatrix} \left(1 - \frac{x_1}{x_3} \right) \left(1 - \frac{x_2}{x_3} \right) \left(1 + \frac{t}{x_2} \right) \left(1 + \frac{1}{x_3} \right) \left(1 + \frac{t}{x_3} \right) \\ \times \frac{1}{(1 - x_1) (1 - x_2) (1 - x_3) (1 - x_1 x_2) (1 - x_1 x_3) (1 - x_2 x_3)}$$

is equal to $2 + 3t + 2t^2$.

A Pfaffian expression for the doubly refined TSSCPP enumeration

Definition

For positive integers *n* and *N*, let $B_n^N(t, u) = (b_{ij}(t, u))_{0 \le i \le n-1, 0 \le j \le n+N-1}$ be the $n \times (n + N)$ matrix whose (i, j)th entry is

$$b_{ij}(t, u) = \begin{cases} \delta_{0,j} & \text{if } i = 0, \\ \delta_{0,j-i} + \delta_{0,j-i-1}tu & \text{if } i = 1, \\ \binom{i-2}{j-i} + \binom{i-2}{j-i-1}(t+u) + \binom{i-2}{j-i-2}tu & \text{otherwise.} \end{cases}$$

A Pfaffian expression for the doubly refined TSSCPP enumeration

Example

If n = 3 and N = 2, then

$$B_3^2(t) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & tu & 0 & 0 \\ 0 & 0 & 1 & t+u & tu \end{pmatrix}$$

Masao Ishikawa Refined Enumerations of TSSCPPs

A Pfaffian expression for the doubly refined TSSCPP enumeration

Theorem

Let *n* be a positive integer and let *N* be an even integer such that $N \ge n - 1$. If *k* is an integer such that $2 \le k \le n$, then

$$\sum_{c \in \mathscr{P}_n} t^{\overline{U}_1(c)} u^{\overline{U}_k(c)} = \Pr \begin{pmatrix} O_n & J_n \underline{B}_n^N(t, u) \\ -t \underline{B}_n^N(t, u) J_n & \overline{S}_{n+N} \end{pmatrix}$$

Masao Ishikawa Refined Enumerations of TSSCPPs

A Pfaffian expression for the doubly refined TSSCPP enumeration

Example

If n = 3 and N = 2 then

Pf	(0	0	0	0	0	1	t + u	tu)
	0	0	0	0	1	tu	0	0	
	0	0	0	1	0	0	0	0	
	0	0	-1	0	1	-1	1	-1	
	0	-1	0	-1	0	1	-1	1	ŀ
	-1	-tu	0	1	-1	0	1	-1	
	<i>−t − u</i>	0	0	-1	1	-1	0	1	
	(−tu	0	0	1	-1	1	-1	0))

Masao Ishikawa Refined Enumerations of TSSCPPs

A constant term identity for the doubly refined TSSCPP enumeration

Definition

Let $h_i(t, u; x)$ denote the function defined by

$$h_i(t, u; x) = \begin{cases} 1 & \text{if } i = 0, \\ 1 + tux & \text{if } i = 1, \\ (1 + x)^{i-2}(1 + tx)(1 + ux) & \text{if } i \ge 2. \end{cases}$$

Theorem

Let *n* be a positive integer. If *k* is an integer such that $2 \le k \le n$, then $\sum_{c \in \mathscr{P}_n} t^{\overline{U}_1(c)} u^{\overline{U}_k(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \le i < j \le n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=1}^n h_{i-1} \left(t, u; x_i^{-1} \right) \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \le i < j \le n} \frac{1}{1 - x_i x_j}.$$

A constant term identity for the doubly refined TSSCPP enumeration

Definition

Let $h_i(t, u; x)$ denote the function defined by

$$h_i(t, u; x) = \begin{cases} 1 & \text{if } i = 0, \\ 1 + tux & \text{if } i = 1, \\ (1 + x)^{i-2}(1 + tx)(1 + ux) & \text{if } i \ge 2. \end{cases}$$

Theorem

Let *n* be a positive integer. If *k* is an integer such that $2 \le k \le n$, then $\sum_{c \in \mathscr{P}_n} t^{\overline{U}_1(c)} u^{\overline{U}_k(c)}$ is equal to

$$\mathrm{CT}_{\mathbf{x}} \prod_{1 \le i < j \le n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=1}^n h_{i-1} \left(t, u; x_i^{-1} \right) \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \le i < j \le n} \frac{1}{1 - x_i x_j}.$$

A constant term identity for the doubly refined TSSCPP enumeration

Example

If n = 3, then the constant term of

$$\begin{pmatrix} 1 - \frac{x_1}{x_2} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_1}{x_3} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_2}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{tu}{x_2} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{u}{x_3} \end{pmatrix} \\ \times \frac{1}{(1 - x_1)(1 - x_2)(1 - x_3)(1 - x_1x_2)(1 - x_1x_3)(1 - x_2x_3)}$$

is equal to $1 + t + tu + t^2u + tu^2 + ut^2u^2$.

A constant term identity

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

c has at most k rows.

Example

Masao Ishikawa Refined Enumerations of TSSCPPs

・ロト ・四ト ・ヨト ・ヨト

A constant term identity

Definition

- Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that
 - c has at most k rows.

Example

Masao Ishikawa Refined Enumerations of TSSCPPs

・ロト ・四ト ・ヨト ・ヨト

A constant term identity

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

• c has at most k rows.

Example

If n = 3 and k = 0, $\mathcal{P}_{3,0}$ consists of the single PP:

Ø.

Masao Ishikawa Refined Enumerations of TSSCPPs

A constant term identity

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

• c has at most k rows.

Example

If n = 3 and k = 1, $\mathcal{P}_{3,1}$ consists of the following 5 PPs:

A constant term identity

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

• c has at most k rows.

Example

If
$$n = 3$$
 and $k = 2$, $\mathscr{B}_{3,2}$ consists of the following 7 PPs

Masao Ishikawa Refined Enumerations of TSSCPPs

A constant term identity

Theorem

Let *n* be a positive integer. The restriction of φ_n to \mathscr{B}_{nk} gives a bijection from \mathscr{B}_{nk} to \mathscr{P}_{nk} .

Theorem

Let *n* be a positive integer. If $0 \le k \le n-1$ and $1 \le r \le n$, then $\sum_{c \in \mathscr{P}_{nk}} t^{\overline{U}_r(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \le i < j \le n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=2}^n \left(1 + \frac{1}{x_i} \right)^{i-2} \left(1 + \frac{t}{x_i} \right)$$
$$\times \frac{\det(x_i^{j-1} - x_i^{k+2n-j})_{1 \le i,j \le n}}{\prod_{i=1}^n (1 - x_i) \prod_{1 \le i < j \le n} (x_j - x_i)(1 - x_i x_j)}$$

э

A constant term identity

Theorem

Let *n* be a positive integer. The restriction of φ_n to \mathscr{B}_{nk} gives a bijection from \mathscr{B}_{nk} to \mathscr{P}_{nk} .

Theorem

Let *n* be a positive integer. If $0 \le k \le n-1$ and $1 \le r \le n$, then $\sum_{c \in \mathscr{P}_{nk}} t^{\overline{U}_r(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \le i < j \le n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=2}^n \left(1 + \frac{1}{x_i} \right)^{i-2} \left(1 + \frac{t}{x_i} \right)$$
$$\times \frac{\det(x_i^{j-1} - x_i^{\mathbf{k} + 2n - j})_{1 \le i, j \le n}}{\prod_{i=1}^n (1 - x_i) \prod_{1 \le i < j \le n} (x_j - x_i)(1 - x_i x_j)}$$

A D > A A P > A

Example of n = 3

Example

If n = 3 and k = 0, then the constant term of

$$\begin{pmatrix} 1 - \frac{x_1}{x_2} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_1}{x_3} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_2}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_2} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_3} \end{pmatrix} \\ \times \frac{1}{(1 - x_1)(1 - x_2)(1 - x_3)} \\ \det \begin{pmatrix} 1 - x_1^5 & x_1 - x_1^4 & x_1^2 - x_1^3 \\ 1 - x_2^5 & x_2 - x_1^4 & x_2^2 - x_2^3 \\ 1 - x_3^5 & x_3 - x_1^4 & x_3^2 - x_3^3 \end{pmatrix} \\ \times \frac{1}{(x_2 - x_1)(x_3 - x_1)(x_3 - x_2)(1 - x_1x_2)(1 - x_1x_3)(1 - x_2x_3)}$$

is equal to 1.

æ

ヘロト ヘロト ヘヨト ヘヨト

Example of n = 3

Example

If n = 3 and k = 1, then the constant term of

$$\begin{pmatrix} 1 - \frac{x_1}{x_2} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_1}{x_3} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_2}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_2} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_3} \end{pmatrix} \\ \times \frac{1}{(1 - x_1)(1 - x_2)(1 - x_3)} \\ det \begin{pmatrix} 1 - x_1^6 & x_1 - x_1^5 & x_1^2 - x_1^5 \\ 1 - x_2^6 & x_2 - x_1^5 & x_2^2 - x_2^5 \\ 1 - x_3^6 & x_3 - x_1^5 & x_3^2 - x_3^5 \end{pmatrix} \\ \times \frac{1}{(x_2 - x_1)(x_3 - x_1)(x_3 - x_2)(1 - x_1x_2)(1 - x_1x_3)(1 - x_2x_3)}$$

is equal to $2 + 2t + t^2$.

・ロト ・四ト ・ヨト ・ヨト

Example of n = 3

Example

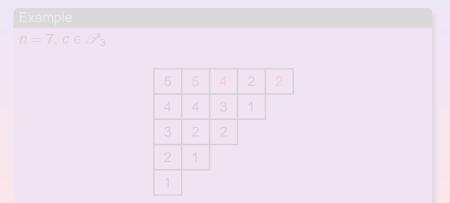
If n = 3 and k = 2, then the constant term of

$$\begin{pmatrix} 1 - \frac{x_1}{x_2} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_1}{x_3} \end{pmatrix} \begin{pmatrix} 1 - \frac{x_2}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_2} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{x_3} \end{pmatrix} \begin{pmatrix} 1 + \frac{t}{x_3} \end{pmatrix} \\ \times \frac{1}{(1 - x_1)(1 - x_2)(1 - x_3)} \\ \det \begin{pmatrix} 1 - x_1^7 & x_1 - x_1^6 & x_1^2 - x_1^5 \\ 1 - x_2^7 & x_2 - x_1^6 & x_2^2 - x_2^5 \\ 1 - x_3^7 & x_3 - x_1^6 & x_3^2 - x_3^5 \end{pmatrix} \\ \times \frac{1}{(x_2 - x_1)(x_3 - x_1)(x_3 - x_2)(1 - x_1x_2)(1 - x_1x_3)(1 - x_2x_3)}$$

is equal to $2 + 3t + 2t^2$.

・ロト ・四ト ・ヨト ・ヨト

The Bender-Knuth involution s_k on tableaux which swaps the number of k's and (k - 1)'s, for each i.



・ロト ・四ト ・ヨト ・ ヨト

= nar

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\overline{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

Example

 $n = 7, c \in \mathcal{P}_3$

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

$$n = 7$$
 Apply $\widetilde{\pi}_2$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

$$n = 7$$
 Apply $\widetilde{\pi}_2$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

Example

n = 7 Then we obtain the following $\tilde{\pi}_2(c) \in \mathscr{P}_3$.

5	5	4	2	1
4	4	3	1	
3	2	1		
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

$$n = 7$$
 Apply $\widetilde{\pi}_3$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1		-		

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

Example

n = 7 Then we obtain the following $\tilde{\pi}_3(c) \in \mathscr{P}_3$.

5	5	4	3	2
4	4	3	1	
3	3	2		
2	1			
1		-		

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

$$n = 7$$
 Apply $\widetilde{\pi}_4$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1		-		

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

Example

n = 7 Then we obtain the following $\tilde{\pi}_4(c) \in \mathscr{P}_3$.

5	5	4	2	2
4	3	3	1	
3	2	2		
2	1			
1		-		

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

$$n = 7$$
 Apply $\widetilde{\pi}_5$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1		-		

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

Example

n = 7 Then we obtain the following $\tilde{\pi}_5(c) \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1		-		

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

$$n = 7$$
 Apply $\widetilde{\pi}_6$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1		-		

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_k$ on \mathscr{P}_n which swaps the number of *k*'s and (k - 1)'s while we ignore saturated (k - 1).

Example

n = 7 Then we obtain the following $\widetilde{\pi}_6(c) \in \mathscr{P}_3$.

6	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c \in \mathscr{P}_n$. Set λ_i to be the number of parts ≥ 2 in the ith row of c. We set $\lambda_0 = n - 1$ by convention. Let k_i denote the number of 1's in the *i*th row. Let $\tilde{\pi}_1$ be the involution on \mathscr{P}_n that changes the number of 1's in the *i*th row from k_i to $\lambda_{i-1} - \lambda_i - k_i$.

$$n = 7$$
 Apply $\widetilde{\pi}_1$ to the following $c \in \mathscr{P}_3$.



Definition

Let $c \in \mathscr{P}_n$. Set λ_i to be the number of parts ≥ 2 in the ith row of c. We set $\lambda_0 = n - 1$ by convention. Let k_i denote the number of 1's in the *i*th row. Let $\tilde{\pi}_1$ be the involution on \mathscr{P}_n that changes the number of 1's in the *i*th row from k_i to $\lambda_{i-1} - \lambda_i - k_i$.

$$n = 7$$
 Apply $\tilde{\pi}_1$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c \in \mathscr{P}_n$. Set λ_i to be the number of parts ≥ 2 in the ith row of c. We set $\lambda_0 = n - 1$ by convention. Let k_i denote the number of 1's in the *i*th row. Let $\widetilde{\pi}_1$ be the involution on \mathscr{P}_n that changes the number of 1's in the *i*th row from k_i to $\lambda_{i-1} - \lambda_i - k_i$.

Example

n = 7 Then we obtain the following $\widetilde{\pi}_1(c) \in \mathscr{P}_3$.

5	5	4	2	2	1
4	4	3	1		
3	2	2			
2	1				

Flips in words of RCSPP

Theorem

Let *n* be a positive integer and let k = 1, ..., n - 1. If $b \in \mathcal{B}_n$, then we have

$$\widetilde{\pi}_{k}\left(arphi_{n}\left(b
ight)
ight) =arphi_{n}\left(\pi_{k}\left(b
ight)
ight) .$$

Definition

We define involutions on \mathscr{P}_n

$$\widetilde{\rho} = \widetilde{\pi}_2 \widetilde{\pi}_4 \widetilde{\pi}_6 \cdots ,$$

$$\widetilde{\gamma} = \widetilde{\pi}_1 \widetilde{\pi}_3 \widetilde{\pi}_5 \cdots ,$$

and we put $\mathscr{P}_n^{\widetilde{\rho}}$ (resp. $\mathscr{P}_n^{\widetilde{\gamma}}$) the set of elements \mathscr{P}_n invariant under $\widetilde{\rho}$ (resp. $\widetilde{\gamma}$).

(日)

э

Flips in words of RCSPP

Theorem

Let *n* be a positive integer and let k = 1, ..., n - 1. If $b \in \mathcal{B}_n$, then we have

$$\widetilde{\pi}_{k}\left(arphi_{n}\left(b
ight)
ight) =arphi_{n}\left(\pi_{k}\left(b
ight)
ight) .$$

Definition

We define involutions on \mathscr{P}_n

$$\widetilde{\rho} = \widetilde{\pi}_2 \widetilde{\pi}_4 \widetilde{\pi}_6 \cdots ,$$

$$\widetilde{\gamma} = \widetilde{\pi}_1 \widetilde{\pi}_3 \widetilde{\pi}_5 \cdots ,$$

and we put $\mathscr{P}_{n}^{\widetilde{\rho}}$ (resp. $\mathscr{P}_{n}^{\widetilde{\gamma}}$) the set of elements \mathscr{P}_{n} invariant under $\widetilde{\rho}$ (resp. $\widetilde{\gamma}$).

イロト (過) (正) (正)

Invariants under $\widetilde{\rho}$

Example

$$\mathscr{P}_1^{\widetilde{\rho}} = \{\emptyset\}$$

Masao Ishikawa Refined Enumerations of TSSCPPs

(日)

Ξ.

Invariants under $\widetilde{\rho}$

Example

$$\mathscr{P}_{2}^{\widetilde{\rho}} = \left\{ \emptyset, \boxed{1} \right\}$$

Masao Ishikawa Refined Enumerations of TSSCPPs

(日)

Ξ.

Invariants under $\widetilde{\rho}$

Example

 $\mathscr{P}_{3}^{\widetilde{\rho}}$ is composed of the following 3 RCSPPs:

Ø

2

・ロト ・四ト ・ヨト ・ヨト

2

Masao Ishikawa Refined Enumerations of TSSCPPs

Invariants under $\widetilde{\rho}$

Example $\mathcal{P}_{4}^{\tilde{\rho}}$ is composed of the following 10 elements: 0 2 1 2 2 2 0 2 1 2 1 2 2 2 1 2 1 2 2 1 <th1</th> 1 1 1 <t

Masao Ishikawa Refined Enumerations of TSSCPPs

(日)

Invariants under $\widetilde{\rho}$

Example

 $\mathscr{P}_5^{\widetilde{
ho}}$ has 25 elements, and $\mathscr{P}_6^{\widetilde{
ho}}$ has 140 elements.

Masao Ishikawa Refined Enumerations of TSSCPPs

(日)

Proposition

If $c \in \mathscr{P}_n$ is invariant under $\widetilde{\gamma}$, then *n* must be an odd integer.

ヘロン 人間 とくほど 人 ほとう

Proposition

If $c \in \mathscr{P}_n$ is invariant under $\widetilde{\gamma}$, then *n* must be an odd integer.

Example

Thus we have
$$\mathscr{P}_{3}^{\widetilde{\gamma}} = \left\{ \boxed{1} \right\}$$
,
 $\mathscr{P}_{5}^{\widetilde{\gamma}}$ is composed of the following 3 RCSPPs:
$$\boxed{1 \ 1} \qquad \boxed{3 \ 2 \ 1} \qquad \boxed{3 \ 3 \ 1} \qquad \boxed{2 \ 2} \qquad \boxed{1}$$
and $\mathscr{P}_{5}^{\widetilde{\gamma}}$ has 26 elements.

э

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then *c* has no saturated parts.

Example

Masao Ishikawa Refined Enumerations of TSSCPPs

<ロ> <四> <四> <四> <四> <四> <四</p>

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then *c* has no saturated parts.

Example

The following $c \in \mathscr{P}_{11}$ is invariant under $\widetilde{\gamma}$:

э

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then *c* has no saturated parts.

Example

Remove all 1's from $c \in \mathscr{P}_{11}^{\widetilde{\gamma}}$.

$$c = \begin{bmatrix} 7 & 7 & 6 & 6 & 3 & 2 & 1 & 1 \\ 5 & 5 & 4 & 3 & 1 \\ 4 & 3 & 2 & 2 \\ 1 & 1 \end{bmatrix}$$

э

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then *c* has no saturated parts.

Example

Then we obtain a PP in which each row has even length.

c =	7	7	6	6	3	2
	5	5	4	3		
	4	3	2	2		

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then *c* has no saturated parts.

Example

Identify 3 and 2, 5 and 4, 7 and 6.

э

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then *c* has no saturated parts.

Example

Repace 3 and 2 by dominos containing 1, 5 and 4 by dominos containing 2, 7 and 6 by dominos containing 3.

$$d = \boxed{\begin{array}{c|c} 3 & 3 & 1 \\ 2 & 2 & 1 \\ 1 & 1 \end{array}}$$

Definition

Let *n* be a positive integer. Let $\mathscr{D}_n^{\mathsf{R}}$ denote the set of column-strict domino plane partitions *d* such that

Definition

Let *n* be a positive integer. Let $\mathscr{D}_n^{\mathsf{R}}$ denote the set of column-strict domino plane partitions *d* such that

- The *j*th column does not exceed $\lceil (n-j)/2 \rceil$,
- 2 Each row of d has even length.
- Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathscr{D}_n^{\mathsf{R}}$.

Definition

Let *n* be a positive integer. Let $\mathscr{D}_n^{\mathsf{R}}$ denote the set of column-strict domino plane partitions *d* such that

- The *j*th column does not exceed $\lceil (n-j)/2 \rceil$,
- 2 Each row of *d* has even length.

Let $U_1(d)$ denote the number of 1's in $d \in \mathscr{D}_n^R$.

Definition

Let *n* be a positive integer. Let $\mathscr{D}_n^{\mathsf{R}}$ denote the set of column-strict domino plane partitions *d* such that

• The *j*th column does not exceed $\lceil (n - j)/2 \rceil$,

2 Each row of d has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathscr{D}_n^{\mathsf{R}}$.

Definition

Let *n* be a positive integer. Let $\mathscr{D}_n^{\mathsf{R}}$ denote the set of column-strict domino plane partitions *d* such that

• The *j*th column does not exceed $\lceil (n - j)/2 \rceil$,

2 Each row of d has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathscr{D}_n^R$.

$$\mathscr{D}_1^{\mathsf{R}} = \mathscr{D}_2^{\mathsf{R}} = \{\emptyset\}.$$

Definition

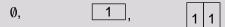
Let *n* be a positive integer. Let $\mathcal{D}_n^{\mathsf{R}}$ denote the set of column-strict domino plane partitions *d* such that

- The *j*th column does not exceed $\lceil (n j)/2 \rceil$,
- 2 Each row of d has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathscr{D}_n^R$.

Example

 $\mathscr{D}_3^{\mathsf{R}}$ is composed of the following 3 elements:



Definition

Let *n* be a positive integer. Let $\mathscr{D}_n^{\mathsf{R}}$ denote the set of column-strict domino plane partitions *d* such that

• The *j*th column does not exceed $\lceil (n - j)/2 \rceil$,

2 Each row of d has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathscr{D}_n^R$.

Example \mathscr{D}_4^R is composed of the following 4 elements: \emptyset ,1 \emptyset ,111 \mathcal{D}_5^R has 26 elements, \mathcal{D}_6^R has 50 elements, and \mathcal{D}_7^R has 646 elements.

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathbb{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $R_{i}^{n}(t) = 2$ be a positive integer. Let $R_{i}^{n}(t) = (R_{i}^{n})_{i=1}$ be the state $R_{i}^{n}(t) = 0$

with the convention that $R_{12}^{n} = R_{12}^{n} = 1$. Then we obtain

 $\sum q^{0,0} = det R_{1}^{0}(0)$

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

- Let $n \ge 2$ be a positive integer.

- with the convention that $R_{1}^{n} = R_{1}^{n} = 0$. Then we are

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^o(t) = (R_{ij}^o)_{0 \le i, j \le n-1}$ be the $n \times n$ matrix where

 $R_{ij}^{0} = \binom{i+j-1}{2i-j} + \binom{i+j-1}{2i-j-1} + \binom{i+j-1}{2i-j+1} t + \binom{i+j-1}{2i-j} t^{2}$

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^o(t) = (R_{i,j}^o)_{0 \le i,j \le n-1}$ be the $n \times n$ matrix where

$$R_{ij}^{o} = \binom{i+j-1}{2i-j} + \left\{ \binom{i+j-1}{2i-j-1} + \binom{i+j-1}{2i-j+1} \right\} t + \binom{i+j-1}{2i-j} t^{2}$$

$$\sum_{c\in\mathscr{P}_{2n+1}^{\gamma}}t^{\overline{U}_2(c)}=\det R_n^{\mathsf{o}}(t).$$

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^o(t) = (R_{i,j}^o)_{0 \le i,j \le n-1}$ be the $n \times n$ matrix where

$$R_{i,j}^{o} = \binom{i+j-1}{2i-j} + \left\{ \binom{i+j-1}{2i-j-1} + \binom{i+j-1}{2i-j+1} \right\} t + \binom{i+j-1}{2i-j} t^{2}$$

$$\sum_{c\in \mathscr{P}_{2n+1}^{\gamma}} t^{\overline{U}_2(c)} = \det R_n^{\mathsf{o}}(t).$$

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^o(t) = (R_{i,j}^o)_{0 \le i,j \le n-1}$ be the $n \times n$ matrix where

$$R_{i,j}^{o} = \binom{i+j-1}{2i-j} + \left\{ \binom{i+j-1}{2i-j-1} + \binom{i+j-1}{2i-j+1} \right\} t + \binom{i+j-1}{2i-j} t^{2}$$

$$\sum_{c\in \mathscr{P}_{2n+1}^{\gamma}} t^{\overline{U}_2(c)} = \det R_n^{\mathsf{o}}(t).$$

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^o(t) = (R_{i,j}^o)_{0 \le i,j \le n-1}$ be the $n \times n$ matrix where

$$R_{i,j}^{o} = \binom{i+j-1}{2i-j} + \left\{ \binom{i+j-1}{2i-j-1} + \binom{i+j-1}{2i-j+1} \right\} t + \binom{i+j-1}{2i-j} t^{2}$$

$$\sum_{c\in\mathscr{P}_{2n+1}^{\gamma}}t^{\overline{U}_2(c)}=\det R_n^{\rm o}(t).$$

The determinants

Example

if
$$n = 2$$
, then $\sum_{c \in \mathscr{P}_5^{\widetilde{\gamma}}} t^{\overline{U}_2(c)}$ is given by

$$\det\left(\begin{array}{cc}1&1\\0&1+t+t^2\end{array}\right)$$

which is equal to $1 + t + t^2$.

(日)

Ξ.

The determinants

Example

if
$$n = 3$$
, then $\sum_{c \in \mathscr{P}_{7}^{\overline{\gamma}}} t^{\overline{U}_{2}(c)}$ is given by

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 + t + t^{2} & 1 + 2t + t^{2} \\ 0 & t & 3 + 4t + 3t^{2} \end{pmatrix}$$
which is equal to $3 + 6t + 8t^{2} + 6t^{3} + 3t^{4}$.

・ロン ・四 と ・ 回 と ・ 回 と

æ.

The determinants

Example

if
$$n = 4$$
, then $\sum_{c \in \mathscr{P}_{\tau}^{\widetilde{\gamma}}} t^{\overline{U}_2(c)}$ is given by

$$\det \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1+t+t^2 & 1+2t+t^2 & t \\ 0 & t & 3+4t+3t^2 & 4+7t+4t^2 \\ 0 & 0 & 1+4t+t^2 & 10+15t+10t^2 \end{pmatrix}$$

which is equal to $26 + 78t + 138t^2 + 162t^3 + 138t^4 + 78t^5 + 26t^6$.

ヘロト ヘロト ヘヨト ヘヨト

э

Determinant evaluation

Theorem (Andrews-Burge)

Let

$$M_n(x,y) = \det\left(\binom{i+j+x}{2i-j} + \binom{i+j+y}{2i-j}\right)_{0 \le i,j \le n-1}$$

Then

$$M_n(x,y)=\prod_{k=0}^{n-1}\Delta_{2k}(x+y),$$

where $\Delta_0(u) = 2$ and for j > 0

$$\Delta_{2j}(u) = \frac{(u+2j+2)_j(\frac{1}{2}u+2j+\frac{3}{2})_{j-1}}{(j)_j(\frac{1}{2}u+j+\frac{3}{2})_{j-1}}.$$

ヘロト ヘロト ヘヨト ヘヨト

æ

Totally symmetric self-complementary plane partitions

A weak version of Conjecture 6

Theorem

Let *n* be a positive integer. Then

det
$$R_n^o(1) = \frac{1}{2^n} \prod_{k=1}^n \frac{(6k-2)!(2k-1)!}{(4k-2)!(4k-1)!}$$

This proves tha the number of $b \in \mathscr{B}_{2n+1}$ invariant under γ is equal to the number of vertically symmetric alternating sign matrices of size 2n + 1.

э

Totally symmetric self-complementary plane partitions

A weak version of Conjecture 6

Theorem

Let *n* be a positive integer. Then

$$\det R_n^{\mathsf{o}}(1) = \frac{1}{2^n} \prod_{k=1}^n \frac{(6k-2)!(2k-1)!}{(4k-2)!(4k-1)!}.$$

This proves tha the number of $b \in \mathscr{B}_{2n+1}$ invariant under γ is equal to the number of vertically symmetric alternating sign matrices of size 2n + 1.

э

Totally symmetric self-complementary plane partitions

A weak version of Conjecture 6

Theorem

Let *n* be a positive integer. Then

$$\det R_n^{\mathsf{o}}(1) = \frac{1}{2^n} \prod_{k=1}^n \frac{(6k-2)!(2k-1)!}{(4k-2)!(4k-1)!}.$$

This proves that he number of $b \in \mathscr{B}_{2n+1}$ invariant under γ is equal to the number of vertically symmetric alternating sign matrices of size 2n + 1.

The end

Thank you!

Masao Ishikawa Refined Enumerations of TSSCPPs

・ロン ・四 と ・ 回 と ・ 回 と

Ξ.