Euler-Mahonian Statistics of Ordered Partitions

Transfer matrix method and determinant evaluation

Masao Ishikawa a

ishikawa@fed.tottori-u.ac.jp

Department of Mathematics

Tottori University

Koyama, Tottori 680-8550, Japan

^ajoint work with Anisse Kasraoui and Jiang Zeng

An ordered partition of a set *S* into *k* blocks is a sequence $B_1 - B_2 - \cdots - B_k$ such that:

 $B_i \neq \emptyset , \quad 1 \le i \le k;$

An ordered partition of a set *S* into *k* blocks is a sequence $B_1 - B_2 - \cdots - B_k$ such that: $\Rightarrow B_i \neq \emptyset$, $1 \le i \le k$;

 $\blacklozenge B_i \cap B_j = \emptyset , \quad 1 \le i, j \le k;$

An ordered partition of a set *S* into *k* blocks is a sequence $B_1 - B_2 - \dots - B_k$ such that: $\Rightarrow B_i \neq \emptyset$, $1 \le i \le k$; $\Rightarrow B_i \cap B_j = \emptyset$, $1 \le i, j \le k$; $\Rightarrow \bigsqcup_{i=1}^k B_i = S.$ An ordered partition of a set *S* into *k* blocks is a sequence $B_1 - B_2 - \dots - B_k$ such that: $\Rightarrow B_i \neq \emptyset$, $1 \le i \le k$; $\Rightarrow B_i \cap B_j = \emptyset$, $1 \le i, j \le k$; $\Rightarrow \bigsqcup_{i=1}^k B_i = S$. Set $[n] := \{1, \dots, n\}$. An ordered partition of a set S into k blocks is a sequence $B_1 - B_2 - \cdots - B_k$ such that: $A B_i \neq \emptyset$, $1 \leq i \leq k$; $A B_i \cap B_j = \emptyset , \quad 1 \le i, j \le k;$ $\diamondsuit \mid \mid_{i=1}^{k} B_{i} = S.$ Set $[n] := \{1, \ldots, n\}.$ $\pi = \{2, 9\} - \{3\} - \{1, 4, 8\} - \{5, 6\} - \{7\}$

is an ordered partition of [9] with 5 blocks.

The Stirling number S(n, k) of the second kind satisfy:

The Stirling number S(n, k) of the second kind satisfy:

$$S(n,k) = S(n-1, k-1) + k S(n-1, k).$$

The Stirling number S(n, k) of the second kind satisfy:

$$S(n,k) = S(n-1, k-1) + k S(n-1, k).$$

The Stirling number S(n, k) of the 2nd kind counts the number of (unordered) partitions of [n] into k blocks.

The Stirling number S(n, k) of the second kind satisfy:

$$S(n,k) = S(n-1, k-1) + k S(n-1, k).$$

The Stirling number S(n, k) of the 2nd kind counts the number of (unordered) partitions of [n] into k blocks.

Definition

 $\mathcal{OP}_n^k := \{ \text{ordered partitions of } [n] \text{ with } k \text{ blocks} \}.$

The Stirling number S(n, k) of the second kind satisfy:

$$S(n,k) = S(n-1, k-1) + k S(n-1, k).$$

The Stirling number S(n, k) of the 2nd kind counts the number of (unordered) partitions of [n] into k blocks.

$$\operatorname{cardinal}(\mathcal{OP}_n^k) = k!S(n,k).$$

q-Stirling numbers

q-integers and *q*-factorials

$$n_q = 1 + q + q^2 + \dots + q^{n-1}$$
,

q-Stirling numbers

q-integers and q-factorials

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1},$$
$$[n]_q! = [n]_q[n-1]_q \cdots [1]_q.$$

q-Stirling numbers

q-integers and q-factorials

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1},$$

$$[n]_q! = [n]_q [n-1]_q \cdots [1]_q.$$

The *q*-Stirling number $S_q(n,k)$ of the second kind satisfy:

$$S_q(n,k) = q^{k-1}S_q(n-1,k-1) + [k]_qS_q(n-1,k).$$

where $S_q(n,k) = \delta_{nk}$ if $n = 0$ or $k = 0$. (Carlitz)

Euler-Mahonian Statistics of Ordered Partitions - p.4/35

The first few values of the *q*-Stirling numbers $S_q(n, k)$ read

Table

The first few values of the *q*-Stirling numbers $S_q(n, k)$ read

$n \setminus k$	0	1	2	3
1	1			
2	1	q		
3	1	$2q + 2q^2$	q^3	
4	1	$3q + 5q^2 + 3q^3$	$3q^3 + 5q^4 + 3q^5$	q^6

Euler-Mahonian Statistics

Definition 1 (Steingrímsson) A statistic *STAT* on ordered partitions is said Euler-Mahonian if

Euler-Mahonian Statistics

Definition 1 (Steingrímsson) A statistic *STAT* on ordered partitions is said Euler-Mahonian if

$$\sum_{\pi \in \mathcal{OP}_n^k} q^{STAT \, \pi} = [k]_q! S_q(n,k).$$

Euler-Mahonian Statistics

Definition 1 (Steingrímsson) A statistic STAT on ordered partitions is said Euler-Mahonian if

$$\sum_{\pi \in \mathcal{OP}_n^k} q^{STAT \, \pi} = [k]_q! S_q(n,k).$$

Steingrimsson: Find Euler-Mahonian statistics on ordered partitions.

Steingrímsson's Conjecture

Steingrímsson defines a system of statistics:

ros, rob, rcs, rcb, lob, los, lcs, lcb, lsb, rsb, bInv, inv, cinv.

Steingrímsson's Conjecture

Steingrímsson defines a system of statistics:

ros, rob, rcs, rcb, lob, los, lcs, lcb, lsb, rsb, bInv, inv, cinv.

Conjecture 2 (Steingrímsson, 1997) The following combinations of SYSTEM

mak + bInv , lmak' + bInv, cinvLSB, mak' + bInv , lmak + bInv ,

are Euler-mahonian on OP.

Given an ordered partition π in \mathcal{OP}_n^k , each entry of π is divided into four classes:

***** singleton: an entry of a singleton block;

Given an ordered partition π in \mathcal{OP}_n^k , each entry of π is divided into four classes:

***** singleton: an entry of a singleton block;

* opener: the smallest entry of a non-singleton block;

Given an ordered partition π in \mathcal{OP}_n^k , each entry of π is divided into four classes:

- ***** singleton: an entry of a singleton block;
- * opener: the smallest entry of a non-singleton block;
- * closer: the largest entry of a non-singleton block;

Given an ordered partition π in \mathcal{OP}_n^k , each entry of π is divided into four classes:

- ***** singleton: an entry of a singleton block;
- * opener: the smallest entry of a non-singleton block;
- * closer: the largest entry of a non-singleton block;
- ***** transient: none of the above.

Given an ordered partition π in \mathcal{OP}_n^k , each entry of π is divided into four classes:

- ***** singleton: an entry of a singleton block;
- * opener: the smallest entry of a non-singleton block;
- * closer: the largest entry of a non-singleton block;
- ***** transient: none of the above.

The above sets are denoted by $\mathcal{O}(\pi)$, $\mathcal{C}(\pi)$, $\mathcal{S}(\pi)$ and $\mathcal{T}(\pi)$, respectively.

Example

* singletons: 1.

Example

* singletons: 1.* openers: 2,3,7.

Example

* singletons: 1.
* openers: 2,3,7.
* closers: 5,6,8.

Example

* singletons: 1.
* openers: 2,3,7.
* closers: 5,6,8.

* transients: 4.

Example

* singletons: 1.
* openers: 2,3,7.
* closers: 5,6,8.
+ transionts: 4

 \star transients: 4.

 $\mathcal{S}(\pi) = \{1\}, \mathcal{O}(\pi) = \{2, 3, 7\}, \mathcal{C}(\pi) = \{5, 6, 8\}, \mathcal{T}(\pi) = \{4\}.$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$.

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

 $\operatorname{ros}_{i}(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_{i} > w_{i}\},\$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$ros_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i\},$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$\operatorname{ros}_i: \ / \ / \ / \ / \ /$$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$\operatorname{ros}_{i}(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_{j} > w_{i}\},\$$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$\operatorname{ros}_{i}(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_{j} > w_{i}\},\$$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$\operatorname{ros}_{i}(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_{j} > w_{i}\},\$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

ros_i: 44 / 3 / / /

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$ros_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i\},$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$\operatorname{ros}_i: 44 / 3 / 0 / / /$$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$ros_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i\},$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$\operatorname{ros}_i: 44 / 3 / 02 / / /$$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$ros_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i\},$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$\operatorname{ros}_i: 44 / 3 / 022 / / /$$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$ros_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i\},$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

ros_i: 44 / 3 / 022 / 1 /

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$ros_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i\},$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

ros_i: 44 / 3 / 022 / 11 /

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$ros_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i\},$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$\operatorname{ros}_i: 44 \ / \ 3 \ / \ 022 \ / \ 11 \ / \ 0$$

Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. ros (right-opener-small)

$$ros_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i\},$$

rob (right-opener-big)

$$\operatorname{rob}_{i}(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i < j, w_{j} > w_{i}\},\$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

rob_i: 00 / 0 / 200 / 00 / 0
rob(π) = 2

rcs (right-closer-small)

$$\operatorname{rcs}_{i}(\pi) = \#\{j \in (\mathcal{C} \cup \mathcal{S})(\pi) \mid i > j, w_{j} > w_{i}\},\$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

rcs_i: 23 / 1 / 011 / 11 / 0
rcs(π) = 10

rcb (right-closer-big)

$$\operatorname{rcb}_{i}(\pi) = \#\{j \in (\mathcal{C} \cup \mathcal{S})(\pi) \mid i < j, w_{j} > w_{i}\},\$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

rcb_i: 21 / 2 / 211 / 00 / 0
rcb(π) = 9

los (left-opener-small)

$$\log_i(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j < w_i\},\$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$\log_i: 00 / 0 / 002 / 13 / 1$$

$$\log(\pi) = 7$$

lob (left-opener-big)

$$lob_{i}(\pi) = \#\{j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i < j, w_{j} < w_{i}\},\$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$lob_i: 00 / 1 / 220 / 20 / 3$$

$$lob(\pi) = 10$$

lcs (left-closer-small)

$$lcs_i(\pi) = \#\{j \in (\mathcal{C} \cup \mathcal{S})(\pi) \mid i > j, w_j < w_i\},\$$

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$lcs_i: 00 / 0 / 001 / 03 / 0$$

$$lcs(\pi) = 4$$

lcb (left-closer-big)

$$lcb_i(\pi) = \#\{j \in (\mathcal{C} \cup \mathcal{S})(\pi) \mid i < j, w_j < w_i\},\$$

$$\pi = 68 - 5 - 147 - 39 - 2$$
$$lcb_i: 00 / 1 / 221 / 30 / 4$$
$$lcb(\pi) = 13$$

rsb (right-small-big)

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

$$\pi = 68 - 5 - 147 - 39 - 2$$

rsb_i: / / / / / /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

 $\pi = 68 - 5 - 147 - 39 - 2$ rsb_i: 2 / / / / /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

 $\pi = 68 - 5 - 147 - 39 - 2$ rsb_i: 21 / / / / /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

 $\pi = 68 - 5 - 147 - 39 - 2$ rsb_i: 21 / 2 / / / /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

 $\pi = 68 - 5 - 147 - 39 - 2$ rsb_i: 21 / 2 / 0 / /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

$$\pi = 68 - 5 - 147 - 39 - 2$$

rsb_i: 21 / 2 / 01 / /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

$$\pi = 68 - 5 - 147 - 39 - 2$$

rsb_i: 21 / 2 / 011 / /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

$\pi = 68 - 5 - 147 - 39 - 2$ rsb_i: 21 / 2 / 01 / 0 /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

$\pi = 68 - 5 - 147 - 39 - 2$ rsb_i: 21 / 2 / 01 / 00 /

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

$\pi = 68 - 5 - 147 - 39 - 2$ rsb_i: 21 / 2 / 01 / 00 / 0

rsb (right-small-big)

 $rsb_i(\pi)$ is the number of blocks B in π to the right of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

$$\pi = 68 - 5 - 147 - 39 - 2$$

rsb_i: 21 / 2 / 01 / 00 / 0
rsb(π) = 7

lsb (left-small-big)

lsb (left-small-big)

 $lsb_i(\pi)$ is the number of blocks B in π to the left of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

lsb (left-small-big)

 $lsb_i(\pi)$ is the number of blocks B in π to the left of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

 $\pi = 68 - 5 - 147 - 39 - 2$ $lsb_i: 00 / 0 / 001 / 10 / 1$

lsb (left-small-big)

 $lsb_i(\pi)$ is the number of blocks B in π to the left of the block containing *i* such that the opener of B is smaller than *i* and the closer of B is greater than *i*.

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$lsb_i: 00 / 0 / 001 / 10 / 1$$

$$lsb(\pi) = 3$$

inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \dots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

 $\pi = 68 - 5 - 147 - 39 - 2$

inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \dots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = 68 - 5 - 147 - 39 - 2$$

147 - 2 - 39 - 5 - 68

inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \dots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = 68 - 5 - 147 - 39 - 2$$

147 - 2 - 39 - 5 - 68

inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \dots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

We set $perm(\pi) = \sigma$,
inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \dots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

We set $perm(\pi) = \sigma$, $inv \pi = inv \sigma$,

Euler-Mahonian Statistics of Ordered Partitions - p.14/35

inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \dots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

We set

$$perm(\pi) = \sigma$$
,
 $inv \pi = inv \sigma$,
 $cinv \sigma = {n \choose 2} - inv \sigma$.

inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \dots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$perm(\pi) = 54132$$
$$inv(\pi) = 8$$

inv, cinv

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \dots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$perm(\pi) = 54132$$
$$inv(\pi) = 8$$
$$cinv(\pi) = {5 \choose 2} - 8 = 2$$

Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k .

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .

A partial order on blocks:

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .

A partial order on blocks:

$$\pi = 68 - 5 - 147 - 39 - 2$$

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .

A partial order on blocks:

$$\pi = 68 - 5 - 147 - 39 - 2$$
$$\{6, 8\} > \{5\}.$$

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .

A partial order on blocks:

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .

A partial order on blocks:

$$\pi = 68 - 5 - 147 - 39 - 2$$
$$\{5\} > \{2\}.$$

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .

A partial order on blocks:

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$\{3,9\} > \{2\}.$$

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .
Block inversion:

A block inversion in π is a pair (i, j) such that i < j and $B_i > B_j$. We denote by $\operatorname{bInv} \pi$ the number of block inversions in π . We also set $\operatorname{cbInv} = \binom{k}{2} - \operatorname{bInv}$.

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .
Block inversion:

A block inversion in π is a pair (i, j) such that i < j and $B_i > B_j$. We denote by $\operatorname{bInv} \pi$ the number of block inversions in π . We also set $\operatorname{cbInv} = \binom{k}{2} - \operatorname{bInv}$.

$$\pi = 68 - 5 - 147 - 39 - 2$$

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .
Block inversion:

A block inversion in π is a pair (i, j) such that i < j and $B_i > B_j$. We denote by $\operatorname{bInv} \pi$ the number of block inversions in π . We also set $\operatorname{cbInv} = \binom{k}{2} - \operatorname{bInv}$.

$$\pi = 68 - 5 - 147 - 39 - 2$$

bInv $\pi = 4$, cbInv $\pi = {5 \choose 2} - 4 = 6$.

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .

Block descent:

A block descent in π is a block B_i such that iand $B_i > B_{i+1}$.

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .

Block descent:

A block descent in π is a block B_i such that iand $B_i > B_{i+1}$.

$$\pi = 68 - 5 - 147 - 39 - 2$$
$$\{68\} > \{5\}, \{39\} > \{2\}.$$

Euler-Mahonian Statistics of Ordered Partitions - p.15/35

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .
Block descent:

The block block major index, denote by $bMaj \pi$, is the sum of indices of block descents in π . We also set $cbMaj = \binom{k}{2} - bMaj$.

Let
$$\pi = B_1 - B_2 - \cdots - B_k$$
 be in \mathcal{OP}_n^k .
Block descent:

The block block major index, denote by $bMaj \pi$, is the sum of indices of block descents in π . We also set $cbMaj = \binom{k}{2} - bMaj$.

$$\pi = 68 - 5 - 147 - 39 - 2$$

1 2 3 4 5
bMaj $\pi = 1 + 4 = 5$, cbMaj $\pi = {5 \choose 2} - 5 = 5$.

mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

mak = ros + lcs,

mak = ros + lcs,lmak = n(k - 1) - [los + rcs],

mak = ros + lcs, lmak = n(k - 1) - [los + rcs],mak' = lob + rcb,

$$mak = ros + lcs,$$

$$lmak = n(k - 1) - [los + rcs],$$

$$mak' = lob + rcb,$$

$$lmak' = n(k - 1) - [lcb + rob].$$

mak = ros + lcs,
lmak =
$$n(k - 1) - [los + rcs]$$
,
mak' = lob + rcb,
lmak' = $n(k - 1) - [lcb + rob]$.

Proposition 3 (Ksavrelof & Zeng)

$$mak = lmak'$$
 and $mak' = lmak$.

Definition Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

 $\operatorname{cinvLSB} := \operatorname{lsb} + \operatorname{cbInv} + \binom{k}{2}$

Definition Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

Definition Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

 $\operatorname{cinvLSB} := \operatorname{lsb} + \operatorname{cbInv} + \binom{k}{2}$ $\operatorname{cmajLSB} := \operatorname{lsb} + \operatorname{cbMaj} + \binom{k}{2}$

 $\pi = \ 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$

Definition Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$lsb \pi = 3$$
, $cbInv \pi = 6$, $cbMaj \pi = 5$.

Definition Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

$$\pi = 68 - 5 - 147 - 39 - 2$$

cinvLSB
$$\pi = 3 + 6 + {5 \choose 2} = 19.$$

Definition Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

$$\pi = \ 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

cinvLSB
$$\pi = 3 + 6 + {5 \choose 2} = 19$$
,
cmajLSB $\pi = 3 + 5 + {5 \choose 2} = 18$.

Generating Functions

Consider the following generating functions of \mathcal{OP}^k :

Generating Functions

Consider the following generating functions of \mathcal{OP}^k :

$$\begin{split} \varphi_k(a; x, y, t, u) \\ = \sum_{\pi \in \mathcal{OP}^k} x^{(\max + b \operatorname{Inv})\pi} y^{\operatorname{cinvLSB} \pi} t^{\operatorname{inv} \pi} u^{\operatorname{cinv} \pi} a^{|\pi|}, \end{split}$$

where $|\pi| = n$ if π is an ordered partition of [n].

Generating Functions

Consider the following generating functions of \mathcal{OP}^k :

$$\begin{split} \psi_k(a; x, y, t, u) \\ &= \sum_{\pi \in \mathcal{OP}^k} x^{(\text{lmak} + \text{bInv})\pi} y^{\text{cinvLSB} \pi} t^{\text{inv} \pi} u^{\text{cinv} \pi} a^{|\pi|}, \end{split}$$

where $|\pi| = n$ if π is an ordered partition of [n].

Main Result

Definition

$$[n]_{p,q} = rac{p^n - q^n}{p - q}$$
: p, q -integer

Main Result

Definition

$$[n]_{p,q} = \frac{p^n - q^n}{p - q} \colon p, q\text{-integer}$$
$$[n]_{p,q}! = [1]_{p,q} [2]_{p,q} \cdots [n]_{p,q} \colon p, q\text{-factorial}$$

Main Result

Definition

$$[n]_{p,q} = \frac{p^n - q^n}{p - q} : p, q\text{-integer}$$

$$[n]_{p,q}! = [1]_{p,q} [2]_{p,q} \cdots [n]_{p,q} : p, q\text{-factorial}$$

$$\begin{bmatrix}n\\k\end{bmatrix}_{p,q} = \frac{[n]_{p,q}!}{[k]_{p,q}![n-k]_{p,q}!} : p, q\text{-binomial coefficient}$$

One of the main results of our paper is the following theorem:
One of the main results of our paper is the following theorem: Theorem We have

$$\varphi_k(a; x, y, t, u) = \frac{a^k (xy)^{\binom{k}{2}} [k]_{tx, uy}!}{\prod_{i=1}^k (1 - a[i]_{x, y})},$$

One of the main results of our paper is the following theorem: Theorem We have

$$\varphi_k(a; x, y, t, u) = \frac{a^k (xy)^{\binom{k}{2}} [k]_{tx, uy}!}{\prod_{i=1}^k (1 - a[i]_{x, y})},$$

$$\psi_k(a; x, y, t, u) = \frac{a^k (xy)^{\binom{2}{2}} [k]_{tx, uy}!}{\prod_{i=1}^k (1 - a[i]_{x, y})}.$$

The restriction $B_j \cap [i]$ of a block B_j on [i] is said to be active if $B_j \neq [i]$ and $B_j \cap [i] \neq \emptyset$.

The restriction $B_j \cap [i]$ of a block B_j on [i] is said to be complete if $B_j \subseteq [i]$.

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = \ 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_1(\pi) = 1$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_2(\pi) = 1 - 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_3(\pi) = 1 - 3 - 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_4(\pi) = 14 - 3 - 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_5(\pi) = 5 - 14 - 3 - 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_6(\pi) = 6 - 5 - 14 - 3 - 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_7(\pi) = 6 - 5 - 147 - 3 - 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_8(\pi) = 68 - 5 - 147 - 3 - 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_9(\pi) = 68 - 5 - 147 - 39 - 2$$

Trace

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \dots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1\leq i\leq n}$ is called the trace of the ordered partition π .

Definition

 $x_i = \sharp$ complete blocks of $T_i(\pi)$: abscissa $y_i = \sharp$ active blocks of $T_i(\pi)$: height Let us call $\{(x_i, y_i)\}_{1 \le i \le n}$ the form of π .

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π form of π
1-th trace of π
 $\{1, \dots\}$

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π form of π
2-th trace of π
 $\{1, \dots\} - \{2, \dots\}$

Path

Euler-Mahonian Statistics of Ordered Partitions - p.21/35

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π form of π
4-th trace of π
 $\{3, \dots\} - \{1, 4\} - \{2, \dots\}$
active blocks

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π form of π
5-th trace of π
 $\{3, 5, \dots\} - \{1, 4\} - \{2, \dots\}$
active blocks

 complete blocks

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$
i-th trace of π
6-th trace of π

$$\{6\} - \{3, 5, \cdots\} - \{1, 4\} - \{2, \cdots\}$$
active blocks
$$3_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0}$$

$$4_{0$$

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π
form of π
7-th trace of π
 $\{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, \cdots\}$
active blocks
 3
 2
 1
 0
 1
 2
 3
 4
complete blocks

Path

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π form of π
Thus the following path correspond to the orderd partition $\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}.$

complete blocks

3

4

2

 $\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}.$

Choice

 $\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}.$ $T_6(\pi) = \{6\} - \{3, 5, \cdots\} - \{1, 4\} - \{2, \cdots\}.$

Choice

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}.$$

$$T_6(\pi) = \{6\} - \{3, 5, \cdots\} - \{1, 4\} - \{2, \cdots\}.$$

Choice

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}.$$

$$T_6(\pi) = \{6\} - \{3, 5, \cdots\} - \{1, 4\} - \{2, \cdots\}.$$

Form of $T_6(\pi) = (2, 2)$

2+2+1=5 possibilities to open a new block or insert a singleton into $T_6(\pi)$.

Choice

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}.$$

$$T_6(\pi) = \{6\} - \{3, 5, \cdots\} - \{1, 4\} - \{2, \cdots\}.$$

Form of
$$T_6(\pi) = (2, 2)$$

2 possibilities to close an active block or add a transient into $T_6(\pi)$.

Definition A path diagram of depth k and length n

Definition

A path diagram of depth k and length n is a pair (ω, ξ) :

 $\star\,\omega$ is a path in \mathbb{N}^2 of length n from (0,0) to (k,0), whose steps are

North, East, South-East or Null .

Definition A path diagram of depth k and length n is a pair (ω, ξ) :

 $\star \xi = (\xi_i)_{1 \le i \le n}$ is a sequence of integers

Definition

A path diagram of depth k and length n is a pair (ω, ξ) :

★ $\xi = (\xi_i)_{1 \le i \le n}$ is a sequence of integers such that:

• $1 \le \xi_i \le q$ if the *i*-th step is Null or South-East, of height q,

Definition

A path diagram of depth k and length n is a pair (ω, ξ) :

★ $\xi = (\xi_i)_{1 \le i \le n}$ is a sequence of integers such that:

• $1 \le \xi_i \le q$ if the *i*-th step is Null or

South-East, of height q,

$$\uparrow 1 \leq \xi_i \leq p + q + 1$$
 if the *i*-th step is

North or East, of abscissa p and height q.
Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π **bijection** path diagram of π
1-th trace of π

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π
2-th trace of π
 $\{1, \dots\} - \{2, \dots\}$
 $\xi_2 = 2$
active blocks

Euler-Mahonian Statistics of Ordered Partitions – p.24/35

complete blocks

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π
3-th trace of π
 $\{3, \dots\} - \{1, \dots\} - \{2, \dots\}$
$$\xi_3 = 1$$

active blocks
active blocks

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π
4-th trace of π
 $\{3, \dots\} - \{1, 4\} - \{2, \dots\}$
$$\xi_4 = 2$$

active blocks
active blocks

Euler-Mahonian Statistics of Ordered Partitions – p.24/35

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π
5-th trace of π
 $\{3, 5, \dots\} - \{1, 4\} - \{2, \dots\}$
$$\xi_5 = 1$$

active blocks
active blocks

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π
6-th trace of π
 $\{6\} - \{3, 5, \cdots\} - \{1, 4\} - \{2, \cdots\}$
 $\xi_6 = 1$
active blocks
active blocks
active blocks
active blocks
active blocks
active blocks
active blocks

Path

Path

$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π
8-th trace of π
 $\{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$
$$\xi_8 = 1$$

Euler-Mahonian Statistics of Ordered Partitions – p.24/35

Path

Euler-Mahonian Statistics of Ordered Partitions – p.24/35

$$\pi { \longleftrightarrow } (\omega, \xi)$$

(a) if the *i*-th step of ω is North (resp. East), then $i \in \mathcal{O}(\pi)$ (resp. $i \in \mathcal{S}(\pi)$) and

 $(\operatorname{lcs} + \operatorname{rcs})_i(\pi) = p_{i-1}, \quad \log_i(\pi) = \xi_i - 1,$ $(\operatorname{lsb} + \operatorname{rsb})_i(\pi) = q_{i-1}, \quad \operatorname{ros}_i(\pi) = p_{i-1} + q_{i-1} + 1 - \xi_i;$

The digraph
$$D_k$$

 $\pi \longleftarrow (\omega, \xi)$
(b) if the *i*-th step of ω is South-East (resp. Null),
then $i \in C(\pi)$ (resp. $i \in T(\pi)$) and

 $(lcs + rcs)_i(\pi) = p_{i-1}, \quad lsb_i(\pi) = \xi_i - 1,$ $(lsb + rsb)_i(\pi) = q_{i-1} - 1, \quad rsb_i(\pi) = q_{i-1} - \xi_i.$

$$Q_{k}(a; \alpha, \beta, \gamma, \delta, \varepsilon, \eta, \theta) :=$$

$$\sum_{\pi \in \mathcal{OP}^{k}} \alpha^{(\text{lcs} + \text{rcs})(\mathcal{O} \cup \mathcal{S})\pi} \beta^{(\text{lcs} + \text{rcs})(\mathcal{T} \cup \mathcal{C})\pi} \gamma^{\text{rsb}(\mathcal{T} \cup \mathcal{C})\pi}$$

$$\times \delta^{\text{lsb}(\mathcal{T} \cup \mathcal{C})\pi} \varepsilon^{\text{ros}(\mathcal{O} \cup \mathcal{S})\pi} \eta^{\text{los}(\mathcal{O} \cup \mathcal{S})\pi} \theta^{(\text{lsb} + \text{rsb})(\mathcal{O} \cup \mathcal{S})\pi} a^{|\pi|}$$

$$= \sum_{w \in D_{k}: (0,0) \to (0,k)} val(w) a^{|w|}$$

• D = (V, E) a digraph.

- D = (V, E) a digraph.
- $val : E \mapsto \mathbb{R}$ a valuation.

- D = (V, E) a digraph.
- $val : E \mapsto \mathbb{R}$ a valuation.

Let A be the adjacency matrix of D, i.e

$$A_{ij} = val(v_i, v_j).$$

- D = (V, E) a digraph.
- $val : E \mapsto \mathbb{R}$ a valuation.

Let A be the adjacency matrix of D, i.e

$$A_{ij} = val(v_i, v_j).$$

Example

- D = (V, E) a digraph.
- $val : E \mapsto \mathbb{R}$ a valuation.

Let A be the adjacency matrix of D, i.e

 $\overline{A_{ij}} = val(v_i, v_j).$

Example

A walk of length k is a sequence $w = v_{i_0}v_{i_1} \dots v_{i_k}$ of points of D such that $(v_{i_r}, v_{i_{r+1}}) \in E$.

A walk of length k is a sequence $w = v_{i_0}v_{i_1} \dots v_{i_k}$ of points of D such that $(v_{i_r}, v_{i_{r+1}}) \in E$.

Theorem

$$\sum_{w:v_i \to v_j} val(w) z^{|w|} = (-1)^{i+j} \frac{\det(I - zA; j, i)}{\det(I - zA)}.$$

Example

 $w_0 = v_3 v_2 v_2 v_1 v_3 v_1$ walk of length $|w_0| = 5$ and $val(w_0) = s^3 \times t^2 \times st \times s \times t = s^5 t^4$.

A walk of length k is a sequence $w = v_{i_0}v_{i_1} \dots v_{i_k}$ of points of D such that $(v_{i_r}, v_{i_{r+1}}) \in E$.

Example

$$\sum_{w:v_1\mapsto v_3} val(w) \mathbf{z}^{|w|} = \frac{\det(I_2 - \mathbf{z} A_2; 3, 1)}{\det(I_2 - \mathbf{z} A_2)}$$
$$= \frac{\mathbf{z}s(1 - \mathbf{z}t^2)}{1 - \mathbf{z}t^2 + \mathbf{z}^3 s^5 t + \mathbf{z}^2 t s - \mathbf{z}^3 t^3 s}$$

Determinant Expression

$$Q_k(a; t_1, t_2, t_3, t_4, t_5, t_6, t_7) = \sum_{w \in D_k: (0,0) \to (0,k)} val(w)a^{|w|}$$

Transfer-matrix method \Longrightarrow

$$= (-1)^{1+n_k} \frac{\det(I - aA_k; n_k, 1)}{\det(I - aA_k)}.$$

Euler-Mahonian Statistics of Ordered Partitions – p.28/35

Determinant Expression

For instance, when k = 2, we have

$A_2 =$	0	1	1	0	0	0	
	0	1	1	$t_7 [2]_{t_5, t_6}$	$t_7 [2]_{t_5, t_6}$	0	-
	0	0	0	0	$t_1 [2]_{t_5, t_6}$	$t_1 [2]_{t_5, t_6}$	
	0	0	0	$[2]_{t_3,t_4}$	$[2]_{t_3,t_4}$	0	
	0	0	0	0	t_2	t_2	
	0	0	0	0	0	0	

Determinant Expression

$$Q_2(a; t) = -\frac{\det(I_2 - aA_2; 6, 1)}{\det(I_2 - aA_2)}$$
$$= \frac{a^2[2]_{t_5, t_6}(at_2t_7 + t_1(1 - a[2]_{t_3, t_4}))}{(1 - a)(1 - a[2]_{t_3, t_4})(1 - at_2)}.$$

Euler-Mahonian Statistics of Ordered Partitions - p.28/35

In order to prove Steingrímsson's conjecture, it is sufficient to evaluate the following special cases of $Q_k(a; t)$:

 $f_k(a; x, y, t, u) = Q_k(a; x, x, x, y, t, u, y),$ $q_k(a; x, y, t, u) = Q_k(a; 1, x, 1, xy, t, u, y).$

Generating Function

The goal of our proof is the following identity:

$$f_k(a; x, y, t, u) = \frac{a^k x^{\binom{k}{2}}[k]_{t,u}!}{\prod_{i=1}^k (1 - a[i]_{x,y})},$$
$$g_k(a; x, y, t, u) = \frac{a^k [k]_{t,u}!}{\prod_{i=1}^k (1 - ax^{k-i}[i]_{xy})}.$$

Euler-Mahonian Statistics of Ordered Partitions – p.29/35

Let A'_k and A''_k be the matrices obtained from A_k by making the substitutions. Let

$$M_k = I_k - aA'_k$$
 and $N_k = I_k - aA''_k$.

Then we derive from the above formula that

$$f_k(a; x, y, t, u) = \frac{(-1)^{1+n_k} \det(M_k; n_k, 1)}{\det M_k},$$
$$g_k(a; x, y, t, u) = \frac{(-1)^{1+n_k} \det(N_k; n_k, 1)}{\det N_k}.$$

 $\frac{\mathsf{Example}}{k=1}$

$$M_1 = \begin{pmatrix} 1 & -a & -a \\ 0 & 1-a & -a \\ 0 & 0 & 1 \end{pmatrix}$$

Euler-Mahonian Statistics of Ordered Partitions - p.30/35

Matrix M_k

Example k = 2

$$M_{2} = \begin{pmatrix} 1 & -a & -a & 0 & 0 & 0 \\ 0 & 1-a & -a & -ay(t+u) & -ay(t+u) & 0 \\ 0 & 0 & 1 & 0 & -ax(t+u) & -ax(t+u) \\ \hline 0 & 0 & 0 & 1-a(x+y) & -a(x+y) & 0 \\ 0 & 0 & 0 & 0 & 1-ax & -ax \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Euler-Mahonian Statistics of Ordered Partitions – p.30/35

Matrix M_k

$$M_k = \begin{pmatrix} M_{k-1} & \overline{M}_{k-1} \\ \\ \hline O_{k+1,n_{k-1}} & \widehat{M}_{k-1} \end{pmatrix}$$

Here \widehat{M}_{k-1} is the $(k+1) \times (k+1)$ matrix

$$\widehat{M}_{k-1} = \left(\delta_{ij} - ax^{i-1}[n+1-i]_{x,y}(\delta_{ij} + \delta_{i+1,j})\right)_{1 \le i,j \le k+1}$$

Matrix M_k

$$M_k = \begin{pmatrix} M_{k-1} & \overline{M}_{k-1} \\ \hline \\ O_{k+1,n_{k-1}} & \widehat{M}_{k-1} \end{pmatrix}$$

Here \overline{M}_{k-1} is the $n_{k-1} \times (k+1)$ matrix

$$\overline{M}_{k-1} = \begin{pmatrix} O_{n_{k-2},k+1} \\ \\ \\ \\ \tilde{M}_{k-1} \end{pmatrix}$$

Matrix M_k

$$M_k = \begin{pmatrix} M_{k-1} & \overline{M}_{k-1} \\ \\ \hline O_{k+1,n_{k-1}} & \widehat{M}_{k-1} \end{pmatrix}$$

with the $k \times (k+1)$ matrix

 $\check{M}_{k-1} = \left(-ax^{i-1}y^{k-i}[k]_{t,u}(\delta_{ij} + \delta_{i+1,j})\right)_{1 \le i \le k, 1 \le j \le k+1}.$

Matrix M_k

$$M_k = \begin{pmatrix} M_{k-1} & \overline{M}_{k-1} \\ \\ \hline O_{k+1,n_{k-1}} & \widehat{M}_{k-1} \end{pmatrix}$$

Theorem

$$\det(M_k; n_k, 1) = (-1)^{\binom{k}{2}} a^k x^{\binom{k}{2}} [k]_{t,u}!$$

$$\times \prod_{m=1}^{k-1} \prod_{i=1}^m (1 - ax^i [m - i + 1]_{x,y}).$$
Eller-Mahonian Statistics of Ordered Partitions – p.3035

Matrix M_k

$$M_k = \begin{pmatrix} M_{k-1} & \overline{M}_{k-1} \\ \\ \hline O_{k+1,n_{k-1}} & \widehat{M}_{k-1} \end{pmatrix}$$

Proof Use

$$\det \left(\frac{A \mid B}{C \mid D} \right) = \det A \cdot \det \left(D - CA^{-1}B \right).$$

Euler-Mahonian Statistics of Ordered Partitions - p.30/35
Matrix N_k

Example k = 2

 $N_2(\lambda,$

$$a) = \begin{pmatrix} \lambda & -a & -a & 0 & 0 & 0 \\ 0 & \lambda - a & -a & -ay[2]_{t,u} & -ay[2]_{t,u} & 0 \\ 0 & 0 & \lambda & 0 & -a[2]_{t,u} & -a[2]_{t,u} \\ 0 & 0 & 0 & \lambda -a(1+xy) & -a(1+xy) & 0 \\ 0 & 0 & 0 & 0 & \lambda -ax & -ax \\ 0 & 0 & 0 & 0 & 0 & \lambda \end{pmatrix}$$

Matrix N_k

$$N_k(\lambda,a) = egin{pmatrix} N_{k-1}(\lambda,a) & ignerightarrow \overline{N}_{k-1}(\lambda,a) \ \hline O_{k+1,n_{k-1}} & ignerightarrow \widehat{N}_{k-1}(\lambda,a) \end{pmatrix}$$

Here $\widehat{N}_{k-1}(\lambda, a)$ is the $(k+1) \times (k+1)$ matrix

 $\widehat{N}_{n-1}(\lambda, a) = \left(\lambda \delta_{ij} - ax^{i-1}[n+1-i]_{xy}(\delta_{ij} + \delta_{i+1,j})\right)_{1 \le i,j \le n+1}$

Matrix N_k

$$N_k(\lambda,a) = egin{pmatrix} N_{k-1}(\lambda,a) & ar{N}_{k-1}(\lambda,a) \ \hline O_{k+1,n_{k-1}} & ar{N}_{k-1}(\lambda,a) \end{pmatrix}$$

Here $\overline{N}_{k-1}(\lambda, a)$ is the $n_{k-1} \times (k+1)$ matrix

$$\begin{pmatrix} O_{n_{k-2},k+1} \\ \hline & \\ & \\ & \\ & \tilde{N}_{k-1} \end{pmatrix}$$

Matrix N_k

$$N_k(\lambda,a) = egin{pmatrix} N_{k-1}(\lambda,a) & | \ \overline{N}_{k-1}(\lambda,a) \ \hline O_{k+1,n_{k-1}} & | \ \widehat{N}_{k-1}(\lambda,a) \end{pmatrix}$$

with the $k \times (k+1)$ matrix

 $\check{N}_{k-1} = \left(-ay^{k-i}[n]_{t,u} \cdot \left(\delta_{ij} + \delta_{i+1,j}\right)\right)_{1 \le i \le k, 1 \le j \le k+1}.$

Euler-Mahonian Statistics of Ordered Partitions - p.31/35

Matrix N_k

$$N_k(\lambda,a) = egin{pmatrix} N_{k-1}(\lambda,a) & | \ \overline{N}_{k-1}(\lambda,a) \ \hline O_{k+1,n_{k-1}} & | \ \widehat{N}_{k-1}(\lambda,a) \end{pmatrix}$$

<u>Proof</u> Find the eigenvector of each eigenvalue.

Eigenvectors

 $]n, k[_{q,r} = [n]_{qr} - q^{n-k}[k]_{qr},$

Eigenvectors

$$\widehat{}]n, k[_{q,r} = [n]_{qr} - q^{n-k}[k]_{qr},$$

$$\widehat{}]n_k \Big[_{q,r} = \begin{cases} \frac{\prod_{i=0}^{k-1}]n, i[_{q,r}]}{[k]_{qr}!} & \text{if } 0 \le k \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Euler-Mahonian Statistics of Ordered Partitions – p.32/35

Eigenvectors

$$\widehat{}]n, k[_{q,r} = [n]_{qr} - q^{n-k}[k]_{qr},$$

$$\widehat{}]n [_{q,r} = \begin{cases} \frac{\prod_{i=0}^{k-1}]n, i[_{q,r}]}{[k]_{qr}!} & \text{if } 0 \le k \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Example

$$]3,1[_{q,r} = 1 + qr + q^2r^2 - q^2]]3,1[_{q,r} = \frac{(1 + qr + q^2r^2)(1 + qr + q^2r^2 - q^2)}{(1 + qr)}.$$

Define the row vectors $X_n^{m,l}$ of degree n_k as follows: For $1 \le i \le k+1$ and $1 \le j \le i$, the $\left(\frac{i(i-1)}{2}+j\right)$ th entry of $X_n^{m,l}$ is equal to

$$\begin{aligned} X_{i,j}^{m,l} &= (-1)^{i+m+l} x^{-(m+l-1)(i-m-l) + \binom{j-l}{2}} y^{\binom{i-m-l}{2}} \\ &\times \frac{[i-m-l]_{t,u}!}{[i-m-l]_{xy}!} \begin{bmatrix} i-1 \\ m+l-1 \end{bmatrix}_{t,u} \end{bmatrix} m + l - j \begin{bmatrix} x, y \end{bmatrix} \end{aligned}$$

Let k be a positive integer. Let m and l be positive integers such that $0 \le m \le k - 1$ and $1 \le l \le k - m$. Then we have

$$\boldsymbol{X}_{k}^{m,l} N_{k}(\lambda, a) = (\lambda - ax^{l-1}[m]_{xy}) \boldsymbol{X}_{k}^{m,l}.$$

Consider the following two generating functions of ordered partitions with $k \ge 0$ blocks:

$$\xi_k(a; x, y) := \sum_{\pi \in \mathcal{OP}^k} x^{(\max + b\operatorname{Maj})\pi} y^{\operatorname{cmajLSB}\pi} a^{|\pi|},$$
$$\eta_k(a; x, y) := \sum_{\pi \in \mathcal{OP}^k} x^{(\operatorname{Imak} + b\operatorname{Maj})\pi} y^{\operatorname{cmajLSB}\pi} a^{|\pi|}.$$

Conjecture

Conjecture

For $k \ge 0$, the following identities would hold:

$$\xi_k(a;x,y) = \frac{a^k (xy)^{\binom{k}{2}} [k]_{x,y}!}{\prod_{i=1}^k (1-a[i]_{x,y})},$$

$$\eta_k(a;x,y) = \frac{a^k (xy)^{\binom{k}{2}} [k]_{x,y}!}{\prod_{i=1}^k (1-a[i]_{x,y})}.$$

Euler-Mahonian Statistics of Ordered Partitions – p.33/35

Reference

* M. Ishikawa, A. Kasraoui and J. Zeng, "Statistics on Ordered Partitions of Sets and q-Stirling Numbers", math.CO/0605390.

* Steingrímsson (E.), *Statistics on ordered partitions of sets*, preprint, 1999, available at Arxiv:math.CO/0605670.

★ Wachs (M.) and White (D.), *p*, *q*-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A, **56** (1991), 27-46.

The End of Talk

Thank you!

Euler-Mahonian Statistics of Ordered Partitions - p.35/35