Masao Ishikawa[†]

†Department of Mathematics Tottori University

Korea Advanced Institute of Science and Technology February 22, 2008.

Introduction

Abstract

In this talk we give a formula for a compound determinant and use it to derive a Schur function identity. This compound determinant is a variant of Sylvester's determinant whose row is parametrized by *n*-element subsets of $\{1, 2, \dots, s + n - 1\}$ and column is parametrized by compositions of *n* with at most s parts. We introduce a partial order on the set of compositions of n with at most s parts, and use this partial order to compute the determinant. This determinant identity has an application to compute a determinant whose entries are certain Schur functions, and this result generalize a Schur function identity obtained in the paper "A determinant formula for a holonomic q-difference system associated with Jackson integrals of type BC_n" by K. Aomoto and M. Ito.

- Sylvester's determinant
- Compound Determinant
- An application to a Schur function determinant
- Proof of the Compound Determinant
- Open problems

- Sylvester's determinant
- 2 Compound Determinant
- An application to a Schur function determinant
- Proof of the Compound Determinant
- Open problems

- Sylvester's determinant
- Compound Determinant
- An application to a Schur function determinant
- Proof of the Compound Determinant
- Open problems

- Sylvester's determinant
- Compound Determinant
- An application to a Schur function determinant
- Proof of the Compound Determinant
- Open problems

- Sylvester's determinant
- Compound Determinant
- An application to a Schur function determinant
- Proof of the Compound Determinant
- Open problems

Definition

Let r and s be integers.

- $[r, s] = \{r, r + 1, ..., s\}$
- [r] = [1, r]
- If S is a finite set, let $\binom{S}{r}$ denote the set of all r-element subsets of S.

$$[4] = \{1, 2, 3, 4\}$$

$${\binom{[4]}{2}} = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$$

$$\# {\binom{[4]}{2}} = {\binom{4}{2}} = 6$$

Definition

Let r and s be integers.

- $[r, s] = \{r, r + 1, ..., s\}$
- [r] = [1, r]
- If S is a finite set, let $\binom{S}{r}$ denote the set of all *r*-element subsets of S.

Definition

Let r and s be integers.

- $[r, s] = \{r, r + 1, ..., s\}$
- [r] = [1, r]
- If S is a finite set, let $\binom{S}{r}$ denote the set of all *r*-element subsets of S.

$$[4] = \{1, 2, 3, 4\}$$

$${\binom{[4]}{2}} = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$$

$$\# {\binom{[4]}{2}} = {\binom{4}{2}} = 6$$

Definition

Let r and s be integers.

- $[r, s] = \{r, r + 1, ..., s\}$
- [r] = [1, r]
- If S is a finite set, let $\binom{S}{r}$ denote the set of all *r*-element subsets of S.

Definition

Let r and s be integers.

- $[r, s] = \{r, r + 1, ..., s\}$
- [r] = [1, r]
- If S is a finite set, let $\binom{S}{r}$ denote the set of all *r*-element subsets of S.

Definition (Lexicographic order)

For $I = \{i_1 < \cdots < i_r\}$ and $J = \{j_1 < \cdots < j_r\}$ in $\binom{[N]}{r}$, we write I < J if there is an index k such that

$$i_1 = j_1, \ldots, i_{k-1} = j_{k-1}, i_k < j_k$$
:

This gives a total ordering on $\binom{[N]}{r}$, which is called the *lexicographic* order.

$$\{1, 3, 4, 7\} < \{1, 3, 5, 6\}$$

 $\binom{[4]}{2} = \{\{1, 2\} < \{1, 3\} < \{1, 4\} < \{2, 3\} < \{2, 4\} < \{3, 4\}$

Definition (Lexicographic order)

For $I = \{i_1 < \cdots < i_r\}$ and $J = \{j_1 < \cdots < j_r\}$ in $\binom{[N]}{r}$, we write I < J if there is an index k such that

$$i_1 = j_1, \ldots, i_{k-1} = j_{k-1}, i_k < j_k$$
:

This gives a total ordering on $\binom{[N]}{r}$, which is called the *lexicographic* order.

Definition

```
Let A be any M \times N matrix, and let I = \{i_1, \dots, i_r\} \subseteq [M] (resp. J = \{j_1, \dots, j_r\} \subseteq [N]) be a row (resp. column) index set.
```

Let $A_J^I = A_{j_1,...,j_r}^{i_1,...,i_r}$ denote the matrix obtained from A by choosing rows indexed by I and columns indexed by J.

If r = M and I = [M] (i.e. we choose all rows), then we write

Similary we write $A^I = A^{i_1,...,i_r}$ for $A^I_{r,n}$ when r = N and J = [N]

Definition

```
Let A be any M \times N matrix, and let I = \{i_1, \ldots, i_r\} \subseteq [M] (resp. J = \{j_1, \ldots, j_r\} \subseteq [N]) be a row (resp. column) index set.
Let A_J^I = A_{j_1, \ldots, j_r}^{i_1, \ldots, i_r} denote the matrix obtained from A by choosing rows indexed by I and columns indexed by J.
```

```
If r = M and I = [M] (i.e. we choose all rows), then we write A_J = A_{j_1,...,j_r} for A_J^{[M]}.
```

Similary we write $A^I=A^{i_1,...,i_r}$ for $A^I_{[N]}$ when r=N and J=[N]

Definition

```
Let A be any M \times N matrix, and let I = \{i_1, \dots, i_r\} \subseteq [M] (resp.
```

$$J = \{j_1, \dots, j_r\} \subseteq [N]$$
) be a row (resp. column) index set.

Let $A_J^I = A_{j_1,...,j_r}^{i_1,...,i_r}$ denote the matrix obtained from A by choosing rows indexed by I and columns indexed by J.

If
$$r = M$$
 and $I = [M]$ (i.e. we choose all rows), then we write

$$A_J = A_{j_1,\dots,j_r}$$
 for $A_J^{[M]}$.

Similary we write $A^{I} = A^{i_1,...,i_r}$ for $A^{I}_{[N]}$ when r = N and J = [N]

Definition

```
Let A be any M \times N matrix, and let I = \{i_1, \dots, i_r\} \subseteq [M] (resp.
```

$$J = \{j_1, \dots, j_r\} \subseteq [N]$$
) be a row (resp. column) index set.

Let $A_J^I = A_{j_1, \dots, j_r}^{i_1, \dots, i_r}$ denote the matrix obtained from A by choosing rows indexed by I and columns indexed by J.

If r = M and I = [M] (i.e. we choose all rows), then we write

$$A_J = A_{j_1,...,j_r}$$
 for $A_J^{[M]}$.

Similarly we write $A^{I} = A^{i_1,...,i_r}$ for $A^{I}_{[N]}$ when r = N and J = [N].

Example

$$M = 3, N = 4$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$$

If $I = \{1, 3\}$ and $J = \{2, 4\}$, then

$$A_J^I = A_{2,4}^{1,3} = \begin{pmatrix} a_{12} & a_{14} \\ a_{32} & a_{34} \end{pmatrix}.$$

$$A_J = A_{2,3,4} = \begin{pmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \end{pmatrix}$$

Example

$$M = 3, N = 4$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$$

If $I = \{1, 3\}$ and $J = \{2, 4\}$, then

$$A_J^I = A_{2,4}^{1,3} = \begin{pmatrix} a_{12} & a_{14} \\ a_{32} & a_{34} \end{pmatrix}.$$

$$A_J = A_{2,3,4} = egin{pmatrix} a_{12} & a_{13} & a_{14} \ a_{22} & a_{23} & a_{24} \ a_{32} & a_{33} & a_{34} \end{pmatrix}$$

Example

$$M = 3, N = 4$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$$

If $I = \{1, 3\}$ and $J = \{2, 4\}$, then

$$A_J^I = A_{2,4}^{1,3} = \begin{pmatrix} a_{12} & a_{14} \\ a_{32} & a_{34} \end{pmatrix}.$$

$$A_J = A_{2,3,4} = egin{pmatrix} a_{12} & a_{13} & a_{14} \ a_{22} & a_{23} & a_{24} \ a_{32} & a_{33} & a_{34} \end{pmatrix}$$

Example

$$M = 3, N = 4$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$$

If $I = \{1, 3\}$ and $J = \{2, 4\}$, then

$$A_J^I = A_{2,4}^{1,3} = \begin{pmatrix} a_{12} & a_{14} \\ a_{32} & a_{34} \end{pmatrix}.$$

$$A_J = A_{2,3,4} = \begin{pmatrix} a_{12} & a_{13} & a_{14} \ a_{22} & a_{23} & a_{24} \ a_{32} & a_{33} & a_{34} \end{pmatrix}.$$

Theorem

Let *n* and *m* be positive integers such that $m \le n$.

Let $A = (a_{ij})_{1 \le i,j \le n}$ be an $n \times n$ matrix.

Then we have

$$\det(\det A_J^l)_{l,J\in\binom{[n]}{m}}=(\det A)^{\binom{n-1}{m-1}}.$$

where the rows and columns of the matrix on the left hand side are arranged in increasing order with respect to <.

Theorem

Let *n* and *m* be positive integers such that $m \le n$.

Let $A = (a_{ij})_{1 \le i,j \le n}$ be an $n \times n$ matrix.

Then we have

$$\det\left(\det A_J^I\right)_{I,J\in\binom{[n]}{m}}=\left(\det A\right)^{\binom{n-1}{m-1}},$$

where the rows and columns of the matrix on the left hand side are arranged in increasing order with respect to <.

Example

$$n = 4, m = 2$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

Sylvester's determinant

$$\det \begin{pmatrix} \det A_{12}^{12} & \det A_{13}^{12} & \det A_{14}^{12} & \det A_{23}^{12} & \det A_{24}^{12} & \det A_{34}^{12} \\ \det A_{13}^{13} & \det A_{13}^{13} & \det A_{14}^{13} & \det A_{23}^{13} & \det A_{24}^{13} & \det A_{34}^{13} \\ \det A_{12}^{14} & \det A_{13}^{14} & \det A_{14}^{14} & \det A_{23}^{14} & \det A_{24}^{14} & \det A_{34}^{14} \\ \det A_{12}^{23} & \det A_{13}^{23} & \det A_{24}^{23} & \det A_{24}^{23} & \det A_{24}^{23} \\ \det A_{12}^{24} & \det A_{13}^{24} & \det A_{14}^{24} & \det A_{23}^{24} & \det A_{24}^{24} \\ \det A_{12}^{24} & \det A_{13}^{34} & \det A_{14}^{24} & \det A_{23}^{24} & \det A_{34}^{24} \\ \det A_{12}^{34} & \det A_{13}^{34} & \det A_{14}^{34} & \det A_{23}^{34} & \det A_{34}^{24} \end{pmatrix}$$

equals $(\det A)^{\binom{n}{2}-1} = (\det A)^3$.

Example

$$n = 4, m = 2$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

Sylvester's determinant

$$\det\begin{pmatrix} \det A_{12}^{12} & \det A_{13}^{12} & \det A_{14}^{12} & \det A_{23}^{12} & \det A_{24}^{12} & \det A_{34}^{12} \\ \det A_{13}^{13} & \det A_{13}^{13} & \det A_{14}^{13} & \det A_{23}^{13} & \det A_{24}^{13} & \det A_{34}^{14} \\ \det A_{12}^{14} & \det A_{13}^{14} & \det A_{14}^{14} & \det A_{23}^{14} & \det A_{24}^{14} & \det A_{34}^{14} \\ \det A_{12}^{23} & \det A_{13}^{23} & \det A_{23}^{23} & \det A_{24}^{23} & \det A_{34}^{24} \\ \det A_{12}^{24} & \det A_{13}^{24} & \det A_{14}^{24} & \det A_{23}^{24} & \det A_{24}^{24} \\ \det A_{12}^{24} & \det A_{13}^{34} & \det A_{14}^{24} & \det A_{23}^{24} & \det A_{24}^{24} \\ \det A_{12}^{34} & \det A_{13}^{34} & \det A_{14}^{34} & \det A_{23}^{34} & \det A_{24}^{34} & \det A_{34}^{34} \\ \det A_{12}^{34} & \det A_{13}^{34} & \det A_{14}^{34} & \det A_{23}^{34} & \det A_{24}^{34} & \det A_{34}^{34} \end{pmatrix}$$

equals $(\det A)^{\binom{4-1}{2-1}} = (\det A)^3$.

Example

$$n = 4, m = 2$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

Sylvester's determinant

$$\det\begin{pmatrix} \det A_{12}^{12} & \det A_{13}^{12} & \det A_{14}^{12} & \det A_{23}^{12} & \det A_{24}^{12} & \det A_{34}^{12} \\ \det A_{12}^{13} & \det A_{13}^{13} & \det A_{14}^{13} & \det A_{23}^{13} & \det A_{24}^{13} & \det A_{34}^{13} \\ \det A_{12}^{14} & \det A_{13}^{14} & \det A_{14}^{14} & \det A_{23}^{14} & \det A_{24}^{14} & \det A_{34}^{14} \\ \det A_{12}^{12} & \det A_{13}^{23} & \det A_{23}^{23} & \det A_{23}^{23} & \det A_{24}^{23} & \det A_{34}^{23} \\ \det A_{12}^{24} & \det A_{13}^{24} & \det A_{14}^{24} & \det A_{23}^{24} & \det A_{24}^{24} \\ \det A_{12}^{34} & \det A_{13}^{34} & \det A_{14}^{34} & \det A_{23}^{34} & \det A_{24}^{34} & \det A_{34}^{34} \\ \det A_{12}^{34} & \det A_{13}^{34} & \det A_{14}^{34} & \det A_{23}^{34} & \det A_{24}^{34} & \det A_{34}^{34} \end{pmatrix}$$

equals $(\det A)^{\binom{2-1}{2}} = (\det A)^3$.

Example

$$n = 4, m = 2$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

Sylvester's determinant

$$\det\begin{pmatrix} \det A_{12}^{12} & \det A_{13}^{12} & \det A_{14}^{12} & \det A_{23}^{12} & \det A_{24}^{12} & \det A_{34}^{12} \\ \det A_{12}^{13} & \det A_{13}^{13} & \det A_{14}^{13} & \det A_{23}^{13} & \det A_{24}^{13} & \det A_{34}^{13} \\ \det A_{12}^{14} & \det A_{13}^{14} & \det A_{14}^{14} & \det A_{23}^{14} & \det A_{24}^{14} & \det A_{34}^{14} \\ \det A_{12}^{12} & \det A_{13}^{23} & \det A_{14}^{23} & \det A_{23}^{23} & \det A_{24}^{23} & \det A_{34}^{23} \\ \det A_{12}^{24} & \det A_{13}^{24} & \det A_{14}^{24} & \det A_{23}^{24} & \det A_{24}^{24} \\ \det A_{12}^{24} & \det A_{13}^{24} & \det A_{14}^{24} & \det A_{23}^{24} & \det A_{24}^{24} \\ \det A_{12}^{34} & \det A_{13}^{34} & \det A_{14}^{34} & \det A_{23}^{34} & \det A_{24}^{34} & \det A_{34}^{34} \end{pmatrix}$$

equals $(\det A)^{\binom{4-1}{2-1}} = (\det A)^3$.

Definition

Let *s* and *n* be positive integers.

Let $\mathcal{L}_{s,n}$ denote the set of compositions of n which has at most s parts, i.e.

$$\mathscr{Z}_{s,n} = \{\mu = (\mu_1, \dots, \mu_s) \mid \mu_1 \ge 0, \dots, \mu_s \ge 0, \, \mu_1 + \dots + \mu_s = n\}$$

and let $\mathscr{Z}^0_{s,n}$ denote the set of compositions of n which has exactly s parts, i.e.

$$\mathscr{L}_{s,n}^0 = \{ \mu = (\mu_1, \dots, \mu_s) \mid \mu_1 > 0, \dots, \mu_s > 0, \mu_1 + \dots + \mu_s = n \}.$$

Definition

Let *s* and *n* be positive integers.

Let $\mathscr{Z}_{s,n}$ denote the set of compositions of n which has at most s parts, i.e.

$$\mathscr{Z}_{s,n} = \{ \mu = (\mu_1, \dots, \mu_s) \mid \mu_1 \ge 0, \dots, \mu_s \ge 0, \, \mu_1 + \dots + \mu_s = n \},$$

and let $\mathscr{Z}^0_{s,n}$ denote the set of compositions of n which has exactly s parts, i.e.

$$\mathscr{Z}_{s,n}^0 = \{ \mu = (\mu_1, \dots, \mu_s) \mid \mu_1 > 0, \dots, \mu_s > 0, \mu_1 + \dots + \mu_s = n \}.$$

Definition

Let s and n be positive integers.

Let $\mathscr{Z}_{s,n}$ denote the set of compositions of n which has at most s parts, i.e.

$$\mathscr{Z}_{s,n} = \{\mu = (\mu_1, \dots, \mu_s) \mid \mu_1 \ge 0, \dots, \mu_s \ge 0, \, \mu_1 + \dots + \mu_s = n\},$$

and let $\mathscr{Z}_{s,n}^0$ denote the set of compositions of n which has exactly s parts, i.e.

$$\mathscr{Z}_{s,n}^0 = \{\mu = (\mu_1, \dots, \mu_s) \mid \mu_1 > 0, \dots, \mu_s > 0, \mu_1 + \dots + \mu_s = n\}.$$

$$s = 3, n = 2$$

$$\mathscr{Z}_{3,2} = \{(2,0,0), (1,1,0), (1,0,1), (0,2,0), (0,1,1), (0,0,2)\}$$

$$s = 3, n = 4$$

$$\mathscr{Z}^0_{3,4} = \{(2,1,1), (1,2,1), (1,1,2)\}$$

Example

$$s = 3, n = 2$$

$$\mathscr{Z}_{3,2} = \{(2,0,0), (1,1,0), (1,0,1), (0,2,0), (0,1,1), (0,0,2)\}$$

$$s = 3, n = 4$$

$$\mathscr{Z}_{3,4}^0 = \{(2,1,1), (1,2,1), (1,1,2)\}$$

Proposition

$$\sharp \mathcal{Z}_{s,n} = {s+n-1 \choose n},$$

$$\sharp \mathcal{Z}_{s,n}^0 = \sharp \mathcal{Z}_{s,n-s}^0 = {s+(n-s)-1 \choose n-s} = {n-1 \choose n-s}$$

Example

$$s = 3, n = 2$$

$$\mathcal{Z}_{3,2} = \{(2,0,0), (1,1,0), (1,0,1), (0,2,0), (0,1,1), (0,0,2)\}$$

$$s = 3$$
. $n = 4$

$$\mathscr{Z}_{3,4}^0 = \{(2,1,1), (1,2,1), (1,1,2)\}$$

Proposition

$$\sharp \mathscr{Z}_{s,n} = {s+n-1 \choose n},$$

$$\sharp \mathscr{Z}_{s,n}^0 = \sharp \mathscr{Z}_{s,n-s}^0 = {s+(n-s)-1 \choose n-s} = {n-1 \choose n-s}.$$

Masao Ishikawa

Definition

We introduce the following total order on $\mathscr{Z}_{s,n}$. For $\lambda, \mu \in \mathscr{Z}_{s,n}$, we write $\lambda < \mu$ if there is an index k such that

$$\lambda_1 = \mu_1, \quad \dots \quad \lambda_{k-1} = \mu_{k-1}, \quad \lambda_k > \mu_k.$$

$$s = 3, n = 2, \mathcal{Z}_{3,2}$$

$$(2,0,0) < (1,1,0) < (1,0,1) < (0,2,0) < (0,1,1) < (0,0,2)$$

Definition

We introduce the following total order on $\mathscr{Z}_{s,n}$.

For $\lambda, \mu \in \mathscr{Z}_{s,n}$, we write $\lambda < \mu$ if there is an index k such that

$$\lambda_1 = \mu_1, \quad \dots \quad \lambda_{k-1} = \mu_{k-1}, \quad \lambda_k > \mu_k.$$

$$s = 3, n = 2, \mathcal{Z}_{3,2}$$

$$(2,0,0) < (1,1,0) < (1,0,1) < (0,2,0) < (0,1,1) < (0,0,2)$$

Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1, (i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to \binom{\lfloor sn \rfloor}{n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}$, $\iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1, (i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to {[sn] \choose n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}, \iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1,(i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to {[sn] \choose n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}$, $\iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

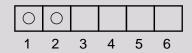
Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1,(i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to {[sn] \choose n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}, \iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

$$s = 3, n = 2, \iota(2,0,0) = \{1,2\}$$



Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1,(i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to {[sn] \choose n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}, \iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

$$s = 3, n = 2, \iota(1, 1, 0) = \{1, 3\}$$

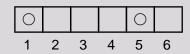
Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1,(i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to {[sn] \choose n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}$, $\iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

$$s = 3, n = 2, \iota(1, 0, 1) = \{1, 5\}$$



Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1,(i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to {[sn] \choose n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}$, $\iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

$$s = 3, n = 2, \iota(0, 2, 0) = \{3, 4\}$$

Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1,(i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to {[sn] \choose n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}$, $\iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

$$s = 3, n = 2, \iota(0, 1, 1) = \{3, 5\}$$

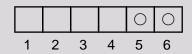
Definition

To each $\mu \in \mathscr{Z}_{s,n}$, we associate an subset $\iota(\mu) \in {[sn] \choose n}$ defined by

$$\iota(\mu) = \bigsqcup_{i=1}^{s} [(i-1)n+1,(i-1)n+\mu_i].$$

This gives an injection $\iota: \mathscr{Z}_{s,n} \to {[sn] \choose n}$, and one readily sees that, for $\lambda, \mu \in \mathscr{Z}_{s,n}, \iota(\lambda) < \iota(\mu)$ if and only if $\lambda < \mu$.

$$s = 3, n = 2, \iota(0, 0, 2) = \{5, 6\}$$



theorem

Let s and n be positive integers and $A = (a_{ij})_{1 \le i \le s+n-1, 1 \le j \le sn}$ be an $(s+n-1) \times sn$ matrix. We put

$$\mathscr{R} = {[s+n-1] \choose n}, \quad \mathscr{C} = {\iota(\mu) : \mu \in \mathscr{Z}_{s,n}}.$$

Then we have

$$\det \left(\det A_J^I \right)_{I \in \mathcal{R}, J \in \mathcal{C}} = \prod_{\nu \in \mathcal{Z}_{s,s+n-1}^0} \det A_{\iota(\nu)}$$

where the rows and columns of the matrix on the left hand side are arranged in increasing order with respect to <.

theorem

Let s and n be positive integers and $A = (a_{ij})_{1 \le i \le s+n-1, 1 \le j \le sn}$ be an $(s+n-1) \times sn$ matrix. We put

$$\mathscr{R} = \begin{pmatrix} [s+n-1] \\ n \end{pmatrix}, \quad \mathscr{C} = \{\iota(\mu) : \mu \in \mathscr{Z}_{s,n}\}.$$

Then we have

$$\det \left(\det A_J^l
ight)_{l\in \mathscr{R}, J\in \mathscr{C}} = \prod_{
u\in \mathscr{Z}_{s,s+n-1}^0} \det A_{\iota(
u)},$$

where the rows and columns of the matrix on the left hand side are arranged in increasing order with respect to <.

Example

If s = 3 and n = 2, then

$$\mathcal{R} = \binom{[3+2-1]}{2} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$$

3

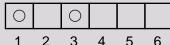
2

4

If
$$s = 3$$
 and $n = 2$, then

$$\mathscr{Z}_{3,2} = \{(2,0,0), (1,1,0), (1,0,1), (0,2,0), (0,1,1), (0,0,2)\}\$$

 $\mathscr{C} = \{\iota(\mu) : \mu \in \mathscr{Z}_{3,2}\} = \{\{1,2\}, \{1,3\}, \{1,5\}, \{3,4\}, \{3,5\}, \{5,6\}\}\$

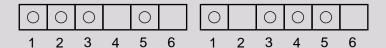


Example

If s=3 and n=2, then the left-hand side determinant $\det \left(\det A_J^I\right)_{I\in\mathcal{R},J\in\mathcal{C}}$ equals

$$\det \begin{pmatrix} \det A_{12}^{12} & \det A_{13}^{12} & \det A_{15}^{12} & \det A_{34}^{12} & \det A_{35}^{12} & \det A_{56}^{12} \\ \det A_{12}^{13} & \det A_{13}^{13} & \det A_{15}^{13} & \det A_{56}^{13} & \det A_{35}^{13} & \det A_{56}^{13} \\ \det A_{12}^{14} & \det A_{13}^{14} & \det A_{15}^{14} & \det A_{56}^{14} & \det A_{35}^{14} & \det A_{56}^{14} \\ \det A_{12}^{23} & \det A_{13}^{23} & \det A_{15}^{23} & \det A_{56}^{23} & \det A_{35}^{23} & \det A_{56}^{23} \\ \det A_{12}^{24} & \det A_{13}^{24} & \det A_{15}^{24} & \det A_{56}^{24} & \det A_{35}^{24} & \det A_{56}^{24} \\ \det A_{12}^{34} & \det A_{13}^{34} & \det A_{15}^{34} & \det A_{56}^{34} & \det A_{35}^{34} & \det A_{56}^{34} \end{pmatrix}$$

If
$$s=3$$
 and $n=2$, then $\mathscr{Z}^0_{3,3+2-1}=\{(2,1,1),(1,2,1),(1,1,2)\}$ $\{\iota(\mu):\mu\in\mathscr{Z}^0_{3,4}\}=\{\{1,2,3,5\},\{1,3,4,5\},\{1,3,5,6\}\}$



Example

If s = 3 and n = 2, then the right-hand side det A_{1235} det A_{1345} det A_{1356} equals

$$\det\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{45} \end{pmatrix} \det\begin{pmatrix} a_{11} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{43} & a_{44} & a_{45} \end{pmatrix} \\ \times \det\begin{pmatrix} a_{11} & a_{13} & a_{15} & a_{16} \\ a_{21} & a_{23} & a_{25} & a_{26} \\ a_{31} & a_{33} & a_{35} & a_{36} \\ a_{41} & a_{43} & a_{45} & a_{46} \end{pmatrix}.$$

Definition

A partition is any (finite or infinite) sequence

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r, \dots)$$

of non-negative integers in decreasing order:

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq \ldots$ and containing only finitely many non-zero terms.

Example

 $\lambda = (5441)$ is a partition of 14 with length 4

Definition

A partition is any (finite or infinite) sequence

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r, \dots)$$

of non-negative integers in decreasing order:

 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r \ge \ldots$ and containing only finitely many non-zero terms.

Example

 $\lambda = (5441)$ is a partition of 14 with length 4.

Definition (Tableaux)

Given a partition λ , A *tableaux T* of shape λ is a filling of the diagram with numbers whereas the numbers must strictly increase down each column and weakly from left to right along each row. Let $x = (x_1, x_2, \dots)$ be variables. The *weight* of tableaux T is

$$w(T) = x_1^{\sharp 1's} x_2^{\sharp 2's} \cdots$$

Example

A Tableau T of shape (5441)

Definition (Tableaux)

Given a partition λ , A *tableaux T* of shape λ is a filling of the diagram with numbers whereas the numbers must strictly increase down each column and weakly from left to right along each row. Let $x = (x_1, x_2, \dots)$ be variables. The *weight* of tableaux T is

$$w(T) = x_1^{\sharp 1's} x_2^{\sharp 2's} \cdots$$

Example

A Tableau T of shape (5441).

 \mathbf{r}

Definition (Schur functions)

The Schur function $s_{\lambda}(x)$ is, by definition,

$$s_{\lambda}(x) = \sum_{T} w(T),$$

where the sum runs over all tableaux of shape λ .

Example

When $\lambda = (22)$

$$s_{\lambda}(x) = x_1^2 x_2^2 + x_1^2 x_3^2 + \dots$$

Definition (Schur functions)

The Schur function $s_{\lambda}(x)$ is, by definition,

$$s_{\lambda}(x) = \sum_{T} w(T),$$

where the sum runs over all tableaux of shape λ .

Example

When $\lambda = (22)$,

$$s_{\lambda}(x) = x_1^2 x_2^2 + x_1^2 x_3^2 + \dots$$

Definition (Schur functions)

For $X=(x_1,\ldots,x_n)$ and a partition λ such that $\ell(\lambda)\leq n$, let

$$s_{\lambda}(X) = \frac{\det(x_i^{\lambda_j + n - j})_{1 \leq i, j \leq n}}{\det(x_i^{n - j})_{1 \leq i, j \leq n}}.$$

 $s_{\lambda}(X)$ is called *the Schur function* corresponding to λ .

Example

If n = 2 and $\lambda = (2^2)$, then

$$s_{(2^2)}(x_1, x_2) = \frac{1}{x_1 - x_2} \det \begin{pmatrix} x_1^3 & x_1^2 \\ x_2^3 & x_2^2 \end{pmatrix}$$

Definition (Schur functions)

For $X = (x_1, \dots, x_n)$ and a partition λ such that $\ell(\lambda) \le n$, let

$$s_{\lambda}(X) = rac{\det(x_i^{\lambda_j+n-j})_{1 \leq i,j \leq n}}{\det(x_i^{n-j})_{1 \leq i,j \leq n}}.$$

 $s_{\lambda}(X)$ is called *the Schur function* corresponding to λ .

Example

If n = 2 and $\lambda = (2^2)$, then

$$s_{(2^2)}(x_1, x_2) = \frac{1}{x_1 - x_2} \det \begin{pmatrix} x_1^3 & x_1^2 \\ x_2^3 & x_2^2 \end{pmatrix}$$

If we apply the main theorem to the matrix $A = (a_{ij})$ given by

$$a_{i,(k-1)n+j} = \left(x_j^{(k)}\right)^{i-1} \quad (1 \le i \le s+n-1, 1 \le k \le s, 1 \le j \le n),$$

then we obtain the following formula.

Corollary

To $\mu \in Z_{s,n}$, we associate

$$X_{\mu} = (x_1^{(1)}, \cdots, x_{\mu_1}^{(1)}, x_1^{(2)}, \cdots, x_{\mu_2}^{(2)}, \cdots, x_1^{(s)}, \cdots, x_{\mu_s}^{(s)}).$$

Then we have

$$\det \left(s_{\lambda}(X_{\mu}) \right)_{\lambda \subset \left((s-1)^n \right), \mu \in Z_{s,n}} = \pm \prod_{1 \leq k < l \leq s} \prod_{i,j=1}^n \left(x_i^{(k)} - x_j^{(l)} \right)^{\binom{s+n-i-j-1}{s-2}},$$

where the rows are indexed by partitions $\lambda = (\lambda_1, \dots, \lambda_n)$ such that $\lambda_1 < s - 1$.

Example

$$s = 3, n = 2,$$

The partitions contained the rectangle

$$\lambda \in (3-1)^2 =$$

are as follows:

Ø,

The left-hand side determinant equals

$$\begin{vmatrix} s_{\emptyset}(X_{2,0,0}) & s_{\emptyset}(X_{1,1,0}) & s_{\emptyset}(X_{1,0,1}) & s_{\emptyset}(X_{0,2,0}) & s_{\emptyset}(X_{0,1,1}) & s_{\emptyset}(X_{0,0,2}) \\ s_{1}(X_{2,0,0}) & s_{1}(X_{1,1,0}) & s_{1}(X_{1,0,1}) & s_{1}(X_{0,2,0}) & s_{1}(X_{0,1,1}) & s_{1}(X_{0,0,2}) \\ s_{2}(X_{2,0,0}) & s_{2}(X_{1,1,0}) & s_{2}(X_{1,0,1}) & s_{2}(X_{0,2,0}) & s_{2}(X_{0,1,1}) & s_{2}(X_{0,0,2}) \\ s_{11}(X_{2,0,0}) & s_{11}(X_{1,1,0}) & s_{11}(X_{1,0,1}) & s_{11}(X_{0,2,0}) & s_{11}(X_{0,1,1}) & s_{11}(X_{0,0,2}) \\ s_{21}(X_{2,0,0}) & s_{21}(X_{1,1,0}) & s_{21}(X_{1,0,1}) & s_{21}(X_{0,2,0}) & s_{21}(X_{0,1,1}) & s_{21}(X_{0,0,2}) \\ s_{22}(X_{2,0,0}) & s_{22}(X_{1,1,0}) & s_{22}(X_{1,0,1}) & s_{22}(X_{0,2,0}) & s_{22}(X_{0,1,1}) & s_{22}(X_{0,0,2}) \end{vmatrix}$$

where
$$X_{2,0,0} = (x_1^{(1)}, x_2^{(1)}), X_{1,1,0} = (x_1^{(1)}, x_1^{(2)}), X_{1,0,1} = (x_1^{(1)}, x_1^{(3)}),$$
 $X_{0,2,0} = (x_1^{(2)}, x_2^{(2)}), X_{0,1,1} = (x_1^{(2)}, x_1^{(3)}), \text{ and } X_{0,0,2} = (x_1^{(3)}, x_2^{(3)}).$
This determinant equals
$$\pm (x_1^{(1)} - x_1^{(2)})^2 (x_1^{(1)} - x_2^{(2)}) (x_2^{(1)} - x_1^{(2)}) (x_1^{(1)} - x_1^{(3)})^2 (x_1^{(1)} - x_2^{(3)}) (x_2^{(1)} - x_2^{(3)}) (x_2^{(2)} - x_2^{(3)}) (x_2^{(2)} - x_2^{(3)}).$$

How to prove the Compound determinant?

We introduce an order on $\mathscr{Z}_{s,n}$ and prove by induction.

Definition

Let s and n be positive integers, and let A be an $(s + n - 1) \times sn$ matrix. For $J \in {[sn] \choose n}$, we write

$$\mathscr{V}_J(A) = \left(\det A_J^I\right)_{I \in \left([s+n-1]\right)},$$

and, for $K \in {\binom{[sn]}{s-1}}$, we write

$$\overline{\mathscr{V}}_K(A) = \left((-1)^{|I| - \frac{n(n+1)}{2}} \det A_K^{\overline{I}} \right)_{I \in \binom{[s+n-1]}{n}},$$

which are both $\binom{s+n-1}{n}$ -dimensional column vectors where the entries are arranged in the lexicographic order of indices.

How to prove the Compound determinant?

We introduce an order on $\mathscr{Z}_{s,n}$ and prove by induction.

Definition

Let s and n be positive integers, and let A be an $(s + n - 1) \times sn$ matrix. For $J \in {[sn] \choose n}$, we write

$$\mathscr{V}_J(A) = \left(\det A_J^I\right)_{I \in \binom{[s+n-1]}{n}},$$

and, for $K \in {[sn] \choose s-1}$, we write

$$\overline{\mathscr{V}}_{K}(A) = \left((-1)^{|I| - \frac{n(n+1)}{2}} \det A_{K}^{\overline{I}} \right)_{I \in \binom{[s+n-1]}{n}},$$

which are both $\binom{s+n-1}{n}$ -dimensional column vectors where the entries are arranged in the lexicographic order of indices.

If
$$s=3$$
, $n=2$, $J=\{1,3\}\in {[6]\choose 2}$ and $K=\{4,6\}\in {[6]\choose 2}$, then $\mathscr{V}_J(A)$ equals

$$^{t}\left(\det A_{13}^{12} \quad \det A_{13}^{13} \quad \det A_{13}^{14} \quad \det A_{13}^{23} \quad \det A_{13}^{24} \quad \det A_{13}^{34}\right),$$

and
$$\overline{\mathscr{V}}_{K}(A)$$
 equals

$$^{t}\left(\det A_{46}^{34}-\det A_{46}^{24}\det A_{46}^{23}\det A_{46}^{14}-\det A_{46}^{13}\det A_{46}^{12}\right).$$

Proposition

By the Laplace expansion formula, we have

$$\langle \mathscr{V}_J(A), \overline{\mathscr{V}}_K(A) \rangle = {}^t\mathscr{V}_J(A)\overline{\mathscr{V}}_K(A) = (-1)^{s(J,K)} \det A_{J\sqcup K}.$$

Example

If $s=3,\,n=2,\,J=\{1,3\}\in {[6]\choose 2}$ and $K=\{4,6\}\in {[6]\choose 2}$, then we have

$$\left\langle \mathscr{V}_{J}(A), \overline{\mathscr{V}}_{K}(A) \right\rangle = \det A_{13}^{12} \det A_{46}^{34} - \det A_{13}^{13} \det A_{46}^{24}$$

$$+ \det A_{13}^{14} \det A_{46}^{23} + \det A_{13}^{23} \det A_{46}^{14} - \det A_{13}^{24} \det A_{46}^{13}$$

$$+ \det A_{13}^{34} \det A_{46}^{12} = \det A_{1346}$$

Proposition

By the Laplace expansion formula, we have

$$\langle \mathscr{V}_J(A), \overline{\mathscr{V}}_K(A) \rangle = {}^t\mathscr{V}_J(A)\overline{\mathscr{V}}_K(A) = (-1)^{s(J,K)} \det A_{J\sqcup K}.$$

If
$$s = 3$$
, $n = 2$, $J = \{1, 3\} \in {[6] \choose 2}$ and $K = \{4, 6\} \in {[6] \choose 2}$, then we have

$$\langle \mathcal{V}_{J}(A), \overline{\mathcal{V}}_{K}(A) \rangle = \det A_{13}^{12} \det A_{46}^{34} - \det A_{13}^{13} \det A_{46}^{24}$$
 $+ \det A_{13}^{14} \det A_{46}^{23} + \det A_{13}^{23} \det A_{46}^{14} - \det A_{13}^{24} \det A_{46}^{13}$
 $+ \det A_{13}^{34} \det A_{46}^{12} = \det A_{1346}$

Definition

Let s and n be positive integers, and fix a positive integer k such that $1 \le k \le s$. We introduce a partial order \le_k on the set $\mathscr{Z}_{s,n}$ of compostions as follows. For λ and μ in $\mathscr{Z}_{s,n}$, we define $\lambda \le_k \mu$ if $\lambda_i \le \mu_i$ for all $i \ne k$.

Example

 $\lambda = (2, 0, 1, 3), \mu = (2, 1, 2, 1) \in \mathcal{Z}_{4,6}$, and we have $\lambda \leq_4 \mu$ since $\lambda_i \leq \mu_i$ for $i \neq 4$.

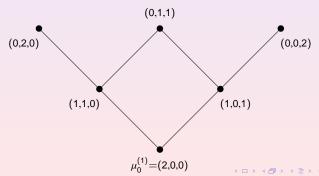
Definition

Let s and n be positive integers, and fix a positive integer k such that $1 \le k \le s$. We introduce a partial order \le_k on the set $\mathscr{Z}_{s,n}$ of compostions as follows. For λ and μ in $\mathscr{Z}_{s,n}$, we define $\lambda \le_k \mu$ if $\lambda_i \le \mu_i$ for all $i \ne k$.

Example

 $\lambda=(2,0,1,3), \mu=(2,1,2,1)\in \mathscr{Z}_{4,6},$ and we have $\lambda\leq_4\mu$ since $\lambda_i\leq\mu_i$ for $i\neq 4$.

 $(\mathscr{Z}_{s,n}, \leq_k)$ is a graded poset with the rank function $\rho^{(k)}(\mu) = n - \mu_k = \sum_{i \neq k} \mu_i \text{ for } \mu = (\mu_1, \dots, \mu_s) \in \mathscr{Z}_{s,n}.$ Let $\mu_0^{(k)}$ denote the minimum element of $(\mathscr{Z}_{s,n}, \leq_k)$. Let $P_i^{(k)} = \{ \mu \in \mathscr{Z}_{s,n} | \rho^{(k)}(\mu) = i \}.$ $(\mathscr{Z}_{32}, \leq_1)$



Definition

Let
$$P_i^{(k)} = \left\{ \mu \in \mathscr{Z}_{s,n} | \rho^{(k)}(\mu) = i \right\}$$
 be the subset of rank i elements. $\mathscr{Z}_{s,n} = P_0^{(k)} \sqcup \cdots \sqcup P_n^{(k)}$ is a disjoint union. Let $P_i^{(k)} = \bigsqcup_{i=0}^{n-1} P_i^{(k)} = \mathscr{Z}_{s,n} \setminus P_n^{(k)}$.

$$s = 3, n = 2.$$

$$P_0^{(1)} = \{(2,0,0)\},$$

$$P_1^{(1)} = \{(1,1,0), (1,0,1)\},$$

$$P_2^{(1)} = \{(0,2,0), (0,1,1), (0,0,2)\}.$$

$$P^{(1)} = P_0^{(1)} \sqcup P_4^{(1)} = \{(2,0,0), (1,1,0), ($$

Definition

Let
$$P_i^{(k)} = \left\{ \mu \in \mathscr{Z}_{s,n} | \rho^{(k)}(\mu) = i \right\}$$
 be the subset of rank i elements. $\mathscr{Z}_{s,n} = P_0^{(k)} \sqcup \cdots \sqcup P_n^{(k)}$ is a disjoint union. Let $P_i^{(k)} = \bigsqcup_{i=0}^{n-1} P_i^{(k)} = \mathscr{Z}_{s,n} \setminus P_n^{(k)}$.

Example

$$s = 3, n = 2.$$

$$P_0^{(1)} = \{(2, 0, 0)\},$$

$$P_1^{(1)} = \{(1, 1, 0), (1, 0, 1)\},$$

$$P_2^{(1)} = \{(0, 2, 0), (0, 1, 1), (0, 0, 2)\}.$$

$$P^{(1)} = P_0^{(1)} \sqcup P_1^{(1)} = \{(2, 0, 0), (1, 1, 0), (1, 0, 1)\}$$

Definition

To each $\mu \in P^{(k)}$, define $\phi^{(k)}(\mu) \in {[sn] \choose s-1}$ by

$$\phi^{(k)}(\mu) = \bigsqcup_{\substack{i=1\\i\neq k}}^{s} \{(i-1)n + \mu_i + 1\}.$$

Example

Definition

To each $\mu \in P^{(k)}$, define $\phi^{(k)}(\mu) \in {[sn] \choose s-1}$ by

$$\phi^{(k)}(\mu) = \bigsqcup_{\substack{i=1\\i\neq k}}^{s} \{(i-1)n + \mu_i + 1\}.$$

Example

If s = 3, n = 2 and k = 1, $\phi^{(1)}(2,0,0) = \{3,5\}$

Definition

To each $\mu \in P^{(k)}$, define $\phi^{(k)}(\mu) \in {[sn] \choose s-1}$ by

$$\phi^{(k)}(\mu) = \bigsqcup_{\substack{i=1\\i\neq k}}^{s} \{(i-1)n + \mu_i + 1\}.$$

Example

If s = 3, n = 2 and k = 1, $\phi^{(1)}(1, 1, 0) = \{4, 5\}$



Definition

To each $\mu \in P^{(k)}$, define $\phi^{(k)}(\mu) \in {[sn] \choose s-1}$ by

$$\phi^{(k)}(\mu) = \bigsqcup_{\substack{i=1\\i\neq k}}^{s} \{(i-1)n + \mu_i + 1\}.$$

Example

If s = 3, n = 2 and k = 1, $\phi^{(1)}(1, 0, 1) = \{3, 6\}$



Proposition

Let s and n be positive integers, and let A be an $(s + n - 1) \times sn$ matrix. Fix a color $k \in \mathcal{C}$. Let $\lambda \in \mathcal{Z}_{s,n}$ and $\mu \in P^{(k)}$. Then we have

$$\left\langle \mathscr{V}_{\iota(\lambda)}(A), \overline{\mathscr{V}}_{\phi^{(k)}(\mu)}(A) \right\rangle = 0,$$

unless $\lambda \leq_k \mu$.

Proof

Assume $\lambda \not \leq_k \mu$. Then there exists $l \neq k$ such that $\lambda_l > \mu_l$. Since this implies $(l-1)n + \mu_l + 1 \in \phi^{(k)}(\mu) \cap \iota(\lambda)$, we obtain $\phi^{(k)}(\mu) \cap \iota(\lambda) \neq \emptyset$. Thus we have $\langle \mathscr{V}_{\iota(\lambda)}(A), \mathscr{V}_{\phi^{(k)}(\mu)}(A) \rangle = 0$.

Proposition

Let *s* and *n* be positive integers, and let *A* be an $(s + n - 1) \times sn$ matrix. Fix a color $k \in \mathcal{C}$. Let $\lambda \in \mathcal{Z}_{s,n}$ and $\mu \in P^{(k)}$. Then we have

$$\left\langle \mathscr{V}_{\iota(\lambda)}(A), \overline{\mathscr{V}}_{\phi^{(k)}(\mu)}(A) \right\rangle = 0,$$

unless $\lambda \leq_k \mu$.

Proof

Assume $\lambda \not \leq_k \mu$. Then there exists $l \neq k$ such that $\lambda_l > \mu_l$. Since this implies $(l-1)n + \mu_l + 1 \in \phi^{(k)}(\mu) \cap \iota(\lambda)$, we obtain $\phi^{(k)}(\mu) \cap \iota(\lambda) \neq \emptyset$. Thus we have $\left\langle \mathscr{V}_{\iota(\lambda)}(A), \overline{\mathscr{V}}_{\phi^{(k)}(\mu)}(A) \right\rangle = 0$.

Definition

Let

$$\mathscr{M}(A) = \left(\mathscr{V}_{\iota(\mu)}(A)\right)_{\mu \in \mathscr{Z}_{s,n}} = \left(\det A'_{\iota(\mu)}\right)_{l \in \binom{[s+n-1]}{n}, \, \mu \in \mathscr{Z}_{s,n}},$$

where the indices μ are arranged in the increasing order with respect to <.

Lamma

Let s and n be positive integers. Let A be an $(s + n - 1) \times sn$ matrix. Then there exist non-negative integers m_{ν} , $\nu \in \mathscr{Z}^0_{s,n}$, and a constant $c \in \mathbb{Q}$ such that

$$\det \mathscr{M}(A) = c \prod_{v \in \mathscr{Z}^0_{0,0,0,1}} (\det A_v)^{m_v}$$

Definition

Let

$$\mathscr{M}(A) = \left(\mathscr{V}_{\iota(\mu)}(A)\right)_{\mu \in \mathscr{X}_{s,n}} = \left(\det A_{\iota(\mu)}^{\prime}\right)_{l \in \binom{[s+n-1]}{n}, \, \mu \in \mathscr{X}_{s,n}},$$

where the indices μ are arranged in the increasing order with respect to <.

Lamma

Let s and n be positive integers. Let A be an $(s + n - 1) \times sn$ matrix. Then there exist non-negative integers m_v , $v \in \mathscr{Z}^0_{s,n}$, and a constant $c \in \mathbb{Q}$ such that

$$\det \mathscr{M}(A) = c \prod_{v \in \mathscr{Z}^0_{s,s+n-1}} (\det A_v)^{m_v}$$
 .

Definition

Assume we are given by a map

$$\Phi: \mathscr{Z}_{s,n} \to \binom{[sn]}{s-1}.$$

Set $\widehat{\mathcal{M}}(\Phi, A)$ to be the $\binom{s+n-1}{n} \times \binom{s+n-1}{n}$ matrix defined by

$$\widehat{\mathscr{M}}(\Phi,A) = \left((-1)^{|I|-\frac{n(n+1)}{2}} \det A_{\Phi(\mu)}^{\bar{I}} \right)_{I \in \binom{[s+n-1]}{n}, \, \mu \in \mathscr{Z}_{s,n}}.$$

Proposition

$$\det \mathcal{M}(A) \cdot \det \widehat{\mathcal{M}}(\Phi, A) = \det \left(\left\langle \mathscr{V}_{\ell(\lambda)}(A), \overline{\mathscr{V}}_{\Phi(\mu)}(A) \right\rangle \right)_{\lambda, \mu \in \mathscr{Z}_{s, n}}$$
$$= \det \left((-1)^{s(\iota(\lambda), \Phi(\mu))} \det A_{\iota(\lambda) \sqcup \Phi(\mu)} \right)_{\lambda, \mu \in \mathscr{Z}_{s, n}}.$$

Definition

Assume we are given by a map

$$\Phi: \mathscr{Z}_{s,n} \to \binom{[sn]}{s-1}.$$

Set $\widehat{\mathcal{M}}(\Phi, A)$ to be the $\binom{s+n-1}{n} \times \binom{s+n-1}{n}$ matrix defined by

$$\widehat{\mathscr{M}}(\Phi,A) = \left((-1)^{|I|-\frac{n(n+1)}{2}} \det A_{\Phi(\mu)}^{\bar{I}} \right)_{I \in \binom{[s+n-1]}{n}, \, \mu \in \mathscr{Z}_{s,n}}.$$

Proposition

$$\begin{split} \det \mathscr{M}(A) \cdot \det \widehat{\mathscr{M}}(\Phi, A) &= \det \left(\left\langle \mathscr{V}_{\ell(\lambda)}(A), \overline{\mathscr{V}}_{\Phi(\mu)}(A) \right\rangle \right)_{\lambda, \mu \in \mathscr{Z}_{s, n}} \\ &= \det \left((-1)^{s(\iota(\lambda), \Phi(\mu))} \det A_{\iota(\lambda) \sqcup \Phi(\mu)} \right)_{\lambda, \mu \in \mathscr{Z}_{s, n}} . \end{split}$$

Sketch of Proof

We define a map $\pi: \mathscr{Z}_{s,n} \mapsto \mathscr{C}$ determined by the following condition:

For each
$$\mu = (\mu_1, ..., \mu_s) \in \mathscr{Z}_{s,n}$$
, let k be the least index such that $\mu_k = \max\{\mu_l : l = 1, ..., s\}$. We let $\pi(\mu) = k$.

Define the map Φ by $\Phi(\mu) = \phi^{(\pi(\mu))}(\mu)$. Then we claim that

$$\det\left(\left\langle \mathscr{V}_{\iota(\lambda)}(A),\overline{\mathscr{V}}_{\Phi(\mu)}(A)\right\rangle \right)_{\lambda,\mu\in\mathscr{Z}_{\mathtt{S},n}}=\pm\prod_{\mu\in\mathscr{Z}_{\mathtt{S},n}}\det A_{\iota(\mu)\sqcup\Phi(\mu)}.$$

Note that $\iota(\mu)\sqcup\phi^{(k)}(\mu)\in\mathscr{Z}^0_{s,s+n-1}$ for any k, and $\det A_J$, $J\in\binom{[sn]}{s+n-1}$, are irreducible polynomials in the unique factorization domain $\mathbb{Q}\left[a_{ij}\right]$.

Example

If s=3 and n=2, then the map $\pi: \mathscr{Z}_{3,2} \to \mathscr{C}$ determined by the condition is given by $\pi(2,0,0)=1,\pi(1,1,0)=1,\,\pi(1,0,1)=1,\,\pi(0,2,0)=2,\,\pi(0,1,1)=2,\,\pi(0,0,2)=3.$ Thus, if we take $\Phi=\phi^{(\pi(\mu))}$, then the above 6×6 matrix $\widehat{\mathscr{M}}(\Phi,A)$

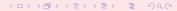
Thus, if we take $\Phi = \phi^{(\pi(\mu))}$, then the above 6×6 matrix $\widehat{\mathcal{M}}(\Phi, A)$ equals

$$\begin{pmatrix} \det A_{35}^{34} & \det A_{45}^{34} & \det A_{36}^{34} & \det A_{15}^{34} & \det A_{16}^{34} & \det A_{13}^{34} \\ -\det A_{35}^{24} & -\det A_{45}^{24} & -\det A_{36}^{24} & -\det A_{15}^{24} & -\det A_{16}^{24} & -\det A_{13}^{24} \\ \det A_{35}^{23} & \det A_{45}^{23} & \det A_{36}^{23} & \det A_{15}^{23} & \det A_{16}^{23} & \det A_{13}^{23} \\ \det A_{35}^{14} & \det A_{45}^{14} & \det A_{36}^{14} & \det A_{15}^{14} & \det A_{16}^{14} & \det A_{13}^{14} \\ -\det A_{35}^{13} & -\det A_{45}^{13} & -\det A_{36}^{13} & -\det A_{15}^{13} & -\det A_{16}^{13} & -\det A_{13}^{13} \\ \det A_{35}^{12} & \det A_{45}^{12} & \det A_{36}^{12} & \det A_{15}^{12} & \det A_{16}^{12} & \det A_{13}^{12} \\ \det A_{35}^{12} & \det A_{45}^{12} & \det A_{36}^{12} & \det A_{15}^{12} & \det A_{16}^{12} & \det A_{13}^{12} \end{pmatrix}$$

Example

Then we obtain that $\det\left(\left\langle \mathscr{V}_{\iota(\lambda)}(A), \overline{\mathscr{V}}_{\Phi(\mu)}(A)\right\rangle\right)_{\lambda,\mu\in\mathscr{Z}_{s,n}}$ equals

whose determinant is $-\det A_{1235} (\det A_{1345})^2 (\det A_{1356})^3$.



Lamma

Let s and n be positive integers. Let A be an $(s + n - 1) \times sn$ matrix. Then there exist a constant $c \in \mathbb{Q}$ such that

$$\det \mathscr{M}(A) = c \prod_{\nu \in \mathscr{Z}^0_{s,s+n-1}} \det A_{\nu}.$$

Sketch of Proof

We choose another map Φ such that the factors $\det A_{\nu}$, $\nu \in \mathscr{Z}^0_{s,s+n-1}$, appears just once in $\det \left(\left\langle \mathscr{V}_{\iota(\lambda)}(A), \overline{\mathscr{V}}_{\Phi(\mu)}(A) \right\rangle \right)_{\lambda,\mu \in \mathscr{Z}_{s,n}}$, which implies $m_{\nu} = 0$ or 1. Comparing the degrees of the both sides, we conclude that $m_{\nu} = 1$

Lamma

Let s and n be positive integers. Let A be an $(s + n - 1) \times sn$ matrix. Then there exist a constant $c \in \mathbb{Q}$ such that

$$\det \mathscr{M}(A) = c \prod_{\nu \in \mathscr{Z}^0_{s,s+n-1}} \det A_{\nu}.$$

Sketch of Proof

We choose another map Φ such that the factors $\det A_{\nu}$, $\nu \in \mathscr{Z}^{0}_{s,s+n-1}$, appears just once in $\det \left(\left\langle \mathscr{V}_{\iota(\lambda)}(A), \overline{\mathscr{V}}_{\Phi(\mu)}(A) \right\rangle \right)_{\lambda,\mu \in \mathscr{Z}_{s,n}}$, which implies $m_{\nu} = 0$ or 1. Comparing the degrees of the both sides, we conclude that $m_{\nu} = 1$.

Example

If s=3, n=2, then we take an appropriate map $\Phi: \mathscr{Z}_{3,2} \to {[6] \choose 2}$, and define the 6×6 matrix $\widehat{\mathscr{M}}(\Phi,A)$

$$\begin{pmatrix} \det A_{35}^{34} & \det A_{45}^{34} & \det A_{36}^{34} & \det A_{25}^{34} & \det A_{46}^{34} & \det A_{23}^{34} \\ -\det A_{35}^{24} & -\det A_{45}^{24} & -\det A_{36}^{24} & -\det A_{25}^{24} & -\det A_{46}^{24} & -\det A_{23}^{24} \\ \det A_{35}^{23} & \det A_{45}^{23} & \det A_{36}^{23} & \det A_{25}^{23} & \det A_{46}^{23} & \det A_{23}^{23} \\ \det A_{35}^{14} & \det A_{45}^{14} & \det A_{36}^{14} & \det A_{25}^{14} & \det A_{46}^{14} & \det A_{23}^{14} \\ -\det A_{35}^{13} & -\det A_{45}^{13} & -\det A_{36}^{13} & -\det A_{25}^{13} & -\det A_{46}^{13} & -\det A_{23}^{13} \\ \det A_{35}^{12} & \det A_{45}^{12} & \det A_{36}^{12} & \det A_{25}^{12} & \det A_{46}^{12} & \det A_{23}^{12} \\ \det A_{35}^{12} & \det A_{45}^{12} & \det A_{36}^{12} & \det A_{25}^{12} & \det A_{46}^{12} & \det A_{23}^{12} \end{pmatrix}$$

Then we obtain that

$$\widehat{\mathscr{M}}(A)\widehat{\mathscr{M}}(\Phi,A)=\det\left(\left\langle \mathscr{V}_{\iota(\lambda)}(A),\overline{\mathscr{V}}_{\Phi(\mu)}(A)
ight
angle
ight)_{\lambda,\mu\in\mathscr{Z}_{\mathtt{S},n}}$$
 equals

det A ₁₂₃₅	det A ₁₂₄₅	det A ₁₂₃₆	0	det A ₁₂₄₆	0)
0	det A ₁₃₄₅	0	$-\det A_{1235}$	det A ₁₃₄₆	0
0	0	det A₁₃₅₆	0	det A₁₄₅₆	det A ₁₂₃₅
0	0	0	det A ₂₃₄₅	0	0
0	0	0	0	det A₃₄₅₆	0
0	0	0	0	0	det A ₂₃₅₆)

whose determinant is $\det A_{2345} \det A_{3456} \det A_{2356} \prod_{\nu \in \mathscr{Z}_{3.5}^0} \det A_{\iota(\nu)}$.

The last step of the proof

To show that c = 1, we substitute $a_{i,j} = x_j^{s+n-i}$ into the both sides, and compare the leading coefficients.

Definition (Hall-Little function)

Let X denote the set of variables x_1, \ldots, x_n , and for any subset E of X, let p(E) denote the product of the elements of E. Suppose a partition $\lambda = (\lambda_1, \ldots, \lambda_n)$ is of the form $(\mu_1^{r_1}, \ldots, \mu_k^{r_k})$, where $\mu_1 > \cdots > \mu_k \geq 0$, and the r_i are positive integers whose sum is n. Then the Hall-Little function is defined to be

$$P_{\lambda}(x_{1},...,x_{n};t) = \sum_{f} \rho(f^{-1}(1))^{\mu_{1}} \cdots \rho(f^{-1}(k))^{\mu_{k}} \prod_{f(x_{i}) < f(x_{j})} \frac{x_{i} - tx_{j}}{x_{i} - x_{j}}$$

summed over all surjective mappings $f: X \to \{1, 2, ..., k\}$ such that $|f^{-1}(i)| = r_i$ for $1 \le i \le k$.

Example

If n = 2 and $\lambda = (2) = (2^1, 0^1)$, then there are two surjections:

$$f_1: x_1 \mapsto 1, x_2 \mapsto 2,$$

 $f_2: x_1 \mapsto 2, x_2 \mapsto 1$

$$P_{(2)}(x_1, x_2; t) = x_1^2 \frac{x_1 - tx_2}{x_1 - x_2} + x_2^2 \frac{x_2 - tx_1}{x_2 - x_1}$$
$$= x_1^2 + x_1 x_2 + x_2^2 - tx_1 x_2$$

Conjecture

To $\mu \in Z_{s,n}$, we associate

$$\textbf{\textit{X}}_{\mu} = (\textbf{\textit{x}}_{1}^{(1)}, \cdots, \textbf{\textit{x}}_{\mu_{1}}^{(1)}, \textbf{\textit{x}}_{1}^{(2)}, \cdots, \textbf{\textit{x}}_{\mu_{2}}^{(2)}, \cdots, \textbf{\textit{x}}_{1}^{(s)}, \cdots, \textbf{\textit{x}}_{\mu_{s}}^{(s)}).$$

Then we have

$$\det \left(P_{\lambda}(X_{\mu}) \right)_{\lambda \subset \left((s-1)^n \right), \mu \in \mathcal{Z}_{s,n}} = \pm \prod_{1 \leq k < l \leq s} \prod_{i,j=1}^n \left(x_i^{(k)} - x_j^{(l)} \right)^{\binom{s+n-i-j-1}{s-2}},$$

where the rows are indexed by partitions $\lambda = (\lambda_1, \dots, \lambda_n)$ such that $\lambda_1 \leq s - 1$.

Problem

What happens if we replace the Schur functions with the Macdonald polynomials?

Conjecture

To $\mu \in Z_{s,n}$, we associate

$$\textbf{\textit{X}}_{\mu} = (\textbf{\textit{x}}_{1}^{(1)}, \cdots, \textbf{\textit{x}}_{\mu_{1}}^{(1)}, \textbf{\textit{x}}_{1}^{(2)}, \cdots, \textbf{\textit{x}}_{\mu_{2}}^{(2)}, \cdots, \textbf{\textit{x}}_{1}^{(s)}, \cdots, \textbf{\textit{x}}_{\mu_{s}}^{(s)}).$$

Then we have

$$\det \left(P_{\lambda}(X_{\mu}) \right)_{\lambda \subset \left((s-1)^n \right), \mu \in Z_{s,n}} = \pm \prod_{1 \leq k < l \leq s} \prod_{i,j=1}^n \left(x_i^{(k)} - x_j^{(l)} \right)^{\binom{s+n-i-j-1}{s-2}},$$

where the rows are indexed by partitions $\lambda = (\lambda_1, \dots, \lambda_n)$ such that $\lambda_1 \leq s - 1$.

Problem

What happens if we replace the Schur functions with the Macdonald polynomials?

The end

Thank you!