Andrews-Stanley の分割関数と直交多項式

Masao Ishikawa*

^{*}Tottori University, Koyama, Tottori, Japan, ishikawa@fed.tottori-u.ac.jp

Contents of this talk

1. Preliminaries

- (a) Basic hypergeometric functions
- (b) Partitions
- (c) Associated Al-Salam-Chihara polynomials

2. Symmetric functions

- (a) Schur functions
- (b) Schur's Q-functions (P-functions)

3. Four Parameter Weight and Weighted Sums

- (a) Partitions (Associated Al-Salam-Chihara polynomials)
- (b) Schur functions (Proof of Stanley's open problem)
- (c) Schur's Q-functions

References

- M. Ishikawa, "Minor summation formula and a proof of Stanley's open problem", arXiv:math.CO/0408204, to appear in Ramanujan J.
- Masao Ishikawa, Hiroyuki Tagawa, Soichi Okada and Jiang Zeng,
 "Generalizations of Cuachy's determinant and Schur's Pfaffian",
 arXiv:math.CO/0411280, to appear Adv. in Appl. Math.
- M. Ishikawa and Jiang Zeng, "The Andrews-Stanley partition function and Al-Salam-Chihara polynomials", arXiv:math.CO/0506128.

Preliminaries

A q-shifted factorial is, by definition,

$$(a;q)_n = egin{cases} 1, & n = 0, \ (1-a)\cdots(1-aq^{n-1}) & n = 1,2,\ldots. \end{cases}$$

We also define

$$(a;q)_{\infty}=\prod_{k=0}^{\infty}(1-aq^k).$$

Notation

Since products of q-shifted factorials occur so often, to simplify them we shall use the more compact notations

$$(a_1,\ldots,a_m;q)_n=(a_1,q)_n\cdots(a_n,q)_n$$

 $(a_1,\ldots,a_m;q)_\infty=(a_1,q)_\infty\cdots(a_n,q)_\infty$

The q-binomial coefficient is defined by

$$egin{bmatrix} m{n} \ m{k} \end{bmatrix}_{m{q}} = rac{(q;q)_n}{(q;q)_k (q;q)_{n-k}}.$$

Basic hypergeometric series

We shall define an $_r\phi_s$ basic hypergeometric series by

$$egin{align} _{r}\phi_{s}egin{bmatrix} a_{1},\ldots,a_{r}\ b_{1},\ldots,b_{s}\ \end{bmatrix} \ &=\sum_{n=0}^{\infty}rac{(a_{1},a_{2},\ldots,a_{r};q)_{n}}{(q,b_{1},\ldots,b_{s};q)_{n}}\left[(-1)^{n}q^{inom{n}{2}}
ight]^{1+s-r}z^{n} \end{aligned}$$

with $\binom{n}{2} = \frac{n(n-1)}{2}$, where $q \neq 0$ when r > s+1.

Partitions

A partition of a positive integer n is a finite nonincreasing sequence of positive integers $\lambda_1, \lambda_2, \ldots, \lambda_r$ such that $\sum_{i=1}^{r} \lambda_i = n$. The λ_i are called the parts of the partition, and n is called the weight of the partition, denoted by $|\lambda|$. Many times the partition $(\lambda_1, \lambda_2, \ldots, \lambda_r)$ will be denoted by λ , and we shall write $\lambda \vdash n$ to denote " λ is a partition of n". The number of (non-zero) parts is the length, denoted by $\ell(\lambda)$.

Example

The empty sequence \emptyset forms the only partition of zero.

$$n=1$$
: (1);
 $n=2$: (2), (1²);
 $n=3$: (3), (21), (1³);
 $n=4$: (4), (31), (2²), (21²), (1⁴);
 $n=5$: (5), (41), (32), (31²), (2²1), (21³), (1⁵);

Young Diagram

To each partition λ is associated its graphical representation (Young diagram) \mathcal{D}_{λ} , which formally is the set of points with integral coordinates (i,j) in the plane such that if $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, then $(i,j) \in \mathcal{D}_{\lambda}$ if and only if $1 \leq j \leq \lambda_i$. We sometimes identify the Ferres graph \mathcal{D}_{λ} with the partition λ and use the same symbol λ to express its Young diagram.

Example

The Young diagram of the partition (8,6,6,5,1) is

Conjugate

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ is a partition, we may define a new partition $\lambda' = (\lambda'_1, \lambda'_2, \dots, \lambda'_r)$ by choosing λ'_i as the number of parts of λ that are $\geq i$. The partition λ' is called the conjugate of λ .

Example

The conjugate of the partition (86^251) is (54^431^2)

The generating function

Theorem (Euler)

For |q| < 1,

$$\sum_{\lambda} q^{|\lambda|} = \prod_{n=1}^{\infty} rac{1}{1-q^n}$$

where the sum runs over all partitions λ .

More generally,

$$\sum_{\lambda} z^{\ell(\lambda)} q^{|\lambda|} = \prod_{n=1}^{\infty} rac{1}{1-zq^n}$$

where the sum runs over all partitions λ .

Proof

$$egin{aligned} \prod_{n=1}^{\infty} rac{1}{1-zq^n} &= (1+zq+z^2q^2+z^3q^3+\cdots) \ & imes (1+zq^2+z^2q^4+z^3q^6+\cdots) \ & imes (1+zq^3+z^2q^6+z^3q^9+\cdots) \ & imes (1+zq^4+z^2q^8+z^3q^{12}+\cdots) \ &\cdots \ &= \sum_{\lambda} z^{\ell(\lambda)} q^{|\lambda|} \end{aligned}$$

The generating function 2

A similar argument is vald to prove the following theorem:

Theorem

For |q| < 1,

$$\sum_{\lambda}q^{|\lambda|}=\prod_{n=1}^{N}rac{1}{1-q^{n}}$$

where the sum runs over all partitions λ where each part of λ is $\leq N$. More generally,

$$\sum_{\lambda} z^{\ell(\lambda)} q^{|\lambda|} = \prod_{n=1}^N rac{1}{1-zq^n}$$

where the sum runs over all partitions λ where each part of λ is $\leq N$.

Number of odd parts

Definition

Let λ be a partition of λ of some integer. Let $\mathcal{O}(\lambda)$ denote the number of odd parts of λ .

Example

If
$$\lambda=(86^251)$$
, then $\lambda'=(54^431^2)$, $\mathcal{O}(\lambda)=2$ and $\mathcal{O}(\lambda)=4$.

Andrews' Theorem

Theorem (G.E.Andrews)

$$egin{aligned} &\sum_{\lambda} z^{\mathcal{O}(\lambda)} y^{\mathcal{O}(\lambda')} q^{|\lambda|} \ &= rac{\sum_{j=1}^{N} igg[{N top j}]_{q^4} (-zyq;q^4)_j (-zy^{-1}q;q^4)_{N-j} (yq)^{2N-2j}}{(q^4;q^4)_N (z^2q^4;q^4)_N} \end{aligned}$$

where the sum runs over all partitions λ where each part of λ is $\leq 2N$.

$$egin{aligned} &\sum_{\lambda} z^{\mathcal{O}(\lambda)} y^{\mathcal{O}(\lambda')} q^{|\lambda|} \ &= rac{\sum_{j=1}^{N} igg[^{N}_{j}igg]_{q^{4}} (-zyq;q^{4})_{j+1} (-zy^{-1}q;q^{4})_{N-j} (yq)^{2N-2j}}{(q^{4};q^{4})_{N} (z^{2}q^{4};q^{4})_{N+1}} \end{aligned}$$

where the sum runs over all partitions λ where each part of λ is <2N+1.

(G.E.Andrews, "On a partition function of Richard Stanley", Electron. J. Combin. 11(2) (2004) #1.)

The four parameter weight

Given a partition λ , define $\omega(\lambda)$ by

$$\omega(\lambda) = a^{\sum_{i \geq 1} \lceil \lambda_{2i-1}/2 \rceil} b^{\sum_{i \geq 1} \lfloor \lambda_{2i-1}/2 \rfloor} c^{\sum_{i \geq 1} \lceil \lambda_{2i}/2 \rceil} d^{\sum_{i \geq 1} \lfloor \lambda_{2i}/2 \rfloor},$$

where a, b, c and d are indeterminates, and $\lceil x \rceil$ (resp. $\lfloor x \rfloor$) stands for the smallest (resp. largest) integer greater (resp. less) than or equal to x for a given real number x. For example, if $\lambda = (5,4,4,1)$ then $\omega(\lambda)$ is the product of the entries in the following diagram for λ , which is equal to $a^5b^4c^3d^2$.

\boldsymbol{a}	b	\boldsymbol{a}	b	\boldsymbol{a}
\boldsymbol{c}	$oldsymbol{d}$	\boldsymbol{c}	$oldsymbol{d}$	
\boldsymbol{a}	b	\boldsymbol{a}	b	
\boldsymbol{c}				•

Boulet's Theorem

Theorem (Boulet)

Let q = abcd. If |a|, |b|, |c|, |d| < 1, then

$$\sum_{\lambda}\omega(\lambda)=rac{(-a;q)_{\infty}(-abc;q)_{\infty}}{(q;q)_{\infty}(ab;q)_{\infty}(ac;q)_{\infty}}$$

where the sum runs over all partitions λ .

(C.Boulet, "A four parameter partition identity", arXiv:math.CO/0308012, to appear in Ramanujan J.)

Generalization

Theorem

Let q = abcd. Then

$$\sum_{\lambda}\omega(\lambda)$$

$$=rac{(-a;q)_N}{(q;q)_N(ac;q)_N}\,{}_2\phi_1\left(egin{array}{c} q^{-N},-c\ -a^{-1}q^{-N+1};\ q,-bq
ight),$$

where the sum runs over all partitions λ where each part of λ is < 2N.

$$egin{aligned} \sum_{\lambda} \omega(\lambda) \ &= rac{(-a;q)_{N+1}}{(q;q)_N(ac;q)_{N+1}} \, _2\phi_1 \left(egin{aligned} q^{-N},-c \ -a^{-1}q^{-N} \end{aligned}; \, q,-b
ight), \end{aligned}$$

where the sum runs over all partitions λ where each part of λ is < 2N+1.

Al-Salam-Chihara polynomials

The Al-Salam-Chihara polynomial

$$Q_n(x) = Q_n(x; \alpha, \beta|q)$$
 is, by definition,

$$Q_n(x;lpha,eta|q)$$

$$=(lpha u;q)_n u^{-n}\,{}_2\phi_1\left(egin{array}{c} q^{-n},eta u^{-1}\ lpha^{-1}q^{-n+1}u^{-1} \end{array};\,q,lpha^{-1}qu
ight),$$

where $x = \frac{u+u^{-1}}{2}$ (R. Koelof and R.F.Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Delft University of Technology, Report no. 98-17 (1998), p.80).

Al-Salam-Chihara Recurrence relation

The Al-salam polynomials satisfy the three-term recurrence relation

$$egin{aligned} 2xQ_n(x) &= Q_{n+1}(x) + (lpha + eta)q^nQ_n(x) \ &+ (1-q^n)(1-lphaeta q^{n-1})Q_{n-1}(x), \end{aligned}$$

with
$$Q_{-1}(x) = 0$$
, $Q_0(x) = 1$.

Associated Al-Salam-Chihara Recurrence relation

We also consider a more general recurrence relation:

$$egin{align} 2x\widetilde{Q}_n(x)&=\widetilde{Q}_{n+1}(x)+t(lpha+eta)q^n\widetilde{Q}_n(x)\ &+(1-tq^n)(1-tlphaeta q^{n-1})\widetilde{Q}_{n-1}(x), \end{gathered}$$

which we call the associated Al-Salam-Chihara recurrence relation.

Solutions of AASC Recurrence relation

Let

$$egin{aligned} \widetilde{Q}_{n}^{(1)}(x) &= u^{-n} \, (t lpha u; q)_{n} \ & imes _{2} \phi_{1} \left(egin{aligned} t^{-1} q^{-n}, eta u^{-1} \ t^{-1} lpha^{-1} q^{-n+1} u^{-1} \end{aligned} ; \, q, lpha^{-1} q u
ight), \ \widetilde{Q}_{n}^{(2)}(x) &= u^{n} \, rac{(t q; q)_{n} (t lpha eta; q)_{n}}{(t eta u q; q)_{n}} \ & imes _{2} \phi_{1} \left(egin{aligned} t q^{n+1}, lpha^{-1} q u \ t eta q^{n+1} u \end{aligned} ; \, q, lpha u
ight). \end{aligned}$$

Then $\widetilde{Q}_n^{(1)}(x)$ and $\widetilde{Q}_n^{(2)}(x)$ are linearly independent solutions of the AASC recurrence relation.

Associated Askey-Wilson polynomials

M.E.H. Ismail and M. Rahman "The associated Askey-Wilson polynomials", Trans. Amer. Math. Soc. 328 (1991), 201 – 237.

Generating Function (ordinary partitions)

Let us consider

$$\Phi_N = \Phi_N(a,b,c,d;z) = \sum_{\stackrel{\lambda}{\lambda_1 \leq N}} \omega(\lambda) z^{\ell(\lambda)},$$

where the sum runs over all partitions λ such that each part of λ is less than or equal to N.

Example

For example, the first few terms can be computed directly as follows:

$$egin{align} \Phi_0 &= 1, \ \Phi_1 &= rac{1+az}{1-acz^2}, \ \Phi_2 &= rac{1+a(1+b)z+abcz^2}{(1-acz^2)(1-qz^2)}, \ \Phi_3 &= rac{1+a(1+b+ab)z+abc(1+a+ad)z^2+a^3t}{(1-z^2ac)(1-z^2q)(1-z^2acq)} \end{aligned}$$

Strict Partitions

A partition μ all of whose parts are distinct (have multiplicity 1) is called a strict partition. For a strict partition $\mu=(\mu_1,>\mu_2>\cdots>\mu_r)$, the shifted diagram \mathcal{S}_{μ} is obtained from the Young diagram of μ by moving the ith row (i-1) squares to the right, for each i>1.

If $\mu=(7,5,4,2,1)$ then \mathcal{S}_{μ} is

Generating Function (strict partitions)

Let

$$\Psi_N = \Psi_N(a,b,c,d;z) = \sum \omega(\mu) z^{\ell(\mu)},$$

where the sum is over all strict partitions μ such that each part of μ is less than or equal to N.

Example

For example, we have

$$egin{aligned} \Psi_0 &= 1, \ \Psi_1 &= 1 + az, \ \Psi_2 &= 1 + a(1+b)z + abcz^2, \ \Psi_3 &= 1 + a(1+b+ab)z \ &\quad + abc(1+a+ad)z^2 + a^3bcdz^3. \end{aligned}$$

Example

$$N = 3$$

$$\ell(\mu) = 0$$

 \emptyset ,

$$\ell(\mu) = 1$$

 $oxed{a}$

ab

a|b|a

$$\ell(\mu)=2$$

 $egin{array}{|c|c|c} a & b & a \\ \hline & c & d \end{array},$

$$\ell(\mu)=3$$

 $\begin{array}{c|c} a & b & a \\ \hline c & d \\ \hline a \end{array}$

Relation between Φ_N and Ψ_N

Theorem

$$\Phi_N(a,b,c,d;z) = rac{\Psi_N(a,b,c,d;z)}{(z^2q;q)_{\lfloor N/2
floor}(z^2ac;q)_{\lceil N/2
ceil}}.$$

Proof

The idea is the bijection in Boulet's paper.

Recurrence equation

Theorem

Set q=abcd and put $X_N=\Psi_{2N}$ and $Y_N=\Psi_{2N+1}.$ Then X_N and Y_N satisfy

$$egin{aligned} X_{N+1} &= \left\{1 + ab + a(1 + bc)z^2q^N
ight\}X_N \ &- ab(1 - z^2q^N)(1 - acz^2q^{N-1})X_{N-1}, \ Y_{N+1} &= \left\{1 + ab + abc(1 + ad)z^2q^N
ight\}Y_N \ &- ab(1 - z^2q^N)(1 - acz^2q^N)Y_{N-1}, \end{aligned}$$

where $X_0=1$, $Y_0=1+az$, $X_1=1+a(1+b)z+abcz^2$ and

$$Y_1 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z^2 + a^3bcdz^3$$
.

Reduction to AASC

Corollary

Especially, if we put $X_N'=(ab)^{-\frac{N}{2}}X_N$ and $Y_N'=(ab)^{-\frac{N}{2}}Y_N$, then X_N' and Y_N' satisfy

$$egin{split} \left\{(ab)^{rac{1}{2}} + (ab)^{-rac{1}{2}}
ight\} X_N' &= X_{N+1}' - a^{rac{1}{2}}b^{-rac{1}{2}}(1+bc)z^2q^NX_N' \ &\qquad + (1-z^2q^N)(1-acz^2q^{N-1})X_{N-1}', \ \left\{(ab)^{rac{1}{2}} + (ab)^{-rac{1}{2}}
ight\} Y_N' &= Y_{N+1}' - a^{rac{1}{2}}b^{rac{1}{2}}c(1+ad)z^2q^NY_N' \ &\qquad + (1-z^2q^N)(1-a^2bc^2dz^2q^{N-1})Y_{N-1}'. \end{split}$$

Solution (even)

$$\begin{split} X_N &= \frac{(-az^2q, -abc; q)_{\infty}}{(-a, -abcz^2; q)_{\infty}} \Bigg\{ (s_0^X X_1 - s_1^X X_0) \\ &\times (-abcz^2; q)_{N \ 2} \phi_1 \left(\begin{matrix} q^{-N}z^{-2}, -b^{-1} \\ -(abc)^{-1}q^{-N+1}z^{-2} \end{matrix}; q, -c^{-1}q \right) \\ &+ (r_1^X X_0 - r_0^X X_1) \\ &\times (ab)^N \frac{(qz^2, acz^2; q)_N}{(-aqz^2; q)_N} \,_2 \phi_1 \left(\begin{matrix} q^{N+1}z^2, -c^{-1}q \\ -aq^{N+1}z^2 \end{matrix}; q, -abc \right) \Bigg\}, \end{split}$$

where

$$\begin{split} r_0^X &= {}_2\phi_1 \left(\begin{matrix} z^{-2}, -b^{-1} \\ -(abc)^{-1}z^{-2}q \end{matrix}; \, q, -c^{-1}q \right), \\ s_0^X &= {}_2\phi_1 \left(\begin{matrix} z^2q, -c^{-1}q \\ -az^2q \end{matrix}; \, q, -abc \right), \\ r_1^X &= (1+abcz^2) \, {}_2\phi_1 \left(\begin{matrix} z^{-2}q^{-1}, -b^{-1} \\ -(abc)^{-1}z^{-2} \end{matrix}; \, q, -c^{-1}q \right), \\ s_1^X &= \frac{ab(1-z^2q)(1-acz^2)}{1+az^2q} \, {}_2\phi_1 \left(\begin{matrix} z^2q^2, -c^{-1}q \\ -az^2q^2 \end{matrix}; \, q, -abc \right). \end{split}$$

Solution (odd)

$$\begin{split} Y_N &= \frac{(-a^2bcdz^2q, -abc; q)_\infty}{(-a^2bcd, -abcz^2; q)_\infty} \Bigg\{ (s_0^Y Y_1 - s_1^Y Y_0) \\ &\times (-abcz^2; q)_{N \ 2} \phi_1 \left(\begin{matrix} q^{-N}z^{-2}, -acd \\ -(abc)^{-1}q^{-N+1}z^{-2} \end{matrix}; q, -c^{-1}q \right) \\ &+ (r_1^Y Y_0 - r_0^Y Y_1) \\ &\times (ab)^N \frac{(qz^2, a^2bc^2dz^2; q)_N}{(-a^2bcdqz^2; q)_N} \,_2\phi_1 \left(\begin{matrix} q^{N+1}z^2, -c^{-1}q \\ -a^2bcdq^{N+1}z^2 \end{matrix}; q, -abc \right) \Bigg\}, \end{split}$$

where

$$\begin{split} r_0^Y &= {}_2\phi_1 \left(\begin{matrix} z^{-2}, -acd \\ (-abc)^{-1}qz^{-2} \end{matrix}; \, q, -c^{-1}q \right), \\ r_1^Y &= (1 + abcz^2) \, {}_2\phi_1 \left(\begin{matrix} q^{-1}z^{-2}, -ac \\ -(abc)^{-1}z^{-2} \end{matrix}; \, q, -c^{-1}q \right), \\ s_0^Y &= {}_2\phi_1 \left(\begin{matrix} z^2q, -c^{-1}q \\ -a^2bcdz^2q \end{matrix}; \, q, -abc \right), \\ s_1^Y &= \frac{ab(1-z^2q)(1-a^2bc^2dz^2)}{1+a^2bcdz^2q} \, {}_2\phi_1 \left(\begin{matrix} z^2q^2, -c^{-1}q \\ -a^2bcdz^2q^2 \end{matrix}; \, q, -abc \right). \end{split}$$

Limit

Set q = abcd. Let s_i^X , s_i^Y , X_i , Y_i (i = 0, 1) be as in the above theorem. Then we have

$$egin{aligned} \sum_{\mu} \omega(\mu) z^{|\mu|} &= rac{(-abc, -az^2q; q)_{\infty}}{(ab; q)_{\infty}} (s_0^X X_1 - s_1^X X_0) \ &= rac{(-abc, -a^2bcdz^2q; q)_{\infty}}{(ab; q)_{\infty}} (s_0^Y Y_1 - s_1^Y Y_0), \end{aligned}$$

where the sum runs over all strict partitions μ .

The ring of symmetric functions

The ring Λ of symmetric functions in countably many variables x_1 , x_2 , ... is defined by the inverse limit. (See Macdonald's book "Symmetric functions and Hall polynomials, 2nd Edition", Oxford University Press, I, 2.)

Here we use the convention that f(x) stands for a symmetric function in countably many variables $x=(x_1,x_2,\ldots)$, whereas f(X) stands for a symmetric function in finitely many variables $X=(x_1,\ldots,x_n)$.

The Schur functions

For $X=(x_1,\ldots,x_n)$ and a partition λ such that $\ell(\lambda) \leq n$, let

$$s_{\pmb{\lambda}}(\pmb{X}) = rac{\det(x_i^{\lambda_j+n-j})_{1 \leq i,j \leq n}}{\det(x_i^{n-j})_{1 \leq i,j \leq n}}.$$

 $s_{\lambda}(X)$ is called the Schur function corresponding to λ .

Let
$$\delta = (n-1, n-2, \dots, 1, 0)$$
.

When $\lambda=(2,2)$ and $X=(x_1,x_2,x_3,x_4)$,

$$s_{\lambda}(x) = rac{1}{\Delta(x)} \det egin{pmatrix} x_1^5 & x_1^4 & x_1 & 1 \ x_2^5 & x_2^4 & x_2 & 1 \ x_3^5 & x_3^4 & x_3 & 1 \ x_4^5 & x_4^4 & x_4 & 1 \end{pmatrix}$$

where $\Delta(x) = \prod_{i < j} (x_i - x_j)$.

Note that (2, 2, 0, 0) + (3, 2, 1, 0) = (5, 4, 1, 0).

Schur functions

Let $X=(x_1,\ldots,x_{2n})$ and let $T=(x_i^{j-1})_{1\leq i\leq 2n, j\geq 1}$, i.e.

$$T = egin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 & \dots \ 1 & x_2 & x_2^2 & x_2^3 & \dots \ dots & dots & dots & dots & \ddots \ 1 & x_{2n} & x_{2n}^2 & x_{2n}^3 & \dots \end{bmatrix}$$

Then we have

$$s_{\lambda}(X) = rac{\det\left(\Delta_{I(\lambda)}(T)
ight)_{1 \leq i,j \leq 2n}}{\det(x_i^{j-1})_{1 \leq i,j \leq 2n}}.$$

If n = 3. and $\lambda = (5, 4, 4, 1, 0, 0)$, then

$$I(\lambda) = \{0, 1, 3, 7, 8, 10\},\$$

and

Tableaux

Given a partition λ , A tableaux T of shape λ is a filling of the diagram with numbers whereas the numbers must strictly increase down each column and weakly from left to right along each row.

Schur functions

The Schur function $s_{\lambda}(x)$ is

$$s_{\lambda}(X) = \sum_{T} X^{T},$$

where the sum runs over all tableaux of shape λ . Here $X^T=x_1^{\sharp 1 ext{s in }T}x_2^{\sharp 2 ext{s in }T}\cdots$

A Tableau T of shape (5441).

1	1	1	2	2
2	2	3	4	
3	3	4	5	
5				'

The weight of T is $x_1^3 x_2^4 x_3^3 x_4^2 x_5^2$.

When $\lambda=(2,2)$ and $X=(x_1,x_2,x_3,x_4)$,

1 1 2 2	$\begin{array}{c c} 1 & 1 \\ \hline 2 & 3 \end{array}$	$\begin{array}{c c} 1 & 1 \\ \hline 2 & 4 \end{array}$	$\begin{array}{c c} 1 & 1 \\ \hline 3 & 3 \end{array}$	$\begin{array}{c c} 1 & 1 \\ \hline 3 & 4 \end{array}$	$\begin{array}{c c} 1 & 1 \\ \hline 4 & 4 \end{array}$	$\begin{array}{c c} 1 & 2 \\ \hline 2 & 3 \end{array}$
$\begin{array}{c c} 1 & 2 \\ \hline 2 & 4 \end{array}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 3 \end{array}$	$\begin{array}{c c} 1 & 2 \\ \hline 3 & 4 \end{array}$	$\begin{array}{c c} 1 & 2 \\ \hline 4 & 4 \end{array}$	$\begin{array}{c c} 1 & 3 \\ \hline 2 & 4 \end{array}$	$\begin{array}{ c c c }\hline 1 & 3 \\ \hline 3 & 4 \\ \hline \end{array}$	$\begin{array}{ c c c }\hline 1 & 3 \\ \hline 4 & 4 \\ \hline \end{array}$
2 2	2 2	2 2	2 3	2 3	3 3	
3 3	3 4	$oxed{4}4$	3 4	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$oxed{4} oxed{4}$	

$$s_{\lambda}(X) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_3^2 + x_2^2 x_4^2 + x_3^2 x_4^2 + 2x_1 x_2 x_3 x_4$$

$$+ x_1^2 x_2 x_3 + x_1^2 x_2 x_4 + x_1^2 x_3 x_4 + x_2^2 x_1 x_3 + x_2^2 x_1 x_4 + x_2^2 x_3 x_4$$

$$+ x_3^2 x_1 x_2 + x_3^2 x_1 x_4 + x_3^2 x_2 x_4 + x_4^2 x_1 x_2 + x_4^2 x_1 x_3 + x_4^2 x_2 x_3$$

Schur's P-functions

Let A_n denote the skew-symmetric matrix

$$\left(rac{x_i-x_j}{x_i+x_j}
ight)_{1\leq i,j\leq n}$$

and for each strict partition $\mu=(\mu_1,\ldots,\mu_l)$ of length $l\leq n$, let Γ_μ denote the $n\times l$ matrix $(x_i^{\mu_i})$. Let

$$egin{aligned} A_{\mu}(x_1,\ldots,x_n) &= egin{pmatrix} A_n & \Gamma_{\mu}J_l \ -J_l{}^t\!\Gamma_{\mu} & O_l \end{pmatrix} \end{aligned}$$

which is a skew-symmetric matrix of (n+l) rows and columns. Define $\operatorname{Pf}_{\mu}(x_1,\ldots,x_n)$ to be $\operatorname{Pf} A_{\mu}(x_1,\ldots,x_n)$ if n+l is even, and to be $\operatorname{Pf} A_{\mu}(x_1,\ldots,x_n,0)$ if n+l is odd.

Schur's P-functions

Schur's P-function $P_{\mu}(x_1,\ldots,x_n)$ is defined to be

$$rac{\operatorname{Pf}_{\mu}(x_1,\ldots,x_n)}{\operatorname{Pf}_{\emptyset}(x_1,\ldots,x_n)},$$

where it is well-known that

$$\operatorname{Pf}_{\emptyset}(x_1,\ldots,x_n) = \prod_{1 \leq i < j \leq n} rac{x_i - x_j}{x_i + x_j}.$$

When $X=(x_1,x_2,x_3,x_4)$ and $\mu=(4,2,1)$, $P_{\mu}(X)$ is given by

divided by $\prod_{i < j} \frac{x_i - x_j}{x_i + x_j}$.

Schur's Q-functions

Schur's Q-function $Q_{\mu}(x_1,\ldots,x_n)$ is defined to be

$$2^{\ell(\lambda)}P_{\mu}(x_1,\ldots,x_n).$$

Combinatorial definition of Schur's Q-functions

Let \mathbb{P}' denote the ordered alphabet $\{1' < 1 < 2' < 2 < \cdots \}$. The symbol $1', 2', \ldots$ are said to be marked, and we shall denote |a| the unmarked version of any $a \in \mathbb{P}'$. Let μ be a strict partition. A marked shifted tableaux T of shape μ is a labeling of squares of \mathcal{S}_{μ} with symbols \mathbb{P}' such that:

- 1. The labels increase (in the weak sense) along each row and down each column.
- 2. Each column contains at most one k, for each $k \geq 1$.
- 3. Each row contains at most one k', for each $k \geq 1$.

Let us define

$$x^{|T|} = \prod_k x_k^{\# k + \# k'}.$$

Schur's Q-functions

Schur's Q-function $Q_{\mu}(x_1,\ldots,x_n)$ is defined to be

$$\sum_T x^{|T|}$$

summed over marked shifted tableaux of shape μ .

If $\mu = (7, 5, 4, 2, 1)$ then

1'	1	2	2	4'	4	4
	2	3	3	4'	4	
		4	4	6'	7	
	·		5	6'		•
		·		7		

is a marked shifted tableaux of shape μ .

Power Sum Symmetric Functions

Let r denote a positive integer.

$$\boldsymbol{p_r(X)} = x_1^r + x_2^r + \cdots + x_n^r$$

is called the rth power sum symmetric function.

$$egin{aligned} p_1(X) &= x_1 + x_2 + \cdots + x_n \ p_2(X) &= x_1^2 + x_2^2 + \cdots + x_n^2 \ p_3(X) &= x_1^3 + x_2^3 + \cdots + x_n^3 \end{aligned}$$

An open problem by Richard Stanley

In FPSAC'03 R.P. Stanley gave the following conjecture in the open problem session:

Theorem

Let

$$oldsymbol{z} = \sum_{\pmb{\lambda}} \omega(\pmb{\lambda}) s_{\pmb{\lambda}}(\pmb{x}),$$

where the sum runs over all partitions λ .

Then we have

$$egin{aligned} \log oldsymbol{z} & -\sum_{n\geq 1} rac{1}{2n} oldsymbol{a}^n (oldsymbol{b}^n - oldsymbol{c}^n) p_{2n} - \sum_{n\geq 1} rac{1}{4n} oldsymbol{a}^n oldsymbol{b}^n oldsymbol{c}^n oldsymbol{d}^n p_{2n}^2 \ & \in \mathbb{Q}[[p_1, p_3, p_5, \dots]]. \end{aligned}$$

A simple version

Let

$$oldsymbol{y} = \sum_{\stackrel{\lambda}{\lambda,\lambda'} \, ext{even}} s_{\lambda}(x).$$

Here the sum runs over all partitions λ such that λ and λ' are even partitions (i.e. with all parts even).

Then we have

$$\log m{y} - \sum_{n \geq 1} rac{1}{4n} p_{2n}^2 \in \mathbb{Q}[[p_1, p_3, p_5, \dots]].$$

Strategy of the proof

- 1. Step1. Express $\omega(\lambda)$ and z by a single Pfaffian. Use the minor summation formula of Pfaffians.
- 2. Step2. Express z by a single determinant.

 Use the homogenious version of Okada's gereralization of Schur's Pfaffian.
- 3. Step3. Show that

$$egin{aligned} \log \mathbf{z} - \sum_{n \geq 1} rac{1}{2n} \mathbf{a}^n (\mathbf{b}^n - \mathbf{c}^n) p_{2n} - \sum_{n \geq 1} rac{1}{4n} \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mathbf{d}^n p_{2n}^2 \ & \in \mathbb{Q}[[p_1, p_3, p_5, \dots]]. \end{aligned}$$

Use Stembridge's criterion.

The goal of the proof

Put

$$\mathbf{w} = \log \mathbf{z} - \sum_{n \ge 1} \frac{1}{2n} \mathbf{a}^n (\mathbf{b}^n - \mathbf{c}^n) p_{2n} - \sum_{n \ge 1} \frac{1}{4n} \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n d^n p_{2n}^2$$

and use the following Stembridge's criterion to \boldsymbol{w} .

Proposition (Stembridge)

Let $f(x_1, x_2, \dots)$ be a symmetric function with infinite variables. Then

$$f \in \mathbb{Q}[p_1,p_3,p_5,\dots]$$

if and only if

$$f(t,-t,x_1,x_2,\dots)=f(x_1,x_2,\dots).$$

Pfaffians

Assume we are given a 2n by 2n skew-symmetric matrix

$$A = (a_{ij})_{1 \leq i, j \leq 2n},$$

(i.e. $a_{ji} = -a_{ij}$), whose entries a_{ij} are in a commutative ring.

The Pfaffian of A is, by definition,

$$Pf(A) = \frac{1}{n!} \sum \epsilon(\sigma_1, \sigma_2, \dots, \sigma_{2n-1}, \sigma_{2n}) a_{\sigma_1 \sigma_2} \dots a_{\sigma_{2n-1} \sigma_{2n}}.$$

where the summation is over all partitions $\{\{\sigma_1, \sigma_2\}_{<}, \ldots, \{\sigma_{2n-1}, \sigma_{2n}\}_{<}\}$ of [2n] into 2-elements blocks, and where $\epsilon(\sigma_1, \sigma_2, \ldots, \sigma_{2n-1}, \sigma_{2n})$ denotes the sign of the permutation

$$egin{pmatrix} 1 & 2 & \cdots & 2n \ \sigma_1 & \sigma_2 & \cdots & \sigma_{2n} \end{pmatrix}.$$

Perfect matching

Figure 1: A perfect matching

When n=2,

$$\operatorname{Pf}egin{pmatrix} 0 & a_{12} & a_{13} & a_{14} \ -a_{21} & 0 & a_{23} & a_{24} \ -a_{31} & -a_{32} & 0 & a_{34} \ -a_{41} & -a_{42} & -a_{43} & 0 \end{pmatrix} = a_{12}a_{34} - a_{13}a_{24} + a_{14}a_{23}.$$

Notation

Fix a positive integer n.

If $\lambda=(\lambda_1,\ldots,\lambda_n)$ is a partition such that $\ell(\lambda)\leq n$, then we put

$$l=(l_1,\ldots,l_n)=\lambda+\delta_n=(\lambda_1+n-1,\ldots,\lambda_n),$$
 where $\delta_n=(n-1,n-2,\ldots,1,0),$

and we write

$$I_n(\lambda) = \{l_n, l_{n-1}, \ldots, l_1\}.$$

We regard this set as a set of row/column indices.

Theorem

Define a skew-symmetric array $A=(lpha_{ij})_{0\leq i,j}$ by

$$lpha_{ij} = {\color{red}a^{\lceil (j-1)/2
ceil}b^{\lfloor (j-1)/2
floor}c^{\lceil i/2
ceil}d^{\lfloor i/2
floor}}$$

for i < j.

Then we have

$$\operatorname{Pf}\left[A^{I_{2n}(\lambda)}_{I_{2n}(\lambda)}
ight]=(abcd)^{inom{n}{2}}\omega(\lambda).$$

Theorem

Let $\mu=(\mu_1,\ldots,\mu_{2n})$ be a strict partition such that $\mu_1>\cdots>\mu_n\geq 0$. Let $K(\mu)=\{\mu_{2n},\ldots,\mu_1\}$. Define a skew-symmetric matrix $B=(\beta_{ij})_{i,j\geq 0}$ by

$$eta_{ij} = egin{cases} a^{\lceil j/2
ceil} b^{\lfloor j/2
ceil} z & ext{if } i = 0, \ a^{\lceil j/2
ceil} b^{\lfloor j/2
ceil} c^{\lceil i/2
ceil} d^{\lfloor i/2
ceil} z^2, & ext{if } i > 0, \end{cases}$$

for $0 \le i < j$. Then we have

$$\operatorname{Pf}\left[\Delta_{K(\mu)}^{K(\mu)}\left(B
ight)
ight]=\omega(\mu)z^{\ell(\mu)}.$$

Lemma

Let x_i and y_j be indeterminates, and let n is a non-negative integer.

Then

$$ext{Pf}[x_i y_j]_{1 \leq i < j \leq 2n} = \prod_{i=1}^n x_{2i-1} \prod_{i=1}^n y_{2i}.$$

$$\overline{A}=(lpha_{ij})_{0\leq i,j}$$
:

0	1	\boldsymbol{a}	$oldsymbol{a}b$	a^2b	a^2b^2]
-1	0	ac	abc	a^2bc	a^2b^2c	• • •
-a	-ac	0	abcd	a^2bcd	a^2b^2cd	• • •
-ab	-abc	-abcd	0	a^2bc^2d	$a^2b^2c^2d$	• • •
$-a^2b$	$-a^2bc$	$-a^2bcd$	$-a^2bc^2d$	0	$a^2b^2c^2d^2$	• • •
$-a^2b^2$	$-a^2b^2c$	$-a^2b^2cd$	$-a^2b^2c^2d$	$-a^2b^2c^2d^2$	0	• • •
:	:	:	÷.	:	÷	٠.

If n = 3. and $\lambda = (5, 4, 4, 1, 0, 0)$, then

$$I(\lambda) = \{0, 1, 3, 7, 8, 10\}.$$

$$A_{I(\lambda)}^{I(\lambda)}$$
:

$$\begin{bmatrix} 0 & 1 & ab & a^3b^3 & a^4b^3 & a^5b^4 \\ -1 & 0 & abc & a^3b^3c & a^4b^3c & a^5b^4c \\ -ab & -abc & 0 & a^3b^3c^2d & a^4b^3c^2d & a^5b^4c^2d \\ -a^3b^3 & -a^3b^3c & -a^3b^3c^2d & 0 & a^4b^3c^4d^3 & a^5b^4c^4d^3 \\ -a^4b^3 & -a^4b^3c & -a^4b^3c^2d & -a^4b^3c^4d^3 & 0 & a^5b^4c^4d^4 \\ -a^5b^4 & -a^5b^4c & -a^5b^4c^2d & -a^5b^4c^4d^3 & -a^5b^4c^4d^4 & 0 \end{bmatrix}$$

$$\operatorname{Pf}\left(A_{I(\lambda)}^{I(\lambda)}
ight)=a^8b^7c^6d^5=(abcd)^3\omega(\lambda)$$

Finite Sum

We consider a weighted sum of Schur's P-functions and Q-functions

$$egin{aligned} oldsymbol{\xi_N}(a,b,c,d;X_n) &= \sum_{\stackrel{\mu}{\mu_1 \leq N}} \omega(\mu) P_{\mu}(x_1,\ldots,x_n), \ oldsymbol{\eta_N}(a,b,c,d;X_n) &= \sum_{\stackrel{\mu}{\mu_1 \leq N}} \omega(\mu) Q_{\mu}(x_1,\ldots,x_n), \end{aligned}$$

where the sums run over all strict partitions μ such that each part of μ is less than or equal to N. More generally, we can unify these problems to finding the following sum:

$$\zeta_N(a,b,c,d;z;X_n) = \sum_{\substack{\mu \ \mu_1 \leq N}} \omega(\mu) z^{\ell(\mu)} P_\mu(x_1,\ldots,x_n),$$

where the sum runs over all strict partitions μ such that each part of μ is less than or equal to N.

Infinite Sum

Further, let us put

$$egin{align} \zeta(a,b,c,d;z;X_n) &= \lim_{N o\infty} \zeta_N(a,b,c,d;z;X_n) \ &= \sum_{\mu} \omega(\mu) z^{\ell(\mu)} P_{\mu}(X_n), \end{split}$$

where the sum runs over all strict partitions μ . We also write

$$oldsymbol{\xi}(a,b,c,d;X_n)=\zeta(a,b,c,d;1;X_n)=\sum_{\mu}\omega(\mu)P_{\mu}(X_n),$$

where the sum runs over all strict partitions μ .

Theorem

Let n be a positive integer. Then

$$\zeta(a,b,c,d;z;X_n) = egin{cases} \operatorname{Pf}\left(\gamma_{ij}
ight)_{1 \leq i < j \leq n} / \operatorname{Pf}_{\emptyset}(X_n) & ext{if n is even,} \ \operatorname{Pf}\left(\gamma_{ij}
ight)_{0 \leq i < j \leq n} / \operatorname{Pf}_{\emptyset}(X_n) & ext{if n is odd,} \end{cases}$$

where

$$\gamma_{ij} = rac{x_i - x_j}{x_i + x_j} + u_{ij}z + v_{ij}z^2$$

with

$$u_{ij} = rac{a \det egin{pmatrix} x_i + bx_i^2 & 1 - abx_i^2 \ x_j + bx_j^2 & 1 - abx_j^2 \end{pmatrix}}{(1 - abx_i^2)(1 - abx_j^2)}, \ v_{ij} = rac{abcx_i x_j \det egin{pmatrix} x_i + ax_i^2 & 1 - a(b+d)x_i^2 - abdx_i^3 \ x_j + ax_j^2 & 1 - a(b+d)x_j^2 - abdx_j^3 \end{pmatrix}}{(1 - abx_i^2)(1 - abx_j^2)(1 - abcdx_i^2x_j^2)}$$

if 1 < i, j < n, and

$$\gamma_{0j}=1+rac{ax_j(1+bx_j)}{1-abx_j^2}z$$

if $1 \leq j \leq n$.

Especially, when z=1, we have

$$\xi(a,b,c,d;X_n) = egin{cases} \operatorname{Pf}\left(\widetilde{\gamma}_{ij}
ight)_{1 \leq i < j \leq n} / \operatorname{Pf}_{\emptyset}(X_n) & ext{if n is even,} \ \operatorname{Pf}\left(\widetilde{\gamma}_{ij}
ight)_{0 < i < j < n} / \operatorname{Pf}_{\emptyset}(X_n) & ext{if n is odd,} \end{cases}$$

where

$$\widetilde{\gamma}_{ij} = egin{cases} rac{1+ax_j}{1-abx_j^2} & ext{if } i=0 ext{,} \ rac{x_i-x_j}{x_i+x_j}+\widetilde{v}_{ij} & ext{if } 1\leq i < j \leq n ext{,} \end{cases} with$$

$$\widetilde{v}_{ij} = rac{a \det egin{pmatrix} x_i + bx_i^2 & 1 - b(a+c)x_i^2 - abcx_i^3 \ x_j + bx_j^2 & 1 - b(a+c)x_j^2 - abcx_j^3 \end{pmatrix}}{(1 - abx_i^2)(1 - abx_j^2)(1 - abcdx_i^2x_j^2)}$$

The key idea to prove theorems

We write the four parameter weight $\omega(\lambda)$ by a Pfaffian, and use the minor summation formula.

Notation

Let m, n and r be integers such that $r \leq m, n$. Let A be an m by n matrix. For any index sets

$$I=\{i_1,\ldots,i_r\}_<\subseteq [m], \ J=\{j_1,\ldots,j_r\}_<\subseteq [n],$$

let $\Delta_J^I(A)$ denote the submatrix obtained by selecting the rows indexed by I and the columns indexed by J. If r=m and I=[m], we simply write $\Delta_J(A)$ for $\Delta_J^{[m]}(A)$.

Example

If n=6 and $\lambda=(5,4,4,1,0,0)$, then

$$l=\lambda+\delta_6=(10,8,7,3,1,0),$$

and

$$I_6(\lambda) = \{0, 1, 3, 7, 8, 10\}.$$

Fact:

$$s_{\lambda}(X) = rac{\det\left(\Delta_{I_n(\lambda)}(T)
ight)_{1 \leq i,j \leq n}}{\det(x_i^{j-1})_{1 < i,j < n}}.$$

Theorem

Let n be a positive integer. Let

$$rac{oldsymbol{z_n}}{oldsymbol{\ell(\lambda)} \leq 2n} \omega(\lambda) s_{\lambda}(X_{2n})$$

be the sum restricted to 2n variables. Then we have

$$m{z_n} = rac{1}{\prod_{1 \leq i \leq j \leq 2n} (x_i - x_j)} (m{abcd})^{-\binom{n}{2}} \mathrm{Pf} \; (m{p_{ij}})_{1 \leq i < j \leq 2n} \, ,$$

where

$$p_{ij} = rac{\detegin{pmatrix} x_i + ax_i^2 & 1 - a(b+c)x_i - abcx_i^3 \ x_j + ax_j^2 & 1 - a(b+c)x_j - abcx_j^3 \end{pmatrix}}{(1 - abx_i^2)(1 - abx_j^2)(1 - abcdx_i^2x_j^2)}$$

The idea of the proof of Theorem

- ullet Write the Schur function $s_{\lambda}(X_{2n})$ by the quotient of determinants. (The denominator is the Vandermonde determinant.)
- Write the weight $\omega(\lambda)$ by the Pfaffian.
- Take the product of the Pfaffian and the determinant, and sum up over all columns.

Theorem (Minor summation formula)

Let n and N be non-negative integers such that $2n \leq N$. Let $T = (t_{ij})_{1 \leq i \leq 2n, 1 \leq j \leq N}$ be a 2n by N rectangular matrix, and let $A = (a_{ij})_{1 \leq i, j \leq N}$ be a skew-symmetric matrix of size N. Then

$$\sum_{I \in {[N] \choose 2n}} \operatorname{Pf}\left(\Delta_I^I(A)
ight) \det\left(\Delta_I(T)
ight) = \operatorname{Pf}\left(TA^{\,t}T
ight).$$

If we put $Q = (Q_{ij})_{1 \le i,j \le 2n} = TA^tT$, then its entries are given by

$$Q_{ij} = \sum_{1 \leq k < l \leq N} a_{kl} \det \left(\Delta_{kl}^{ij}(T)
ight),$$

 $(1 \leq i, j \leq 2n)$. Here we write $\Delta^{ij}_{kl}(T)$ for

$$\Delta^{\{ij\}}_{\{kl\}}(T) = egin{bmatrix} t_{ik} & t_{il} \ t_{jk} & t_{jl} \end{bmatrix}.$$

Theorem (Minor summation formula 2)

Let $A=(a_{ij})_{1\leq i,j\leq n}$ and $B=(b_{ij})_{1\leq i,j\leq n}$ be skew symmetric matrices of size n. Then

$$\sum_{t=0}^{\lfloor n/2
floor} z^t \sum_{I \in inom{[n]}{2t}} \gamma^{|I|} \mathrm{Pf}\left(\Delta_I^I(A)
ight) \mathrm{Pf}\left(\Delta_I^I(B)
ight) = \mathrm{Pf} egin{bmatrix} J_n^{\ t} A J_n & J_n \ -J_n & C \end{bmatrix},$$

where $|I|=\sum_{i\in I}i$ and $C=(C_{ij})_{1\leq i,j\leq n}$ is given by $C_{ij}=\gamma^{i+j}b_{ij}z.$

Theorem (Minor summation formula 2')

Let n and N be nonnegative integers. Let $A=(a_{ij})$ and $B=(b_{ij})$ be skew symmetric matrices of size (n+N). We divide the set of row/column indices into two subsets, i.e. the first n indices $I_0=[n]$ and the last N indices $I_1=[n+1,n+N]$. Then

$$\sum_{\substack{t \geq 0 \ n+t ext{ even}}} z^{(n+t)/2} \sum_{I \in {I_1 \choose t}} \gamma^{|I_0 \uplus I|} \mathrm{Pf}\left(\Delta_{I_0 \uplus I}^{I_0 \uplus I}(A)
ight) \mathrm{Pf}\left(\Delta_{I_0 \uplus I}^{I_0 \uplus I}(B)
ight)$$

$$=\operatorname{Pf}egin{pmatrix} J_{n+N}^{t}AJ_{n+N} & K_{n,N} \ -^t\!K_{n,N} & C \end{pmatrix},$$

where $C=(C_{ij})_{1\leq i,j,\leq n+N}$ is given by $C_{ij}=\gamma^{i+j}b_{ij}z$ and $K_{n,N}=J_{n+N}\widetilde{E}_{n,N}$ with

$$\widetilde{E}_{n,N} = egin{pmatrix} O_n & O_{n,N} \ O_{N,n} & E_N \end{pmatrix}.$$

The sum of $\omega(\mu)$

Let S_n denote the $n \times n$ skew-symmetric matrix whose (i, j)th entry is 1 for $0 \le i < j \le n$.

Theorem

Let N be a nonnegative integer.

$$\Psi_N(a,b,c,d;z) = ext{Pf} egin{bmatrix} S_{N+1} & J_{N+1} \ -J_{N+1} & B \end{bmatrix},$$

where $B = (\beta_{ij})_{0 \le i < j \le N}$ is the $N \times N$ skew-symmetric matrix whose (i, j)th entry β_{ij} is defined above.

Example

For example, if N=3, then the Pfaffian in the right-hand side looks like

	0	1	1	1	0	0	0	1	
Pf	-1	0	1	1	0	0	1	0	
	-1	-1	0	1	0	1	0	0	- ,
	_1	-1	-1	0	1	0	0	0	
	0	0	0	-1	0	az	abz	a^2bz	
	0	0	-1	0	-az	0	$abcz^2$	a^2bcz^2	
	0	-1	0	0	-abz	$-abcz^2$	0	a^2bcdz^2	
	$\lfloor -1$	0	0	0	$-a^2bz$	$-a^2bcz^2$	$-a^2bcdz^2$	0	

and this is equal to $1 + a(1+b+ab)z + abc(1+a+ad)z^2 + a^3bcdz^3$.

Recurrence Equation

Theorem

Let $\Psi_N = \Psi_N(a,b,c,d;z)$ be as above. Then we have

$$\Psi_{2N} = (1+b)\Psi_{2N-1} + (a^Nb^Nc^Nd^{N-1}z^2 - b)\Psi_{2N-2},$$

$$\Psi_{2N+1} = (1+a)\Psi_{2N} + (a^{N+1}b^Nc^Nd^Nz^2 - a)\Psi_{2N-1},$$

for any positive integer N.

Recurrence equation

Theorem

Set q=abcd and put $X_N=\Psi_{2N}$ and $Y_N=\Psi_{2N+1}.$ Then X_N and Y_N satisfy

$$egin{aligned} X_{N+1} &= \left\{1 + ab + a(1 + bc)z^2q^N
ight\}X_N \ &- ab(1 - z^2q^N)(1 - acz^2q^{N-1})X_{N-1}, \ Y_{N+1} &= \left\{1 + ab + abc(1 + ad)z^2q^N
ight\}Y_N \ &- ab(1 - z^2q^N)(1 - acz^2q^N)Y_{N-1}, \end{aligned}$$

where $X_0=1$, $Y_0=1+az$, $X_1=1+a(1+b)z+abcz^2$ and

$$Y_1 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z^2 + a^3bcdz^3$$
.

Reduction to AASC

Corollary

Especially, if we put $X_N'=(ab)^{-\frac{N}{2}}X_N$ and $Y_N'=(ab)^{-\frac{N}{2}}Y_N$, then X_N' and Y_N' satisfy

$$egin{split} \left\{(ab)^{rac{1}{2}} + (ab)^{-rac{1}{2}}
ight\} X_N' &= X_{N+1}' - a^{rac{1}{2}}b^{-rac{1}{2}}(1+bc)z^2q^NX_N' \ &\qquad + (1-z^2q^N)(1-acz^2q^{N-1})X_{N-1}', \ \left\{(ab)^{rac{1}{2}} + (ab)^{-rac{1}{2}}
ight\} Y_N' &= Y_{N+1}' - a^{rac{1}{2}}b^{rac{1}{2}}c(1+ad)z^2q^NY_N' \ &\qquad + (1-z^2q^N)(1-a^2bc^2dz^2q^{N-1})Y_{N-1}'. \end{split}$$

Assiciated Al-Salam-Chihara Recurrence equation

$$egin{align} 2x\widetilde{Q}_n(x)&=\widetilde{Q}_{n+1}(x)+(lpha+eta)tq^n\widetilde{Q}_n(x)\ &+(1-tq^n)(1-tlphaeta q^{n-1})\widetilde{Q}_{n-1}(x). \end{gathered}$$

Two linearly independent solutions

$$egin{aligned} \widetilde{Q}_{n}^{(1)}(x) &= u^{-n} \ (tlpha u;q)_{n} \ & imes _{2}\phi_{1} \left(egin{aligned} t^{-1}q^{-n},eta u^{-1} \ t^{-1}lpha^{-1}q^{-n+1}u^{-1} \end{aligned}; \ q,lpha^{-1}qu
ight), \ \widetilde{Q}_{n}^{(2)}(x) &= u^{n} \ rac{(tq;q)_{n}(tlphaeta;q)_{n}}{(teta uq;q)_{n}} \ & imes _{2}\phi_{1} \left(egin{aligned} tq^{n+1},lpha^{-1}qu \ teta q^{n+1}u \end{aligned}; \ q,lpha u
ight), \end{aligned}$$

where $x = \frac{u + u^{-1}}{2}$.

Ismail and Rahman have presented two linearly independent solutions of the associated Askey-Wilson recurrence equation.

Casorati determinant

Let

$$W_n = \widetilde{Q}_n^{(1)}(x)\widetilde{Q}_{n-1}^{(2)}(x) - \widetilde{Q}_{n-1}^{(1)}(x)\widetilde{Q}_n^{(2)}(x)$$

denote the Casorati determinant of the AASC equation.

Since $\widetilde{Q}_n^{(1)}(x)$ and $\widetilde{Q}_n^{(2)}(x)$ both satisfy the recurrence equation, it is easy to see that W_n satisfies the recurrence equation

$$W_{n+1} = (1 - tq^n)(1 - t\alpha\beta q^{n-1})W_n.$$

$$W_1 = rac{\lim_{n o \infty} W_{n+1}}{(tq, tlphaeta; q)_\infty} = rac{u^{-1}(tlpha u, eta u; q)_\infty}{(lpha u, teta uq; q)_\infty}.$$

Initial condition problem

we need to find a polynomial solution of the AASC recurrence equation which satisfies a given initial condition, say $\widetilde{Q}_0(x)=\widetilde{Q}_0$ and $\widetilde{Q}_1(x)=\widetilde{Q}_1$. Since $\widetilde{Q}_n^{(1)}(x)$ and $\widetilde{Q}_n^{(2)}(x)$ are linearly independent solutions of AASC recurrence equation, this $\widetilde{Q}_n(x)$ can be written as a linear combination of these functions, say

$$\widetilde{Q}_n(x) = C_1 \, \widetilde{Q}_n^{(1)}(x) + C_2 \, \widetilde{Q}_n^{(2)}(x).$$

Solution

If we substitute the initial condition $\widetilde{Q}_0(x)=\widetilde{Q}_0$ and $\widetilde{Q}_1(x)=\widetilde{Q}_1$ into this equation and solve the linear equation, then we obtain

$$C_1 = rac{1}{W_1} \left\{ \widetilde{Q}_1 \widetilde{Q}_0^{(2)}(x) - \widetilde{Q}_0 \widetilde{Q}_1^{(2)}(x)
ight\}, \ C_2 = rac{1}{W_1} \left\{ \widetilde{Q}_0 \widetilde{Q}_1^{(1)}(x) - \widetilde{Q}_1 \widetilde{Q}_0^{(1)}(x)
ight\}.$$

Solution (even)

$$\begin{split} X_N &= \frac{(-az^2q, -abc; q)_{\infty}}{(-a, -abcz^2; q)_{\infty}} \bigg\{ (s_0^X X_1 - s_1^X X_0) \\ &\times (-abcz^2; q)_{N \ 2} \phi_1 \left(\begin{matrix} q^{-N}z^{-2}, -b^{-1} \\ -(abc)^{-1}q^{-N+1}z^{-2} \end{matrix}; q, -c^{-1}q \right) \\ &+ (r_1^X X_0 - r_0^X X_1) \\ &\times (ab)^N \frac{(qz^2, acz^2; q)_N}{(-aqz^2; q)_N} \,_2 \phi_1 \left(\begin{matrix} q^{N+1}z^2, -c^{-1}q \\ -aq^{N+1}z^2 \end{matrix}; q, -abc \right) \bigg\}, \end{split}$$

where

$$\begin{split} r_0^X &= {}_2\phi_1 \left(\begin{matrix} z^{-2}, -b^{-1} \\ -(abc)^{-1}z^{-2}q \end{matrix}; \, q, -c^{-1}q \right), \\ s_0^X &= {}_2\phi_1 \left(\begin{matrix} z^2q, -c^{-1}q \\ -az^2q \end{matrix}; \, q, -abc \right), \\ r_1^X &= (1+abcz^2) \, {}_2\phi_1 \left(\begin{matrix} z^{-2}q^{-1}, -b^{-1} \\ -(abc)^{-1}z^{-2} \end{matrix}; \, q, -c^{-1}q \right), \\ s_1^X &= \frac{ab(1-z^2q)(1-acz^2)}{1+az^2q} \, {}_2\phi_1 \left(\begin{matrix} z^2q^2, -c^{-1}q \\ -az^2q^2 \end{matrix}; \, q, -abc \right). \end{split}$$

Solution (odd)

$$\begin{split} Y_N &= \frac{(-a^2bcdz^2q, -abc; q)_\infty}{(-a^2bcd, -abcz^2; q)_\infty} \Bigg\{ (s_0^Y Y_1 - s_1^Y Y_0) \\ &\times (-abcz^2; q)_{N \ 2} \phi_1 \left(\begin{matrix} q^{-N} z^{-2}, -acd \\ -(abc)^{-1} q^{-N+1} z^{-2} \end{matrix}; q, -c^{-1} q \right) \\ &+ (r_1^Y Y_0 - r_0^Y Y_1) \\ &\times (ab)^N \frac{(qz^2, a^2bc^2dz^2; q)_N}{(-a^2bcdqz^2; q)_N} \,_2 \phi_1 \left(\begin{matrix} q^{N+1} z^2, -c^{-1} q \\ -a^2bcdq^{N+1} z^2 \end{matrix}; q, -abc \right) \Bigg\}, \end{split}$$

where

$$\begin{split} r_0^Y &= {}_2\phi_1 \left(\begin{matrix} z^{-2}, -acd \\ (-abc)^{-1}qz^{-2} \end{matrix}; \, q, -c^{-1}q \right), \\ r_1^Y &= (1 + abcz^2) \, {}_2\phi_1 \left(\begin{matrix} q^{-1}z^{-2}, -ac \\ -(abc)^{-1}z^{-2} \end{matrix}; \, q, -c^{-1}q \right), \\ s_0^Y &= {}_2\phi_1 \left(\begin{matrix} z^2q, -c^{-1}q \\ -a^2bcdz^2q \end{matrix}; \, q, -abc \right), \\ s_1^Y &= \frac{ab(1-z^2q)(1-a^2bc^2dz^2)}{1+a^2bcdz^2q} \, {}_2\phi_1 \left(\begin{matrix} z^2q^2, -c^{-1}q \\ -a^2bcdz^2q^2 \end{matrix}; \, q, -abc \right). \end{split}$$

Limit

Set q = abcd. Let s_i^X , s_i^Y , X_i , Y_i (i = 0, 1) be as in the above theorem. Then we have

$$egin{aligned} \sum_{\mu} \omega(\mu) z^{|\mu|} &= rac{(-abc, -az^2q; q)_{\infty}}{(ab; q)_{\infty}} (s_0^X X_1 - s_1^X X_0) \ &= rac{(-abc, -a^2bcdz^2q; q)_{\infty}}{(ab; q)_{\infty}} (s_0^Y Y_1 - s_1^Y Y_0), \end{aligned}$$

where the sum runs over all strict partitions μ .

Cauchy's determinant

$$\det \left[rac{1}{x_i+y_j}
ight]_{1 < i,j < n} = rac{\Delta_n(X)\Delta_n(Y)}{\prod_{1 \leq i,j \leq n}(x_i+y_j)}.$$

Schur's Pfaffian

$$ext{Pf}\left[rac{x_i-x_j}{x_i+x_j}
ight]_{1 \leq i,j \leq 2n} = \prod_{1 < i < j < 2n} rac{x_i-x_j}{x_i+x_j}.$$

(I. Schur, "Über die Darstellung der symmetrischen und der alternirenden Gruppe durch gebrochene lineare Substitutionen", J. Reine Angew. Math. 139 (1911), 155–250.)

Here
$$\Delta_n(X) = \prod_{1 \leq i \leq j \leq n} (x_i - x_j)$$
.

A generalization

M. Ishikawa, S. Okada, H. Tagawa and J. Zeng "Generalizations of Cauchy's determinant and Schur's Pfaffian", arXiv:math.CO/0411280.

We gathered more generalizations of Cauchy's determinant and Schur's Pfaffian and their applications.

Theorem (The Desnanot–Jacobi formulae)

(1) If A is a square matrix, then we have

$$\det A_1^1 \cdot \det A_2^2 - \det A_2^1 \cdot \det A_1^2 = \det A \cdot \det A_{1,2}^{1,2}.$$

(2) If A is a skew-symmetric matrix, then we have

$$\operatorname{Pf} A_{1,2}^{1,2} \cdot \operatorname{Pf} A_{3,4}^{3,4} - \operatorname{Pf} A_{1,3}^{1,3} \cdot \operatorname{Pf} A_{2,4}^{2,4} + \operatorname{Pf} A_{1,4}^{1,4} \cdot \operatorname{Pf} A_{2,3}^{2,3} = \operatorname{Pf} A \cdot \operatorname{Pf} A_{1,2,3,4}^{1,2,3,4} + \operatorname{Pf} A_{2,3,4}^{1,2,3,4} + \operatorname{Pf} A_{2,3,4}^{2,3,4} + \operatorname{Pf} A_{2,3,4}^{2,3,4}$$

