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Determinant

Introduction

Abstract

In this talk we give a formula for a compound determinant and use
it to derive a Schur function identity. This compound determinant is
a variant of Sylvester’s determinant whose row is parametrized by
n-element subsets of {1,2,...,s +n — 1} and column is
parametrized by compositions of n with at most s parts. We
introduce a partial order on the set of compositions of n with at
most s parts, and use this partial order to compute the
determinant. This determinant identity has an application to
compute a determinant whose entries are certain Schur functions,
and this result generalize a Schur function identity obtained in the
paper "A determinant formula for a holonomic g-difference system
associated with Jackson integrals of type BC,"” by K. Aomoto and
M. Ito.

Masao Ishikawa Compound Determinant



An Identity for Compound Determinant and its Application

@ Sylvester’s determinant

Masao Ishikawa Compound Determinant



An Identity for Compound Determinant and its Application

@ Sylvester’s determinant
©@ Compound Determinant

Masao Ishikawa Compound Determinant



An Identity for Compound Determinant and its Application

@ Sylvester’s determinant
©@ Compound Determinant
© An application to a Schur function determinant

Masao Ishikawa Compound Determinant



An Identity for Compound Determinant and its Application

@ Sylvester’s determinant

©@ Compound Determinant

@ An application to a Schur function determinant
© Proof of the Compound Determinant

Masao Ishikawa Compound Determinant



An Identity for Compound Determinant and its Application

@ Sylvester’s determinant

©@ Compound Determinant

@ An application to a Schur function determinant
© Proof of the Compound Determinant

@ Open problems
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Sylvester’s Determinant

Preliminaries

Letr and s be integers.
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Sylvester’s Determinant

Preliminaries

Letr and s be integers.
@ [r,s]={r,r+1,...,s}
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Sylvester’s Determinant
Preliminaries

Letr and s be integers.
@ [r,s]={r,r+1,...,s}
o [r]=[1,r]
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Sylvester’s Determinant
Preliminaries

Letr and s be integers.
@ [r,s]={r,r+1,...,s}
o [r]=[L.1]
@ If S is a finite set, let (f) denote the set of all r-element
subsets of S.
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Sylvester’s Determinant
Preliminaries

Definition

Letr and s be integers.
@ [r,s]={r,r+1,...,s}
o [r] = [1.r]
@ If S is a finite set, let (?) denote the set of all r-element
subsets of S.

[4] ={1,2,3,4}
(%) = 11,21, 11,3), 11,41, 12,3}, {2, 41, (3, 4}

#3)=()=#
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Sylvester’s Determinant
Preliminaries

Definition (Lexicographic order)

Forl={ip<---<ifJandJ ={j1 <--- < }in ([';']),Wewrite I <Jif
there is an index k such that

il :jl’ ey ik_l :jk—l’ Ik <]k :

This gives a total ordering on ([';']), which is called the lexicographic
order.
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Sylvester’s Determinant
Preliminaries

Definition (Lexicographic order)

Forl={ip<---<ifJandJ ={j1 <--- < }in (['f]),wewrite I <Jif
there is an index k such that

il :jl’ ey ik_l :jk—l’ Ik <]k :

This gives a total ordering on ([N]) which is called the lexicographic
order.

v

,4,7) < {1,3,5, 6}

{{1,2} < {1,3} < {1,4} < {2,3} < {2,4} < {3,4}}
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Sylvester’s Determinant
Minors

Let A be any M x N matrix, and let | = {iy,...,i;} C [M] (resp.
J = {j1,---.jr} € [N]) be a row (resp. column) index set.
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Sylvester’s Determinant
Minors

Definition

Let A be any M x N matrix, and let | = {iy,...,i;} C [M] (resp.
J = {j1,....jr} € [N]) be a row (resp. column) index set.
Let A} = A'l """ ' denote the matrix obtained from A by choosing

,,,,,

rows mdexed by | and columns indexed by J.
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Sylvester’s Determinant
Minors

Definition

Let A be any M x N matrix, and let | = {iy,...,i;} C [M] (resp.
J = {j1,....jr} € [N]) be a row (resp. column) index set.
LetA) = AJ'l ''''''' " denote the matrix obtained from A by choosing

rows mdexed by | and columns indexed by J.
Ifr =M and | = [M] (i.e. we choose all rows), then we write

A = A, for AlM.

.....
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Sylvester’s Determinant
Minors

Definition

Let A be any M x N matrix, and let | = {iy,...,i;} C [M] (resp.

J = {j1,....jr} € [N]) be a row (resp. column) index set.

LetA) = A'l """ " denote the matrix obtained from A by choosing
rows mdexec’i"by | and columns indexed by J.

Ifr =M and | = [M] (i.e. we choose all rows), then we write
Ay =A,. for A

Similary we write A' = Al for A['N] whenr = N and J = [N].
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Sylvester’s Determinant

M=3,N=4
A1 Az a3z s
A =laz axp ax;a ax
dz; QAz2 azz Az
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Sylvester’s Determinant

M=3,N=4
A1 Az a3z s
A =laz axp ax;a ax
dz; QAz2 azz Az
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Sylvester’s Determinant

M=3,N=4
A1 Az a3z s
A =laz axp ax;a ax
dz; QAz2 azz Az

If 1 = {1,3} and J = {2, 4}, then

I Al3 (12 Qs
Ay =R = (332 a34)'
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Sylvester’s Determinant

Example
M=3,N=4
aig
A =lay
azg

If 1 = {1,3} and J = {2, 4}, then

_ al3

[
Ay =Ay,

If J = {2, 3,4}, then

Ay =Azz4 =]ax

aia
azq
az4

aig
azs

a2 ai3
dzz Azs
dz2 as3

_ [212
asg

aiq
az | .
azs

a3
azs
azs

aiz

asz
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Sylvester’s Determinant
Sylvester’s Determinant

Let n and m be positive integers such that m < n.
Let A = (&j)1<ij<n be an n x n matrix.
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Sylvester’s Determinant
Sylvester’s Determinant

Theorem

Let n and m be positive integers such that m < n.
Let A = (&j)1<ij<n be an n x n matrix.
Then we have
I (n—l)
det (detAJ)l’JE([rnn]) — (detA)md) |
where the rows and columns of the matrix on the left hand side
are arranged in increasing order with respect to <.

Masao Ishikawa Compound Determinant




Sylvester’s Determinant

Sylvester’'s Determinant

n=4m=2
aix a2 a1z aig
A — dp1 Az a3z azg
dz1 a4z 4az3 azs
dq1 aA42 43 Ay
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Sylvester’s Determinant

Sylvester’'s Determinant

n=4m=2
aix a2 a1z aig
A — dp1 Az a3z azg
dz1 a4z 4az3 azs
dq1 aA42 43 Ay
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Sylvester’s Determinant
Sylvester’s Determinant

n=4m=2
aix a2 a1z aig
A — dp1 Az a3z azg
dz1 a4z 4az3 azs
dq1 aA42 43 Ay

Sylvester’s determinant

detAlZ detA!Z detAl? detA}? detA)? detA?
detA]S detA;s detAl? detA)] detA)] detA’
detA;) detAls detAl} detA)? detA); detAsy
detAZ detAZ detAZ} detAZ] detAZ} detAD
detAZ} detAZ detAZl detAZ; detAZ} detAZ}
detA? detAZ; detAd} detAl] detAj; detAd)

det
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Sylvester’s Determinant
Sylvester’s Determinant

n=4m=2

aix a2 a1z aig
A — dp1 Az a3z azg
dz1 a4z 4az3 azs
dq1 aA42 43 Ay

Sylvester’s determinant

detAlZ detA!Z detAl? detA}? detA)? detA?
detA]S detA;s detAl? detA)] detA)] detA’
detA;) detAls detAl} detA)? detA); detAsy
detAZ detAZ detAZ} detAZ] detAZ} detAD
detAZ} detAZ detAZl detAZ; detAZ} detAZ}

det

2 24
34 34 34 34 34 34
det AL det A13 det AL, det A23 det B det A3 A

equals (detA)G) = (detA)3.
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Sylvester’s Determinant
Compound Determinant

Let s and n be positive integers.
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Sylvester’s Determinant
Compound Determinant

Definition

Let s and n be positive integers.
Let Z5,n denote the set of compositions of n which has at most s
parts, i.e.

Zsn =1{u=(u1,....us) 1 >0,... s 20, g +--- + s = N},
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Sylvester’s Determinant
Compound Determinant

Definition

Let s and n be positive integers.
Let Z5,n denote the set of compositions of n which has at most s

parts, i.e.
%,n :{#: (ﬂl""’ﬂ3)|#120’-"9#5 ZO,Hl"“"ﬂs :n}’

and let .,%";?n denote the set of compositions of n which has exactly
S parts, i.e.

200 =1 = (1, pts) |1 > 0,0 pts >0, piy + -+ + s = n}.
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Sylvester’s Determinant
Compound Determinant

s=3,n=2

%2 =1{(2,0,0),(1,1,0),(1,0,1),(0,2,0),(0,1,1),(0,0, 2)}
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Sylvester’s Determinant
Compound Determinant

s=3,n=2

%2 =1{(2,0,0),(1,1,0),(1,0,1),(0,2,0),(0,1,1),(0,0, 2)}
s=3,n=4

20, ={(2.1.1).(1,2,1), (1.1,2))
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Sylvester’s Determinant
Compound Determinant

s=3,n=2

%2 =1{(2,0,0),(1,1,0),(1,0,1),(0,2,0),(0,1,1),(0,0, 2)}
s=3,n=4

20, ={(2.1.1).(1,2,1), (1.1,2))

Proposition
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Sylvester’s Determinant
Compound Determinant

Definition
We introduce the following total order on Zs ..
For A, u € Z5n, we write A < u if there is an index k such that

Ay =1, ... A1 = px-1, Ak > pk.
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Sylvester’s Determinant
Compound Determinant

Definition
We introduce the following total order on Zs ..
For A, u € Z5n, we write A < u if there is an index k such that

Ay =1, ... A1 = px-1, Ak > pk.

s=3,n=2, 23,

(2,0,0) < (1,1,0) < (1,0,1) < (0,2,0) < (0,1,1) < (0,0,2)
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

S

() = |l -D)n+1,( - 1)n + p].

i=1
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

() =] [ =) +12,6 - 1)n+m].

i=1

This gives an injection ¢ : 2%, — ([Sn”]),
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

() =] [ =) +12,6 - 1)n+m].

i=1

This gives an injection¢ : Z5, — ([Sn”]), and one readily sees
that, for 4, u € Zpn, (1) < ¢(u) if and only if A < .
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

() =] [ =) +12,6 - 1)n+m].

i=1

This gives an injection¢ : Z5, — ([Sn”]), and one readily sees
that, for 4, u € Zpn, (1) < ¢(u) if and only if A < .

s=3,n=2,(2,0,0)={1,2}

0|0
1 2 3 4 5 6
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

() =] [ =) +12,6 - 1)n+m].

i=1

This gives an injection¢ : Z5, — ([Sn”]), and one readily sees
that, for 4, u € Zpn, (1) < ¢(u) if and only if A < .

s=3,n=2,(1,1,0) ={1,3}

ol |0
1 2 3 4 5 6
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

() =] [ =) +12,6 - 1)n+m].

i=1

This gives an injection¢ : Z5, — ([Sn”]), and one readily sees
that, for 4, u € Zpn, (1) < ¢(u) if and only if A < .

s=3,n=2,(1,0,1) = {1,5}

O O
1 2 3 4 5 6
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

() =] [ =) +12,6 - 1)n+m].

i=1

This gives an injection¢ : Z5, — ([Sn”]), and one readily sees
that, for 4, u € Zpn, (1) < ¢(u) if and only if A < .

s=3,n=2,(0,2,0) =({3,4}

OO
1 2 3 4 5 6
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

() =] [ =) +12,6 - 1)n+m].

i=1

This gives an injection¢ : Z5, — ([Sn”]), and one readily sees
that, for 4, u € Zpn, (1) < ¢(u) if and only if A < .

s=23,n=2101,1) = {3,5)

ol |O
1 2 3 4 5 6
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Sylvester’s Determinant
Compound Determinant

To each u € 25, we associate an subset ((u) € ([Sn”]) defined by

() =] [ =) +12,6 - 1)n+m].

i=1

This gives an injection¢ : Z5, — ([Sn”]), and one readily sees
that, for 4, u € Zpn, (1) < ¢(u) if and only if A < .

s=3,n=20,0,2) = {5,6)

OO0
1 2 3 4 5 6
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Sylvester’s Determinant
Compound Determinant

Let s and n be positive integers and A = (@jj)1<i<s+n-1, 1<j<sn b€
an (s + n —1) x sn matrix. We put

[s +n-1]

2=
n

), G =) pe Zinh
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Sylvester’s Determinant
Compound Determinant

Let s and n be positive integers and A = (@j)1<i<s+n-1, 1<j<sn b€
n (s +n—1) x sn matrix. We put

Then we have

det(detA)) _, ., = [] deta

VE. Zs ,S+n-1

where the rows and columns of the matrix on the left hand side
are arranged in increasing order with respect to <.
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Sylvester’s Determinant
Compound Determinant

Ifs =3 and n = 2, then

% = (F27) = ({1,2),{1,3), (1. 4}.(2,3}. (2.4}, (3.4))

o]0 O O O O
1 2 3 4 1 2 3 4 1 2 3 4
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Sylvester’s Determinant
Compound Determinant

Example

Ifs =3 and n = 2, then
%2 =1{(2,0,0),(1,1,0),(1,0,1),(0,2,0),(0,1,1),(0,0,2)}
€ ={n)  p e Z32) = {{1,2},{1,3},{1,5},{3,4},{3,5},{5,6}}

OO O O

O O o110

1 2 3 4 5 6 1 2 3 4 5 6
O O o0

1 2 3 4 5 6 1 2 3 4 5 6

Masao Ishikawa Compound Determinant



Sylvester’s Determinant
Compound Determinant

If s = 3 and n = 2, then the left-hand side determinant
det (detAJ') equals

le2.)e€
detAlZ detAiZ detAlZ detAl? detAl? detAlZ
detAlS detA]? detA]? detAl] detA}} detAs?
detAl} detAld detAll detAl? detAl? detAld
detAZ detAZ detAZ detAZ} detAZ detAZ '
detAZ} detAZl detAZ detAZ! detAZ detAZ!

34 34 34 34 34 34
detA12 detA13 detA15 detA56 detA35 detA56

det
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Sylvester’s Determinant
Compound Determinant

Ifs =3andn =2,then 27, ,  =1{(2,1,1),(1,2,1),(1,1,2)}

fe(u) - ne 23, = {1,2,3,5},{1,3,4,5},{1,3,5,6})

o100 |O ol O[O0
1 2 3 4 5 6

=
N
w
D
(3]
(o))
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Sylvester’s Determinant

Compound Determinant

If s = 3 and n = 2, then the right-hand side
det A1235 det A13s45 det A1356 equals

ajl alz a3 ais dixz a3z aia ais
a a a a a a a a
det|32t @22 @3 @5, |81 Q23 824 825
dz1 az2 4az3 azs dz1 dagzz 4azq azs
dq; QA2 A3 Ass dg1 A3 A4q Ags

dj; a1z ais Aie
a a a a
wdet|321 823 A5 A%
dz; azz azs Aze
dq1 A43 A5 Age
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Sylvester’s Determinant

An application to a Schur function determinant

A partition is any (finite or infinite) sequence
A= (A1, 22,..., A, ...)

of non-negative integers in decreasing order:
Ay = Ay > --- > A > ... and containing only finitely many non-zero
terms.
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Sylvester’s Determinant

An application to a Schur function determinant

A partition is any (finite or infinite) sequence

A=A, 2,...,4,...)

of non-negative integers in decreasing order:
Ay = Ay > --- > A > ... and containing only finitely many non-zero
terms.

Example
A = (5441) is a partition of 14 with length 4.
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Sylvester’s Determinant

An application to a Schur function determinant

Definition (Tableaux)

Given a partition A, A tableaux T of shape A is a filling of the
diagram with numbers whereas the numbers must strictly increase
down each column and weakly from left to right along each row.
Let X = (X1, X2, ... ) be variables. The weight of tableaux T is

w(T) = x{ o
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Sylvester’s Determinant

An application to a Schur function determinant

Definition (Tableaux)

Given a partition A, A tableaux T of shape A is a filling of the
diagram with numbers whereas the numbers must strictly increase
down each column and weakly from left to right along each row.
Let X = (X1, X2, ... ) be variables. The weight of tableaux T is

w(T) = x{ o

Example

A Tableau T of shape (5441).

Vil
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Sylvester’s Determinant

An application to a Schur function determinant

Definition (Schur functions)

The Schur function s,(x) is, by definition,
si(x) = > w(T),
T

where the sum runs over all tableaux of shape A.
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Sylvester’s Determinant

An application to a Schur function determinant

Definition (Schur functions)

The Schur function s,(x) is, by definition,

si(x) = > w(T),

where the sum runs over all tableaux of shape A.

When A = (22),

Sa(X) = X2%3 + xIxZ + ...
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Sylvester’s Determinant

An application to a Schur function determinan

Definition (Schur functions)

For X = (Xg,...,Xn) and a partition A such that £(1) < n, let
det(x 1"

)lsi,an
sa(X) =

det(Xin_j )1<ij<n

s(X) is called the Schur function corresponding to A.
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Sylvester’s Determinant

An application to a Schur function determinan

Definition (Schur functions)

For X = (Xg,...,Xn) and a partition A such that £(1) < n, let

det(x 1"

)lsi,an
sa(X) =

det(Xin_j )1<ij<n

s(X) is called the Schur function corresponding to A.

If n =2 and A = (22), then

x3 x2
st = o det((S )
2

X1 — X2
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Sylvester’s Determinant

An application to a Schur function determinant

If we apply the main theorem to the matrix A = (&) given by

i-1
& (k-1)n+j = (Xj(k)) (1<i<s+n-1,1<k<s,1<j<n),

then we obtain the following formula.

Corollary
To u € Zs n, we associate

D W@ @ 6 6)

_ (!
K = (X0 X X e X e X g X )

Then we have

n s+n—i—j—1)

s
et (S10%)) e ts-1yryuezan = * [ ﬂ(xf”-xj"’) ’

1<k<I<sij=1

where the rows are indexed by partitions 2 = (43, -+ ,4,) such

that 1, < s — 1.




Sylvester’s Determinant

An application to a Schur function determinant

s=3,n=2,
The partitions contained the rectangle
e (3-1)2 =

are as follows:

Masao Ishikawa Compound Determinant



Sylvester’s Determinant

An application to a Schur function determinant

The left-hand side determinant equals

So(X200) So(X110) so(X101) So(Xo20) So(Xo11) Se(Xoo2)
s1(X200) s1(X110) S1(X101) S1(Xo20) S1(Xo11) S1(Xo02)
$2(X200)  S2(X110)  S2(X101) S2(Xo20) S2(Xo11)  S2(Xoo2)
s11(X200) s11(X1,10) S11(X101) S11(X020) S11(X011) S11(X0,0.2)
$21(X200) S21(X1,10) S21(X101) S21(Xo20) S21(Xo,1,1) S21(Xo0,0:2)
$22(X200) S22(X1,10) S22(X101) S22(X020) S22(X0,1.1) S22(X0,0.2)

(1)

where X300 = (xi ),xé )) X141 , X )), X101 = (xil) x(3)),

= (!
Xoz0 = (x{2,x{?)), X011—( ,Xi ), a”dXOOZ—(X§

This determinant equals
i(Xil) _ X§2))2(X§1) _ x(z))(x(l) _ X(Z))( (1) X(3))2(X§1) _

2 2 1 1
é@)(xél) _ X§3))(X§2) _ X£3))2(X§2) (3))( éz) _ Xi?’)).
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Sylvester’s Determinant
Proof of the Compound Determinant

How to prove the Compound determinant?
We introduce an order on Z; , and prove by induction.
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Sylvester’s Determinant
Proof of the Compound Determinant

How to prove the Compound determinant?
We introduce an order on Z; , and prove by induction.

Let s and n be positive integers, and let A be an (s +n—1) X sn
matrix. For J € ([S”]) we write

75(A) = (detA}) (s

and, for K € ([S”]) we write

n(n+1)

]

T(®) = (-0

detA}E)

|€([s+2—1])

which are both (5+r'1“1)-dimensional column vectors where the

entries are arranged in the lexicographic order of indices.
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Sylvester’s Determinant
Proof of the Compound Determinant

Example

Ifs=3n=2J3={13¢(§)andk = (4.6} € (1Y), then 75(A)
equals

t(detA113? detAld detAl} detAZ detAZ detAfg),

and 7k (A) equals

t(detAj’g1 —detAZd detAZ detA;d -—detAld detAjg).
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Sylvester’s Determinant
Proof of the Compound Determinant

Proposition
By the Laplace expansion formula, we have

(13(A). 7k (A)) = F5(A) Pk (A) = (-1)°") det Ay k.
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Sylvester’s Determinant

Proof of the Compound Determinant

By the Laplace expansion formula, we have

(13(A). 7k (A)) = F5(A) Pk (A) = (-1)°") det Ay k.

Ifs=3,n=2,J=1{1,3} € ([g]) and K = {4,6} € ([g]), then we
have

(#3(A), 7k(A)) = detAjZ det AZd — detAfS det AZ!
+ detAld detAZ + detAZS detAd — detAZ detALd
+ det Afg det Ai’g = det A1346
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Sylvester’s Determinant
Proof of the Compound Determinant

Definition

Let s and n be positive integers, and fix a positive integer k such
that 1 < k < s. We introduce a partial order <, on the set 2, of
compostions as follows. For 2 and p in 25, we define A <y u if
A <y foralli #Kk.
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Sylvester’s Determinant

Proof of the Compound Determinant

Let s and n be positive integers, and fix a positive integer k such
that 1 < k < s. We introduce a partial order <, on the set 2, of
compostions as follows. For 2 and p in 25, we define A <y u if
A <y foralli #Kk.

1=(2,0,1,3),u=(2,1,2,1) € %46, and we have 1 <, u since
Aj < i for i # 4.
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Proof of the Compound Determinant

(%%, <k) is a graded poset with the rank function
PpM) (1) = n = g = T pi for = (ua,..., ps) € Zp.
Let ,uék) denote the minimum element of (%5 n, <)

Let PY) = {u e Zn 1ol () = ).
(Z232,=1)

(0,1,1)

u§V=(2.00)
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Sylvester’s Determinant
Proof of the Compound Determinant

Definition
Let P() — {1 e Zn1p® (1) = i} be the subset of rank i elements.
EX; Q= P(k) P(k) is a disjoint union. Let

|_|n 1 P(k) Pin \P(k)
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Sylvester’s Determinant
Proof of the Compound Determinant

Definition

Let P() — {1 e Zn1p® (1) = i} be the subset of rank i elements.
EX; n = P(k) - L P(k) is a disjoint union. Let
|_|n 1 P(k) Pin \P(k)

s=3,n=2
P —{(2,0,0)},
P = ((1,1,0),(1,0,1)}
Pél) = {(0, 2, 0)3 (O’ 1’ 1)’ (0’ O’ 2)}
PW =P LPM = ((2,0,0),(1.1,0).(1.0,1))
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Proof of the Compound Determinant

To each u € P(), define ¢®)(u) € (E_nD by

S

o) (u) = |_|{(i —1)n +pi + 1},

i=1
ik

Masao Ishikawa Compound Determinant



Sylvester’s Determinant

Proof of the Compound Determinant

To each u € P(), define ¢®)(u) € (E_nD by

S

oM () =| [t -1)n+pm +1).

Ifs=3,n=2andk =1,
¢ (2,0,0) = {3,5)
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Sylvester’s Determinant

Proof of the Compound Determinant

To each u € P(), define ¢®)(u) € (E_nD by

S

oM () =| [t -1)n+pm +1).

Ifs=3,n=2andk =1,
¢D(1,1,0) = {4,5)
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Sylvester’s Determinant

Proof of the Compound Determinant

To each u € P(), define ¢®)(u) € (E_nD by

S

oM () =| [t -1)n+pm +1).

Ifs=3,n=2andk =1,
¢ (1,0,1) = {3,6)
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Sylvester’s Determinant
Proof of the Compound Determinant

Proposition

Let s and n be positive integers, and let A be an (s +n—1) X sn
matrix. Fix a color k € €. Let 1 € 2%, and u € P(). Then we have

(Zi(A). 7 g0 (A)) = 0,

unless A < p.
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Proof of the Compound Determinant

Let s and n be positive integers, and let A be an (s +n—1) X sn
matrix. Fix a color k € €. Let 1 € 2%, and u € P(). Then we have

(T (A), 7 gy (A)) = 0,

unless A < p.

Assume A £x u. Then there exists | # k such that 4 > . Since
this implies (I — 1)n 4 g + 1 € () () N (1), we obtain

¢ (1) N 1(2) # 0. Thus we have (¥;(1)(A), 7 40 (A)) = O.
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Proof of the Compound Determinant

Let

AA) = (Y A), e, = (detAtl<ﬂ>)le([“r”),ﬂef;.n ’

where the indices u are arranged in the increasing order with
respect to <.
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Sylvester’s Determinant

Proof of the Compound Determinant

Let

AA) = (Y A), e, = (detAtl<ﬂ>)led“s-”),ﬂe@sn ’

where the indices u are arranged in the increasing order with
respect to <.

Lamma

Let s and n be positive integers. Let A be an (s +n —1) x sn
matrix. Then there exist non-negative integers m,,, v € %?n, and a
constant ¢ € Q such that

det.#Z(A)=c []| (detA)™.
ve 20

s,s+n-1
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Sylvester’s Determinant
Proof of the Compound Determinant

Assume we are given by a map

O Ky o (S[S_”]l)

Set .#(®,A) to be the () x (S+2‘1) matrix defined by

— n(n+1)

A(,A) = ((-1)"

I
Ee Ad’(#) )IE([S+R_11):/1€«>%OS,H ’
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Proof of the Compound Determinant

Assume we are given by a map

O Ky o (S[S_”]l)

Set .#(®,A) to be the () x (S+2‘1) matrix defined by

n(n+1)

A(,A) = ((-1)"

I
Ee Ad’(#) )IE([S+R_11)=/1€EZ;,H ’

det.(A) - det.Z(®,A) = det({¥((A). Vo((A)))

AueZsn

— det ((_l)s(L(/l),‘D(/l)) detA[(/l)ud)(,u))/wey :
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Sylvester’s Determinant
Proof of the Compound Determinant

Sketch of Proof

We define a map 7 : Z5n — ¢ determined by the following

condition:
For each u = (u1,...,us) € Zn, letk be the least index
such that ux = max{y : 1 =1,...,s}. We let n(u) = k.

Define the map ® by ®(u) = ¢™))(1). Then we claim that

det (<7/L(1)(A)’7¢(y)(A)>)M€%n == l_[ detA,()us(y)-
’ pe%n

Note that «(u) U ¢ () € 20, for any k, and detA; ,

Je (SJ[f:]_l) are irreducible polynomials in the unique factorization
domain Q [aj] .
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Proof of the Compound Determinant

Example

If s =3 andn = 2, then the map 7 : 23, — ¢ determined by the
condition is given by 7(2,0,0) = 1,7(1,1,0) = 1, n(1,0,1) = 1,
7(0,2,0) = 2, 7(0,1,1) = 2, 7(0,0,2) = 3.

Thus, if we take ® = ¢(*(), then the above 6 x 6 matrix .7 (®,A)
equals

detA3  detAX  detA3l detA¥  detA¥  detA¥
—detAZ —detAZ —detAZl —detAZ —detAZ! —detAZ
detAZ}  detAZ  detAZ detAZ} detAZ  detAZ

detAz  detA;l detAll detAll detAld  detAl]

13 13 13 13 13 13
—det Ayx - det A - det Ax - det A - det A - det Az

detAJ2  detA;Z  detA2 detAZ detA]?  detA]?
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Proof of the Compound Determinant

Then we obtain that det ((”f{(ﬂ)(A), ,7/¢(ﬂ)(A)>)/L/JEQ§,n equals
det A1235 det A1245 det A1236 0 0 0
0 det A13s5 0 0 0 0
0 0 —det A1356 0 0 0
0 0 0 detAqzss detAizss 0 '
0 0 0 0 det A1356 0
0 0 0 0 0 det A13se
whose determinant is — det Aj»3s (det Ajzgs)? (det Agzse ).
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Sylvester’s Determinant
Proof of the Compound Determinant

Lamma

Let s and n be positive integers. Let A be an (s +n—1) x sn
matrix. Then there exist a constant ¢ € Q such that

det.Z(A)=c ﬂ detA,.

0
VeZ s in1
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Proof of the Compound Determinant

Lamma

Let s and n be positive integers. Let A be an (s +n—1) x sn
matrix. Then there exist a constant ¢ € Q such that

det.Z(A)=c ﬂ detA,.

0
VeZ s in1

Sketch of Proof

We choose another map ¢ such that the factors det A,,

O . .
v E Q”S’Hn_l, appears just once in

det ((%(A)(A),7¢(M)(A)>)l’#€%n, which implies m, = 0 or 1.
Comparing the degrees of the both sides, we conclude that
m, = 1.
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Proof of the Compound Determinant

If s = 3, n = 2, then we take an appropriate map ¢ : 25, — ([g]),

and define the 6 x 6 matrix .Z (®,A)

detA3  detAX detA3l detAl  detA¥  detA¥
—detAZ} —detAl! -—detAZ -detAZ -—detAZl —detAZ]
detAZ}  detAZ  detAZ detAZ} detAZ}  detAZ
detA?  detA;l detAll detA)} detA;]  detA)]
—detA? —detAld —detA}? —detA)d —detA;? -—detA)3

detA2  detA;Z detA2 detA)? detAl?  detA)?
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Proof of the Compound Determinant

Then we obtain that

L (A)(D,A) = det (<“I/L(,1)(A), 7/¢(#)(A)>)A’ﬂ€%n equals
det A1235 det A1245 det A1236 0 det A1246 0
0 det A1345 0 —det A1235 det A1346 0
0 0 —det A13s6 0 —detAgsss detAqozs
0 0 0 det Aozusg 0 0 ’
0 0 0 0 —det Azssg 0
0 0 0 0 0 det Aossg

whose determinant is
det Axzas det Azssg det Axzse Hyegéos detAL(v).
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Proof of the Compound Determinant

The last step of the proof

To show that ¢ = 1, we substitute aj; = xjs+”‘i into the both sides,
and compare the leading coefficients.
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Sylvester’s Determinant
Open problems

Definition (Hall-Little function)

Let X denote the set of variables xi, ..., Xy, and for any subset E of
X, let p(E) denote the product of the elements of E. Suppose a
partition A = (A3,...,4y) is of the form (urll, ... ,urkk), where

u1 > - >k > 0, and the r; are positive integers whose sum is n.
Then the Hall-Little function is defined to be

Pa(X1, ... Xn; t) = Z p (f—l(l))ﬂl —p (f—l(k))ﬂk 1—[

f f(xi)<f(x;)

Xj — X

Xi —Xj

summed over all surjective mappings f : X — {1,2,...,k} such
that [f=2(i)| = rj for 1 <i < k.
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Open problems

Example

Ifn =2and 1= (2) = (2%,0%), then there are two surjections:
fl X1 1LXo > 2,

f22X1P—>2,X2P—>l

X1 — tX Xo — tX
: 2 X1 2 2 X2 1
P(2)(X1, X2; 1) = X] X5

X1 — X2 X2 — X1

= xf + X1X2 + x22 — X1 X2
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Open problems

To u € Zs ,, we associate

1 1 2 2
= O e D e D),

Then we have

(s+n—i—j—1)

det(Pl(X ))/lc((s 1) ueZon l_l n(x % ) o

1<k<I<si,j=

where the rows are indexed by partitions 4 = (11, - -, 4n) such
that 1; <s —1.

Masao Ishikawa Compound Determinant
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Open problems

To u € Zs ,, we associate

1 1 2 2
= O e D e D),

Then we have

—i—j-1
(S+I’1S I2] )

Ac((s-1)")peZen l_l n(x - ) o

1<k<I<si,j=

det (P, (X))

where the rows are indexed by partitions 4 = (11, - -, 4n) such
that 1; <s —1.

What happens if we replace the Schur functions with the
Macdonald polynomials?
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Thank you!
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