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Preliminaries

A g-shifted factorial is, by definition,

1,

(a;q)n =

We also define




Notation

Since products of g-shifted factorials occur so often, to
simplify them we shall use the more compact notations

(ala e oo 9 Ay Q)n — (a'lv Q)n c e (a'na Q)n

(ala e oo 9 Ay Q)oo — (afla Q)oo ce (a’na Q)oo

The g-binomial coefficient is defined by

_ (g5 @)n
(5 Q) e(q5 @) n—r




Basic hypergeometric series

We shall define an ,. ¢, basic hypergeometric series by

all’...,al""
ydy =

o9 Uy Q)n
.y bs3 @)n

}l—l—s r

[( 1)"q(z)

with (2):n(2—) where g # 0 when » > s + 1.




Partitions

A partition of a positive integer n is a finite nonincreasing

sequence of positive integers A1, Aa,. .., A\, such that

> i1 A; = n. The \; are called the parts of the partition,

and n is called the weight of the partition, denoted by |)\|.

Many times the partition (A, A2, ..., ;) will be denoted
by A, and we shall write A\ = n to denote “\ is a partition
of n”". The number of (non-zero) parts is the length,
denoted by £( ).




Example

The empty sequence () forms the only partition of zero.
n = 1: (1);
n = 2: (2), (1%);

n=3: (3),(21), (1%);
n=4  (4),(31), (2%), (21%), (1%);
n=>5  (5), (41), (32), (31?), (221), (213), (1°);




Young Diagram

To each partition X\ is associated its graphical representation
(Young diagram) D), which formally is the set of points
with integral coordinates (z, 7) in the plane such that if

A= (A1, A2,...,A;), then (2, 7) € D, if and only if
1 < 3 < A;. We sometimes identify the Ferres graph D),

with the partition A and use the same symbol X\ to express
its Young diagram.




Example

The Young diagram of the partition (8, 6,6, 5, 1) is




Conjugate

If A = (A1, A2, ..., Ay) is a partition, we may define a

new partition A" = (A}, A, ..., ) by choosing A\ as

the number of parts of X\ that are > 2. The partition \’ is
called the conjugate of A.
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Example

The conjugate of the partition (86251) is (54*31%)
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The generating function

Theorem (Euler)

For |g| < 1,

where the sum runs over all partitions A.

More generally,
> 1

L(AN) A
z)\:z d _Hl—z

n=1

qn

where the sum runs over all partitions A.
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1
H1_zqn=(1+zq+z2q2+z3q3+---)

n=1

X (1 + z2q® + 2%q* + z°q¢° + - - -

x (14 2q® + 225 + 23¢°

X (1 + zq* + 2°q® + 2°q** + -+ +)

A




The generating function 2

A similar argument is vald to prove the following theorem:

Theorem

For |[q| < 1,

where the sum runs over all partitions A where each part of \ is < IV.

More generally,
A |

;zeu)qw =11 e

n=1

where the sum runs over all partitions A where each part of X\ is < IV.
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Number of odd parts

Definition

Let A be a partition of A of some integer. Let O ()
denote the number of odd parts of \.

Example

If A\ = (86%51), then X\’ = (54*31%), O(A\) = 2 and
O(N\) = 4.
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Andrews’ Theorem

Theorem (G.E.Andrews)

§ 20Ny O g
A

> it [ﬂ L2y 0 (—2y 7 G vy
(% a*)~n(2%g% q*)N

where the sum runs over all partitions A where each part of A is < 2V.
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§7 20Ny O g
A

SY AN (—zyg;qY) i1 (—2zy g qY) N (yg) N
J J q*

(g% g*)n(22q*; q*) N1
where the sum runs over all partitions A where each part of \ is
< 2N + 1.

(G.E.Andrews, “On a partition function of Richard Stanley”, Electron. J.
Combin. 11(2) (2004) #1.)
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The four parameter weight

Given a partition )\, define w(\) by

w(A) — a2z21 |->‘2'L—1/2_| bzzzl |_>\2'L—1/2J 2121 |_>\27,/2—| dz"'zl |_>\21,/2J :

where a, b, ¢ and d are indeterminates, and [x ] (resp. |« ]) stands for the smallest
(resp. largest) integer greater (resp. less) than or equal to x for a given real number
x. For example, if A = (5,4,4, 1) then w(A) is the product of the entries in the
following diagram for \, which is equal to a®b*c3d?.




Boulet’s Theorem

Theorem (Boulet)
Let ¢ = abcd. If |al, |b]|, |c|, |d] < 1, then

where the sum runs over all partitions A.

(C.Boulet, “A four parameter partition identity”,
arXiv:math.CO/0308012, to appear in Ramanujan J.)
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Generalization

Theorem

Let ¢ = abcd. Then

D w(N)

A

. (_a'; q)N ¢ q_N7 —C . g bq
_ e _
(g;9)~n(ac; @) N —aq-lqg~N+17 ¥ ’

where the sum runs over all partitions A where each part of
Ais < 2NN.
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> w()

A

(—a; g)N+1

N (g;9)n(ac; @) N1

where the sum runs over all partitions A\ where each part of
Ais < 2N 4 1.
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Al-Salam-Chihara polynomials

The Al-Salam-Chihara polynomial
Q.(x) = Q,(x; , B|q) is, by definition,

Qn(x; o, B|q)

q ", Bu?! 4
3¢, qu |,

where x = “+;‘_1 (R. Koelof and R.F.Swarttouw, The

Askey-scheme of hypergeometric orthogonal polynomials and

its g-analogue Delft University of Technology, Report no.
98-17 (1998), p.80).




Al-Salam-Chihara Recurrence relation

The Al-salam polynomials satisfy the three-term recurrence

relation

20Qn () = Qunii1(z) + (a + B8)¢"Qn(x)
(1—¢")(1 — aBq" ")Qn_1(x),

with Q_l(iB) = 0, Q()(CB) = 1.

23



24

Associated Al-Salam-Chihara Recurrence relation

We also consider a more general recurrence relation:

226Q,,(x) = Qny1(x) + t(a + B)q"Qn(x)

+ (1 —tg")(1 — taBq" ") Qn-1(),

which we call the associated Al-Salam-Chihara recurrence

relation.




Solutions of AASC Recurrence relation

Let

ég)(w) =u " (tau;q),

t=1g—", Gu ! B
X 21 ( @ 1qU) ,

t—la—lq—n—l—lu
_(tg; g)n(taB; q)n

32) () —
Q@) =w (tBug; q)n

Then Q) (z) and Q) (x) are linearly independent solutions of the
AASC recurrence relation.
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Associated Askey-Wilson polynomials

M.E.H. Ismail and M. Rahman “The associated

Askey-Wilson polynomials”, Trans. Amer. Math. Soc. 328
(1991), 201 - 237.
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Generating Function (ordinary partitions)

Let us consider

bn = (I)N(av b, ¢, d; z) — Z w()\)zf(k),

A
A <N

where the sum runs over all partitions A such that each part
of A is less than or equal to IV.
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Example

For example, the first few terms can be computed directly as
follows:
=1,
1+ az

1 — acz?’
1+ a(1 4+ b)z + abez?
(1 —acz?)(1 — q=z?) ’
1+ a(l+ b+ ab)z + abe(1 + a + ad)z? + a’t

(1 — z%ac)(1 — 2%q)(1 — z?%acq)
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Strict Partitions

A partition p all of whose parts are distinct (have multiplicity 1) is called
a strict partition. For a strict partition 0 = (1, > o > -+ - > p,),
the shifted diagram S,, is obtained from the Young diagram of 4 by
moving the ¢th row (¢ — 1) squares to the right, for each = > 1.

If o = (7,5,4,2,1) then S, is




Generating Function (strict partitions)

Let

Yy = \PN(aa b, ¢, d; Z) — Z w(”)zf(ﬂ)’

where the sum is over all strict partitions 1 such that each

part of w is less than or equal to IV.
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Example

For example, we have
Wy =1,
v, =1+ az,
Uy, =14 a(l + b)z + abcz?,
Us=14+a(l+b+adb)z

+ abc(1l 4+ a + a,d)z:2 + a’bedz’.
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Example
N =3
€(pn) =0

l(p) =1

€(p) = 2

€(pn) =3

32



Relation between &5 and Wy

Theorem

\I’N(av b, c, d; z)

®n(a,b,c,d;z) = :
B (22q; q) | ny2) (22ac; @) [Ny

Proof

The idea is the bijection in Boulet's paper.

33



Recurrence equation

Theorem

Set q = abed and put XN — \IlzN and YN _— \II2N+1. Then XN
and Y satisfy

Xni1 = {14+ ab+a(l+bc)z’q"} Xn
—ab(1 — 2°q™)(1 — acz’q" ") Xn_1,
Yni1 = {1+ ab+ abe(1
—ab(1 — 2°q™V)(1 — acz*q")Yn_1,

where Xo = 1,Yy =1+ az, X; =1+ a(1 + b)z + abez? and

Y1=1+a(l4+b+ ab)z+ abc(1l + a + a,d)z2 + a’bedzs.
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Reduction to AASC

Corollary

Especially, if we put X, = (ab)~= Xy and Y7, = (ab)"2 Yy
then X, and Y, satisfy

{(ab)% n (ab)—%} = XUy , — a?b73(1 + be)22gV X,
+ (1 — 2%2¢™)(1 — acz?q™~ 1)XN 15

{(ab)% + (ab)_%} = Yy — azbic(l + ad)z*q" Y},
+ (1 — 2%2¢™) (1 — a®bc?dz?q™ )Y},




Solution (even)

X — (—az?q, —abc; q) o

~ (—a,—abcz?;q) oo

X (—abcz?;q) N 261 (

+ (r3 Xo — 7 X1)

{(sngl — 57 Xo)

g-Nz=2 _p1

—(abc)~1q—N+1z

X (ab

\N (gz2,acz?;q) N

(—aqz?;q)N

_ o3 4 _C_1Q)
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z—2, b1 4
2P1 —(abc)—lz—2q; qg,—C¢c q |,

2 1
z2q, —c g
2P1 ( ’ . q, —abc) :

—2,—1 _p—1

z q -,
(1 + abcz?) 204 ( —(abe)—1z

_ab(1 - 2%q)(1 — acz?) by <

1+ az?q

.38 —Cc'q

2%q?, —c~

37



Solution (odd)

Yo — (—a*bcdz?q, —abc;

q) o

(—a?bed, —abcz?; q) oo

X (—abczz;CI)N 21 (
+ (r] Yo — 74 Y1)

x (ab)™N (

{(ngYl — 5] Yo)

g Nz72, —acd

—(abc)1q—N+1z—2 ¢

(—a?bcdqz?;q) N

qz?,a’bc?dz?;q)N s (qN+1z2,—c‘1q
21

—a?bedgN+1z

-

55 s

abe) |
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s 272, —acd g —c
21 (—abc)—lqz_z’ ’
12

(1 + abcz?) 204 (—(abc)—l

_1q>,

q z s, —acC 1
2:_2; q, —C q].,

2 —1
< q,—C q
2¢1 ( , s 4, _abc> ’

—a2bedz2q’

ab(1 — 22q)(1 — a*bc?dz?)
1 + a?bedz?q

21 (

22q%, —c1

—a?bedz2q

q
25‘]9

—abc) .
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Limit
Set ¢ = abed. Let 53X, s, X;,Y; (i = 0, 1) be as in the above
theorem. Then we have

(—abc, —az%q; q) o

(SSCXl — 8‘1XX0)

wlu)zt =
2 @) (ab; q) oo

L

_ (—abc, —a*bcdzq; q) o

(ab' q) (SOYY]- o Sf%)a

where the sum runs over all strict partitions p.
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The ring of symmetric functions

The ring A of symmetric functions in countably many variables x, x,,
. is defined by the inverse limit. (See Macdonald’s book “Symmetric

functions and Hall polynomials, 2nd Edition”, Oxford University Press, I,
2.)

Here we use the convention that f(x) stands for a symmetric function
in countably many variables * = (¢, x2,...), whereas f(X) stands
for a symmetric function in finitely many variables X = (x1,...,xy,).




The Schur functions

For X = (x1,...,x;) and a partition X\ such that
() < mn,let

sx(X) is called the Schur function corresponding to .

letd=(n—1,n—2,...,1,0).

42



Example

When A = (2,2) and X = (x1, 2, 3, T4),

1 xt 1o, 1
det 2 2

T T4 1/

sx(x) =

where A(iL‘) — Hz'<j(w73 — CIZj).
Note that (2,2,0,0) + (3,2,1,0) = (5,4, 1,0).




Schur functions

Let X = (CBl, coey wzn) and let T' = (wg_l)lgiSZn,jZL l.e.

_]_ 1

1 o

Then we have

) 1<2,7<2n

det (@] ")1<i,j<2n




Example

If n = 3. and A = (5,4,4,1,0,0), then

I\ = {0,1,3,7,8,10},

SA(X) =

45
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Tableaux

Given a partition A\, A tableaux T of shape A is a filling of the diagram with numbers
whereas the numbers must strictly increase down each column and weakly from left to
right along each row.

Schur functions

The Schur function sy (x) is

sa(X) =) X7,

i 2sin T
where the sum runs over all tableaux of shape A. Here X7 = ;pgls n Tg;g sinT"




Example

A Tableau T of shape (5441).

The weight of T is xSx5x3xlx?.

47



Example

When A = (2,2) and X = (z1, €2, T3, T4),

2 2 2 2 2 2 2 2 2 2 2 2
sx(X) = zix; + i3 + xix] + 523 + 252 + 3T, + 212234

2 2 2 2 2 2
+ T]T2T3 + T]T2XT4 + T]T3XT4 + TLT1X3 + T5L1T4 + TLL3T4

2 2 2 2 2 2
+ x3T1T2 + TZL1X4 + TZ3X2XT4 + THX1T2 + THX1T3 + T, T2T3

48



Schur’s P-functions

Let A,, denote the skew-symmetric matrix

F7=)
Ti + X/ 1< i<n
and for each strict partition t = (p41,..., ;) oflengthl < n, let T,

denote the . X 1 matrix (:1:2‘) Let

A, T,J
_JlTu Ol

A(Tryeeeyxy) = (

which is a skew-symmetric matrix of (12 + ) rows and columns. Define
Pf (x1,...,2,) tobe PfA, (x1,...,x,) if n + lis even, and to
be Pf A, (x1,...,%,,0) if n + 1 is odd.

49



Schur’s P-functions

Schur’s P-function P,(x1,. ..

, T, ) is defined to be

Pf“(ib‘l, ¢ oo

Pf@(wl, o oo

where it is well-known that

Pfo(x1y...,2,) =

50



Example

When X = (21, x2, 3, 24) and p = (4,2

divided by |[.

T1—aT2
Tr1+x2

1<J azz—l—a:J

r1—as3
r1+x3
ro—aIs3
r2+x3

T1—x4
xr1+x4
To—x4
Tr2+x4
Tr3—T4
r3+aTg

1),

P,(X) is given by

o O O O = =

L1

8
N

rg I
Lrg X

O O O

8

8
AN W NN HN

-

a:\
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Schur’s QQ-functions

Schur’s Q-function Q (x4, . ..

2£(>\)PH(CE1, ¢ oo

, T, ) is defined to be

933n)-
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Combinatorial definition of Schur’s (Q-functions

Let P’ denote the ordered alphabet {1’ < 1 < 2/ <2 < -.-}. The
symbol 1/, 2/,... are said to be marked, and we shall denote |a| the
unmarked version of any a € P’. Let u be a strict partition. A marked
shifted tableaux T of shape p is a labeling of squares of S,, with
symbols P’ such that:

1. The labels increase (in the weak sense) along each row and down
each column.

2. Each column contains at most one k, for each k > 1.
3. Each row contains at most one k’, for each k > 1.

Let us define

/
o7l = T af+ .
k




Schur’s QQ-functions

Schur’s Q-function Q (1, ..., x,) is defined to be

Y &l
T

summed over marked shifted tableaux of shape .

54



Example

If u = (7,5,4,2,1) then

1/

Is @ marked shifted tableaux of shape L.
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Power Sum Symmetric Functions

Let » denote a positive integer.

pr(X)=a] +x5+ -+

iIs called the rth power sum symmetric function.

pi(X)=z1+x2+ -+,
p2(X) =al+xi+ - +
ps(X) =23+ + o+ o

56



An open problem by Richard Stanley

In FPSAC’03 R.P. Stanley gave the following conjecture in the open
problem session:

Theorem

Let

z = Z w(A)sxa(x),

A
where the sum runs over all partitions \.

Then we have

1
log z — Z —a"(b" — c"™)pan —
n>1 2n n>1

€ Q[[p1, P35 P55+ -+ ]]-
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A simple version

Let

Yy = Z sx(x).

A
X,/ even

Here the sum runs over all partitions X\ such that A and )\’
are even partitions (i.e. with all parts even).

Then we have

1
logy — Z —pgn = @[[p17p39p59 c oo ]]

4n
n>1

58



Strategy of the proof

1. Stepl. Express w(\) and z by a single Pfaffian.

Use the minor summation formula of Pfaffians.

2. Step2. Express z by a single determinant.

Use the homogenious version of Okada’s gereralization of
Schur’s Pfaffian.

3. Step3. Show that

1 1
log z — Z —a"(b" — c")pan — Z —a"b"c"d"
n>1 2n n>1 in

< Q[[plap?n D5y« ]]

Use Stembridge’s criterion.

59



The goal of the proof
Put

1 1
w = log z — g —a"™(b"™ — c")pa,, — g —a"b"c"d"
n>1 2n n>1 in

and use the following Stembridge’s criterion to w.

Proposition (Stembridge)

Let f(x1,x2,...) be a symmetric function with infinite variables.
Then

f S Q[p19p39p59 ° ]
if and only if

f(t, —t, L1g L2 e ) = f(.’,Bl, L2 oo ).

60



Pfaffians

Assume we are given a 211 by 2n skew-symmetric matrix
A = (a;5)1<i,j<2n

(i.e. aj; = —a;;), whose entries a;; are in a commutative ring.

The Pfaffian of A is, by definition,

Pf(A) = - Z €(01,02y. 4. 902n—1,021n)010, +++ Qoo 100, -

where the summation is over all partitions {{o1,02}<,...,{02n_1,02,}<} Of
[2n] into 2-elements blocks, and where €(oy,02,...,02,_1,02,) denotes the
sign of the permutation
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Perfect matching

Figure 1: A perfect matching

62



Example

When n = 2,

( 0 a2

—Aa9i 0

—a31 —Aas2

K—a41 — Q42

— Q12034 — Q13024 + A14023.
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Notation

Fix a positive integer n.
If X = (A1,...,A,) is a partition such that £(\) < n,

then we put

l:(ll,...,ln):>\‘|‘5n:()\1‘|‘n_17“°7)‘n)7

where §, = (n —1,n — 2,...,1,0),
and we write
In()\) — {ln, ln—la oo o o ll}.

We regard this set as a set of row/column indices.
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Theorem

Define a skew-symmetric array A = (o;5)o<i,; by
o = o G=1)/21p(G-1)/2] .[i/2] 41i/2)
for 2 < 3.

Then we have

Pf [Aﬁz&ﬂ — (abed)Bw(N).

65
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Theorem

Let 4 = (1, ..., ft2,) be a strict partition such that

py > oo > gy > 0. Let K(p) = {pt2ns -5 i1}
Define a skew-symmetric matrix B = (3;;):,;>0 by

3/21pli/2] if 2 = 0,
3/21plif2lcli/21glif2l 22 if 4 > 0,

for 0 < 2 < 3. Then we have

Pf AR (B)| = w(p)z®.




Lemma

Let x; and y; be indeterminates, and let n is a

non-negative integer.

Then

n n
Pf[a?iyj]1§i<j§2n — H L2i—1 H Y2i-
1=1 1=1
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Example

A= (ai.’i)OSi,j:

1
0

68



Example

If n = 3. and A = (5,4,4,1,0,0), then

I(N).
AI(A).

I\) = {0,1,3,7,8,10}.

ab
abc
0
—a3b3c?d
—a?b3c?d

—a’b*c?d

a3b3

a3b3
a3b3c?d
0
—a?b3ctd3

—a’b%ctd3

&

a*b3

atb3

atb3c3d

atb3ctds
0

—a’b%ctd?

C

Pf (Afgig) — aBb78d® = (abed)3w(N)
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Finite Sum

We consider a weighted sum of Schur’'s P-functions and Q-functions

En(a,b,c,d; X,,) = Z w(p)Pyu(x1y.-+5%n),

7}
p1 SN

nn(a,b,c,d; X,,) = Z w(p)Qu(T1y.--yTn),

7}
p1 SN

where the sums run over all strict partitions p such that each part of p is less than or

equal to IN. More generally, we can unify these problems to finding the following sum:

(n(a,b,e,d;z; X,,) = Z w(p)2* WP, (x1,...,T,),

7
m1SN

where the sum runs over all strict partitions p such that each part of p is less than or
equal to V.
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Infinite Sum

Further, let us put

C(aa b, ¢, d; z; Xn) — ]\}lm CN(afa b, ¢, d; z; Xn)
— 00

— Z w(p,)ze(“')P”(Xn),

where the sum runs over all strict partitions . We also write

£(a,b,c,d; X,,) = ((a,b,c,d;1; X)) = ZW(N)PM(XTL),

1}

where the sum runs over all strict partitions p.
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Theorem

Let 2 be a positive integer. Then

C(aa bv C, d3 2 Xn) — {

where

Pt (Vij)1<icj<n /Pfo(Xn)
Pt (vij)o<icj<n /Plo(Xn)

if . is even,

if n is odd,

72



.+ bx? 1 — abx?
o det (az -+ x; aa:z>

x; + ba:gz. 1 — abw?

(1 — abz;)(1 — abzx3)

9

z; +azx? 1— a(b+ d)z} — abdx?

z; +az; 1— a(b+ d)z] — abdx;

abcx;x; det (

|

(1 — abz])(1 — abzi)(1 — abcdxix;
if1<4i,j <n,and

ax;(1l+ bx;) s

— 14
105 | 1—abw§

9
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Especially, when z = 1, we have

Pt (Vij)1<icj<n /Plo(Xn) if nis even,
Pt (;%J')O<i<j<n /Pf@(Xn) if nis Odd,

5(017 ba c, d; Xn) — {

where

R if i = 0,
Yii =\ wyem, with
ifl1 <1<y <n,

- “ 1—0b 2 — abex?
a,det< (a + c)x; aca:>

x; + bw? 1 — b(a + c)w? — abcw?

V;; =
’ (1 — abz})(1 — abz?)(1 — abcdxix;




The key idea to prove theorems

We write the four parameter weight w(\) by a

Pfaffian, and use the minor summation formula.
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Notation

Let m, n and r be integers such that » < m,n. Let A
be an m by n matrix. For any index sets

I={i1,... 5 }< C [m],
J = {j19°°°9jr}< C [n’

let A’ (A) denote the submatrix obtained by selecting the
rows indexed by I and the columns indexed by J. If r = m
and I = [m], we simply write A ;(A) for AT](A).




Example

If n = 6 and A\ = (5,4,4,1,0,0), then

l =X+ 66 = (10,8,7,3,1,0),

Is(\) = {0,1,3,7,8,10}.

i



Theorem

Let n be a positive integer. Let

Zp = Z w(A)sxa(Xan)

L(N)<2n

be the sum restricted to 27 variables. Then we have

1 n
#n = (abed)™GIPE (p;) oo
H1§i<j§2n(37i — wj) J171<i<j<2n?

1 —a(b+ c)x; — abex?
1 —a(b+ c)x; — abcx?

J
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The idea of the proof of Theorem

e Write the Schur function s)(X5,,) by the quotient of
determinants. (The denominator is the Vandermonde
determinant.)

e Write the weight w () by the Pfaffian.

e Take the product of the Pfaffian and the determinant,
and sum up over all columns.
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Theorem (Minor summation formula)

Let n» and IN be non-negative integers such that 2n < IN. Let
T = (ti5)1<i<2n,1<j<n~ be a 2n by N rectangular matrix, and let
A = (a;5)1<i,j<n be a skew-symmetric matrix of size IN. Then

> Pf(A(A))det (A[(T)) =Pf (TA'T).
re(LY]

If we put Q@ = (Qij)1<; j<2, = TA'T, then its entries are given by

Qi = Z ar; det (A;’gl (T)) .

1<k<I<N

(1 < 4,5 < 2n). Here we write A% (T") for

i ti tu
AEkﬁ (T) = y

tjk, tjl




Theorem (Minor summation formula 2)

Let A = (a;j)1<i,j<n and B = (b;;)1<i,j<n be skew symmetric
matrices of size n. Then

/2] J.tAT, J.

» 2t Y AVlPr(Af(A)) Pt (A](B)) = Pf

—J, C

where |I| = ) . ;% and C = (C;;)1<i,j<n is given by

1€

Cij = ’7i+jb7;j2.




Theorem (Minor summation formula 2')

Let n and N be nonnegative integers. Let A = (a;;) and B = (b;;) be skew
symmetric matrices of size (n + IN). We divide the set of row/column indices into
two subsets, i.e. the first n indices Iy = [n] and the last IV indices

I, = [n+1,n+ NJ|. Then

> 202 N7 ylelipe (AfST(A)) P (ARSH(B))
t>0 IE(Itl)

n -t even
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The sum of w(u)

Let S,, denote the n X n skew-symmetric matrix whose (%, 7)th entry
s1lfor0<2<j <n.

Theorem

Let /N be a nonnegative integer.

Sn+1 JIN+1

Un(a,b,c,d;z) = Pf

_—JN_|_1 B

where B = (3;;)o<i<j<n is the N X N skew-symmetric matrix
whose (%, 7)th entry 3;; is defined above.




Example

For example, if N = 3, then the Pfaffian in the right-hand side looks like

1

—az
—abz

—a?bz

az
0
—abcez?

—a?bez?

abz

abcz?
0

—a’bedz?

a?bz
a?bcz?
a’bedz?

0

and this is equal to 1 + a(1 4+ b + ab)z + abc(1 + a + ad)z? + a3bedz®.
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Recurrence Equation

Theorem

Let ¥ = ¥n(a,b, c,d; z) be as above. Then we have

\Iij = (]_ —+ b)\IlgN_l —+ (G,NbNCNdN_122 — b)\Iij_z,

Uoni1 = (1 4+ a)Pon + (aVT0VeNdV 2% — a)Won_1q,

for any positive integer INV.
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Recurrence equation

Theorem

Set q = abed and put XN — \IlzN and YN _— \II2N+1. Then XN
and Y satisfy

Xni1 = {14+ ab+a(l+bc)z’q"} Xn
—ab(1 — 2°q™)(1 — acz’q" ") Xn_1,
Yni1 = {1+ ab+ abe(1
—ab(1 — 2°q™V)(1 — acz*q")Yn_1,

where Xo = 1,Yy =1+ az, X; =1+ a(1 + b)z + abez? and

Y1=1+a(l4+b+ ab)z+ abc(1l + a + a,d)z2 + a’bedzs.
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Reduction to AASC

Corollary

Especially, if we put X, = (ab)~= Xy and Y7, = (ab)"2 Yy
then X, and Y, satisfy

{(ab)% n (ab)—%} = XUy , — a?b73(1 + be)22gV X,
+ (1 — 2%2¢™)(1 — acz?q™~ 1)XN 15

{(ab)% + (ab)_%} = Yy — azbic(l + ad)z*q" Y},
+ (1 — 2%2¢™) (1 — a®bc?dz?q™ )Y},




Assiciated Al-Salam-Chihara Recurrence equation

2$én($) — C/jfn—l—l(w) + (a + /B)tqnén(w)
+ (1 —tg™)(1 — taBq" ") Qu-1(x).
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Two linearly independent solutions

QW (x) = u™" (tau; q)n
t~'q™", Bu! _
X 2¢1 ( ’ (87 1qu> V)

t_la—lq—n+1u—1 » 4

~ (tq; Q)n(ta/@; Q)n
() () — 2y
Q, () =u (tBug; q)n

tq" ™, o qu
X 2¢1 tBqmHlu ; g, ou |,

utu—1

where x = 5

Ismail and Rahman have presented two linearly independent solutions of
the associated Askey-Wilson recurrence equation.
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Casorati determinant

Let
W, = éq(q,l)(m)é?(’z,zll(m) — élell(m)éff)(m)
denote the Casorati determinant of the AASC equation.

Since QM () and Q3 (x) both satisfy the recurrence equation, it is
easy to see that W,, satisfies the recurrence equation

Wn-l—l — (1 T tqn)(l T taﬁqn_l)Wn.

11rn'n,—>oo Wn—l—l u_l (tOé’U,, ,B’U,, q)OO

N (tq, tas; Q)oo B (aua tBug; Q)oo .

Wi
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Initial condition problem

we need to find a polynomial solution of the AASC recurrence equation
which satisfies a given initial condition, say Qo (x) = Qo and
Q1(x) = Q1. Since QY (x) and Q'? () are linearly independent

solutions of AASC recurrence equation, this Q,,(x) can be written as a
linear combination of these functions, say

Qn(z) = C; QW (z) + C, QP (x).




Solution

If we substitute the initial condition Qo (z) = Qo and Q+(x) = Q1
into this equation and solve the linear equation, then we obtain
1
Wy
1
Wi

Cr = - {@QP (@) - Q@Y (@)}

&

{QQ (@) — 2P (@) }
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Solution (even)

X — (—az?q, —abc; q) o

~ (—a,—abcz?;q) oo

X (—abcz?;q) N 261 (

+ (r3 Xo — 7 X1)

{(sngl — 57 Xo)

g-Nz=2 _p1

—(abc)~1q—N+1z

X (ab

\N (gz2,acz?;q) N

(—aqz?;q)N

_ o3 4 _C_1Q)
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z—2, b1 4
2P1 —(abc)—lz—2q; qg,—C¢c q |,

2 1
z2q, —c g
2P1 ( ’ . q, —abc) :

—2,—1 _p—1

z q -,
(1 + abcz?) 204 ( —(abe)—1z

_ab(1 - 2%q)(1 — acz?) by <

1+ az?q

.38 —Cc'q

2%q?, —c~
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Solution (odd)

Yo — (—a*bcdz?q, —abc;

q) o

(—a?bed, —abcz?; q) oo

X (—abczz;CI)N 21 (
+ (r] Yo — 74 Y1)

x (ab)™N (

{(ngYl — 5] Yo)

g Nz72, —acd

—(abc)1q—N+1z—2 ¢

(—a?bcdqz?;q) N

qz?,a’bc?dz?;q)N s (qN+1z2,—c‘1q
21

—a?bedgN+1z

-

55 s

abe) |
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s 272, —acd g —c
21 (—abc)—lqz_z’ ’
12

(1 + abcz?) 204 (—(abc)—l

_1q>,

q z s, —acC 1
2:_2; q, —C q].,

2 —1
< q,—C q
2¢1 ( , s 4, _abc> ’

—a2bedz2q’

ab(1 — 22q)(1 — a*bc?dz?)
1 + a?bedz?q

21 (

22q%, —c1

—a?bedz2q

q
25‘]9

—abc) .
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Limit
Set ¢ = abed. Let 53X, s, X;,Y; (i = 0, 1) be as in the above
theorem. Then we have

(—abc, —az%q; q) o

(SSCXl — 8‘1XX0)

wlu)zt =
2 @) (ab; q) oo

L

_ (—abc, —a*bcdzq; q) o

(ab' q) (SOYY]- o Sf%)a

where the sum runs over all strict partitions p.
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Cauchy’s determinant

] __Aa(X)An(Y)
T; 1+ Yj 1<i,5<n ngi,jgn(wi + yj) .

det [

Schur’s Pfaffian

CL‘i—CIZ‘j

] —

Ti + ] 1<i,j<2n  1<icj<on Ti T Tj

|

(1. Schur, “Uber die Darstellung der symmetrischen und der
alternirenden Gruppe durch gebrochene lineare Substitutionen”, J. Reine

Angew. Math. 139 (1911), 155-250.)
Here A (X) = [[1<icj<n(®i — x5).
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A generalization

M. Ishikawa, S. Okada, H. Tagawa and J. Zeng “Generalizations
of Cauchy’s determinant and Schur’s Pfaffian”,
arXiv:math.C0/0411280.

We gathered more generalizations of Cauchy’s determinant and Schur’s
Pfaffian and their applications.

Theorem (The Desnanot-Jacobi formulae)

(1) If A is a square matrix, then we have
det Ai - det Ag — det A; - det A% — det A - det A}:g
(2) If A is a skew-symmetric matrix, then we have

PfA}S-PfAS—PfAPS-PEASI+PFAL - PFAS, = PFA-PfA

4
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Thank youl!




