Hankel determinants of Catalan, Motzkin and Schröder numbers and its q-analogues

Masao Ishikawa

Department of Mathematics Tottori University

Expansion of Combinatorial Representation Theory, RIMS, Kyoto University, October 23 – 26, 2007

Introduction

Abstract

In this talk we try to generalize Catalan Hankel determinants and make a *q*-analogue. The Catalan numbers are well-know to be the number of Dyck paths. We replace the Catalan numbers with Motzkin numbers, Schröder numbers and etc. paths, which counts certain paths in the plane.

- Catalan Hankel determinants
- A q-analogue
- Proof by Lindström-Gessel-Viennot theorem
- Relation with little q-Jacobi polynomials
- Relation with q-Dougall's formula for basic hypergeometric series

- Catalan Hankel determinants
- 2 A q-analogue
- Proof by Lindström-Gessel-Viennot theorem
- Relation with little q-Jacobi polynomials
- Relation with q-Dougall's formula for basic hypergeometric series

- Catalan Hankel determinants
- A q-analogue
- Proof by Lindström-Gessel-Viennot theorem
- Relation with little q-Jacobi polynomials
- Relation with q-Dougall's formula for basic hypergeometric series

- Catalan Hankel determinants
- A q-analogue
- Proof by Lindström-Gessel-Viennot theorem
- Relation with little q-Jacobi polynomials
- Relation with q-Dougall's formula for basic hypergeometric series

- Catalan Hankel determinants
- A q-analogue
- Proof by Lindström-Gessel-Viennot theorem
- Relation with little q-Jacobi polynomials
- Relation with q-Dougall's formula for basic hypergeometric series

Hankel Determinants

Hankel matrix

Let a_0 , a_1 , a_2 ,... be any sequence of integers. We consider the Hankel matrix

$$A_n^{(t)} = (a_{i+j+t})_{0 \le i, j \le n-1} = \begin{pmatrix} a_t & a_{t+1} & \dots & a_{t+n-1} \\ a_{t+1} & a_{t+2} & \dots & a_{t+n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{t+n-1} & a_{t+n} & \dots & a_{t+2n-2} \end{pmatrix}$$

of degree n.

Hankel determinants

How can we compute det $A_n^{(t)}$?

Hankel Determinants

Hankel matrix

Let a_0 , a_1 , a_2 ,... be any sequence of integers. We consider the Hankel matrix

$$A_n^{(t)} = (a_{i+j+t})_{0 \le i,j \le n-1} = egin{pmatrix} a_t & a_{t+1} & \dots & a_{t+n-1} \ a_{t+1} & a_{t+2} & \dots & a_{t+n} \ dots & dots & \ddots & dots \ a_{t+n-1} & a_{t+n} & \dots & a_{t+2n-2} \end{pmatrix}$$

of degree n.

Hankel determinants

How can we compute $\det A_n^{(t)}$?

Catalan numbers

Definition

For n = 0, 1, 2, ..., The Catalan number C_n is defined to be

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

The Catalan number C_n counts the Dyck paths from (0,0) to (2n,0).

Example

The generating function for the Catalan numbers is given by

$$\frac{1 - \sqrt{1 - 4t}}{2t} = \sum_{n \ge 0} C_n t^n = 1 + t + 2t^2 + 5t^3 + 14t^4 + \cdots$$

Catalan numbers

Definition

For n = 0, 1, 2, ..., The Catalan number C_n is defined to be

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

The Catalan number C_n counts the Dyck paths from (0,0) to (2n,0).

Example

The generating function for the Catalan numbers is given by

$$\frac{1-\sqrt{1-4t}}{2t}=\sum_{n>0}C_nt^n=1+t+2t^2+5t^3+14t^4+\cdots.$$

Catalan Hankel determinants

Fact (Mays-Wojciechowski 2000)

For the Catalan numbers C_0 , C_1 , C_2 ,..., let

$$C_n^{(t)} = (C_{i+j+t})_{0 \le i,j \le n-1}$$

denote the Hankel matrix. Then, for $n \ge 0$, the following identities hold:

$$\det C_n^{(0)} = \det C_n^{(1)} = 1,$$

$$\det C_n^{(2)} = n + 1,$$

$$\det C_n^{(3)} = \frac{1}{6}(n+1)(n+2)(2n+3).$$

Catalan Hankel determinants

Theorem (Desainte-Catherine-Viennot 1986)

In general

$$\det C_n^{(t)} = \prod_{0 \le i \le j \le t-1} \frac{i+j+2n}{i+j}.$$

holds for $t, n \ge 0$.

Theorem (Krattenthaler 2007)

$$\det \left(C_{k_{i+1}+j} \right)_{0 \leq i,j \leq n-1} = \prod_{1 \leq i < j \leq n} (k_i - k_j) \prod_{i=1}^n \frac{(i+n)!(2k_i)!}{(2i)!k_i!(k_i+n)!}$$

for a positive integer n and non-negative integers k_1, k_2, \ldots, k_n .

Catalan Hankel determinants

Theorem (Desainte-Catherine-Viennot 1986)

In general

$$\det C_n^{(t)} = \prod_{0 \le i \le j \le t-1} \frac{i+j+2n}{i+j}.$$

holds for $t, n \ge 0$.

Theorem (Krattenthaler 2007)

$$\det\left(C_{k_{i+1}+j}\right)_{0\leq i,j\leq n-1} = \prod_{1\leq i< j\leq n} (k_i-k_j) \prod_{i=1}^n \frac{(i+n)!(2k_i)!}{(2i)!k_i!(k_i+n)!}$$

for a positive integer n and non-negative integers k_1, k_2, \ldots, k_n .

Fibonacci Numbers

Fibonacci Numbers

Let $n \ge 0$. The sequence $\{F_n\}$ integers defined by $F_0 = F_1 = 1$, and

$$F_n = F_{n-1} + F_{n-2}$$

is called the Fibonacci sequence.

Example

The generating function for the Fibonacci numbers is given by

$$\frac{1}{1-t-t^2} = \sum_{n\geq 0} F_n t^n = 1 + t + 2t^2 + 3t^3 + 5t^4 + 8t^5 + \cdots$$

Fibonacci Numbers

Fibonacci Numbers

Let $n \ge 0$. The sequence $\{F_n\}$ integers defined by $F_0 = F_1 = 1$, and

$$F_n = F_{n-1} + F_{n-2}$$

is called the Fibonacci sequence.

Example

The generating function for the Fibonacci numbers is given by

$$\frac{1}{1-t-t^2} = \sum_{n\geq 0} F_n t^n = 1+t+2t^2+3t^3+5t^4+8t^5+\cdots.$$

Catalan determinants and Fibonacci numbers

Fact (Cvetković-Rajković-Ivković 2002)

We consider the Hankel matrix

$$\widetilde{C}_{n}^{(t)} = (C_{i+j+t} + C_{i+j+t+1})_{0 \le i, j \le n-1}$$

$$= \begin{pmatrix} C_{t} + C_{t+1} & C_{t+1} + C_{t+2} & \dots & C_{t+n-1} + C_{t+n} \\ C_{t+1} + C_{t+2} & C_{t+2} + C_{t+3} & \dots & C_{t+n-} + C_{t+n+1} \\ \vdots & \vdots & \dots & \vdots \\ C_{t+n-1} + C_{t+n} & C_{t+n} + C_{t+n+1} & \dots & C_{t+2n-2} + C_{t+2n-1} \end{pmatrix}.$$

Then the following identities hold for $n \ge 1$:

$$\begin{split} \widetilde{C}_n^{(0)} &= F_{2n}, \\ \widetilde{C}_n^{(1)} &= F_{2n+1}. \end{split}$$

Notation

q-shifted factorials

We use the notation:

$$(a; q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^{k}),$$

 $(a; q)_{n} = \prod_{k=0}^{n-1} (1 - aq^{k})$

for $n = 0, 1, 2, \dots (a; q)_n$ is called the *q-shifted factorial*. Frequently used compact natation:

$$(a_1, a_2, \ldots, a_r; q)_{\infty} = (a_1; q)_{\infty} (a_2; q)_{\infty} \cdots (a_r; q)_{\infty},$$

 $(a_1, a_2, \ldots, a_r; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_r; q)_n$

Notation

q-shifted factorials

We use the notation:

$$(a; q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k),$$

 $(a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k)$

for $n = 0, 1, 2, \dots$ (a; q)_n is called the q-shifted factorial.

$$(a_1, a_2, \dots, a_r; q)_{\infty} = (a_1; q)_{\infty} (a_2; q)_{\infty} \cdots (a_r; q)_{\infty}, \ (a_1, a_2, \dots, a_r; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_r; q)_n$$

Notation

q-shifted factorials

We use the notation:

$$(a; q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^{k}),$$

 $(a; q)_{n} = \prod_{k=0}^{n-1} (1 - aq^{k})$

for n = 0, 1, 2, ... ($a; q)_n$ is called the *q-shifted factorial*. Frequently used compact natation:

$$(a_1, a_2, \ldots, a_r; q)_{\infty} = (a_1; q)_{\infty} (a_2; q)_{\infty} \cdots (a_r; q)_{\infty},$$

 $(a_1, a_2, \ldots, a_r; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_r; q)_n$

More Notation

Raising factorials

If we put $a = q^{\alpha}$, then

$$\lim_{q \to 1} \frac{(q^{\alpha}; q)_n}{(1 - q)^n} = \lim_{q \to 1} \frac{(1 - q^{\alpha})}{(1 - q)} \frac{(1 - q^{\alpha+1})}{(1 - q)} \cdots \frac{(1 - q^{\alpha+n-1})}{(1 - q)}$$
$$= (\alpha)(\alpha + 1) \cdots (\alpha + n - 1).$$

We write $(\alpha)_n = \prod_{k=0}^{n-1} (\alpha + k)$, which is called the *raising factorial*.

More Notation

Raising factorials

If we put $a = q^{\alpha}$, then

$$\lim_{q \to 1} \frac{(q^{\alpha}; q)_n}{(1 - q)^n} = \lim_{q \to 1} \frac{(1 - q^{\alpha})}{(1 - q)} \frac{(1 - q^{\alpha+1})}{(1 - q)} \cdots \frac{(1 - q^{\alpha+n-1})}{(1 - q)}$$
$$= (\alpha)(\alpha + 1) \cdots (\alpha + n - 1).$$

We write $(\alpha)_n = \prod_{k=0}^{n-1} (\alpha + k)$, which is called the *raising factorial*.

Basic hypergeomrtric series

Basic hypergeomrtric series

We shall define the $_{r+1}\phi_r$ basic hypergeomrtric series by

$$_{r+1}\phi_r\left[\begin{array}{c} a_1,a_2,\ldots,a_{r+1}\\ b_1,\ldots,b_r \end{array};q,z\right]=\sum_{n=0}^{\infty}\frac{(a_1,a_2,\ldots,a_{r+1};q)_n}{(q,b_1,\ldots,b_r;q)_n}z^n.$$

Hypergeomrtric series

If we put $a_i = q^{\alpha_i}$ and $b_i = q^{\beta_i}$ in the above series and let $q \to 1$, then we obtain the $r_{i+1}F_r$ hypergeomrtric series

$$_{r+1}F_r\left[\begin{array}{c} \alpha_1,\alpha_2,\ldots,\alpha_{r+1} \\ \beta_1,\ldots,\beta_r \end{array};z\right] = \sum_{n=0}^{\infty} \frac{(\alpha_1)_n(\alpha_2)_n\cdots(\alpha_{r+1})_n}{n!(\beta_1)_n\ldots(\beta_r)_n}z^n.$$

Basic hypergeomrtric series

Basic hypergeomrtric series

We shall define the $_{r+1}\phi_r$ basic hypergeomrtric series by

$$_{r+1}\phi_r\left[\begin{array}{c} a_1,a_2,\ldots,a_{r+1}\\ b_1,\ldots,b_r \end{array};q,z\right] = \sum_{n=0}^{\infty} \frac{(a_1,a_2,\ldots,a_{r+1};q)_n}{(q,b_1,\ldots,b_r;q)_n}z^n.$$

Hypergeomrtric series

If we put $a_i = q^{\alpha_i}$ and $b_i = q^{\beta_i}$ in the above series and let $q \to 1$, then we obtain the r+1 F_r hypergeomrtric series

$${}_{r+1}F_r\left[\begin{array}{c}\alpha_1,\alpha_2,\ldots,\alpha_{r+1}\\\beta_1,\ldots,\beta_r\end{array};z\right]=\sum_{n=0}^{\infty}\frac{(\alpha_1)_n(\alpha_2)_n\cdots(\alpha_{r+1})_n}{n!(\beta_1)_n\ldots(\beta_r)_n}z^n.$$

Motzkin numbers

Definition (Motzkin numbers)

The Motzkin number M_n is defined to be

$$M_n = {}_2F_1\left[{(1-n)/2,-n/2 \atop 2};4\right].$$

The Motzkin number M_n counts the number of Moztkin paths from (0,0) to (n,0).

The generating function

The generating function for Motzkin numbers is

$$\sum_{n=0}^{\infty} M_n t^n = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}$$
$$= 1 + x + 2x^2 + 4x^3 + 9x^4 + 21x^5 + \cdots$$

Motzkin numbers

Definition (Motzkin numbers)

The Motzkin number M_n is defined to be

$$M_n = {}_2F_1\left[{(1-n)/2,-n/2 \atop 2};4\right].$$

The Motzkin number M_n counts the number of Moztkin paths from (0,0) to (n,0).

The generating function

The generating function for Motzkin numbers is

$$\sum_{n=0}^{\infty} M_n t^n = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}$$
$$= 1 + x + 2x^2 + 4x^3 + 9x^4 + 21x^5 + \cdots$$

Definition

For the Motzkin numbers M_0 , M_1 , M_2 ,..., define the Hankel matrix $M_n^{(t)}$ to be

$$M_n^{(t)} = (M_{i+j+t})_{0 \le i,j \le n-1}$$
.

Theorem (Aigner 1998)

We have

 \bigcirc det $M_n^{(0)} = 1$ for $n \ge 1$,

Definition

For the Motzkin numbers M_0 , M_1 , M_2 ,..., define the Hankel matrix $M_n^{(t)}$ to be

$$M_n^{(t)} = (M_{i+j+t})_{0 \le i,j \le n-1}$$
.

Theorem (Aigner 1998)

- \bigcirc det $M_n^{(0)} = 1$ for $n \ge 1$,
- ② $\det M_n^{(1)} = 1, 0, -1 \text{ for } n \equiv 0, 1 \pmod{6}, n \equiv 2, 5 \pmod{6}, n \equiv 3, 4 \pmod{6}, \text{ respectively.}$

Definition

For the Motzkin numbers M_0 , M_1 , M_2 ,..., define the Hankel matrix $M_n^{(t)}$ to be

$$M_n^{(t)} = (M_{i+j+t})_{0 \le i,j \le n-1}$$
.

Theorem (Aigner 1998)

- **1** $\det M_n^{(0)} = 1 \text{ for } n \ge 1,$
- ② det $M_n^{(1)} = 1, 0, -1$ for $n \equiv 0, 1 \pmod{6}$, $n \equiv 2, 5 \pmod{6}$, $n \equiv 3, 4 \pmod{6}$, respectively.

Definition

For the Motzkin numbers M_0 , M_1 , M_2 ,..., define the Hankel matrix $M_n^{(t)}$ to be

$$M_n^{(t)} = (M_{i+j+t})_{0 \le i,j \le n-1}$$
.

Theorem (Aigner 1998)

- det $M_n^{(0)} = 1$ for $n \ge 1$,
- 2 det $M_n^{(1)} = 1, 0, -1$ for $n \equiv 0, 1 \pmod{6}$, $n \equiv 2, 5 \pmod{6}$, $n \equiv 3, 4 \pmod{6}$, respectively.

Schröder numbers

Definition (Schröder numbers)

The Schröder number S_n is defined to be

$$S_n = 2{}_2F_1\begin{bmatrix} -n+1, n+2\\ 2; -1 \end{bmatrix}$$

for $n \ge 1$ ($S_0 = 1$). The Schröder number S_n counts the number of Schröder paths from (0,0) to (2n,0).

The generating function

The generating function for Schröder numbers is

$$\sum_{n=0}^{\infty} S_n t^n = \frac{1 - x - \sqrt{1 - 6x + x^2}}{2x}$$
$$= 1 + 2x + 6x^2 + 22x^3 + 90x^4 + 394x^5 + \cdots$$

Schröder numbers

Definition (Schröder numbers)

The Schröder number S_n is defined to be

$$S_n = 2_2 F_1 \begin{bmatrix} -n+1, n+2 \\ 2 \end{bmatrix}$$
; -1

for $n \ge 1$ ($S_0 = 1$). The Schröder number S_n counts the number of Schröder paths from (0,0) to (2n,0).

The generating function

The generating function for Schröder numbers is

$$\sum_{n=0}^{\infty} S_n t^n = \frac{1 - x - \sqrt{1 - 6x + x^2}}{2x}$$
$$= 1 + 2x + 6x^2 + 22x^3 + 90x^4 + 394x^5 + \cdots$$

Definition

For the Schröder numbers S_0 , S_1 , S_2 ,..., let

$$S_n^{(t)} = (S_{i+j+t})_{0 \leq i,j \leq n-1}$$

be the Schröder Hankel matrix.

Theorem

Definition

For the Schröder numbers S_0 , S_1 , S_2 ,..., let

$$S_n^{(t)} = (S_{i+j+t})_{0 \leq i,j \leq n-1}$$

be the Schröder Hankel matrix.

Theorem

- **1** det $S_n^{(0)} = 2^{\binom{n}{2}}$ for $n \ge 1$,
- 2 det $S_n^{(1)} = 2^{\binom{n+1}{2}}$ for $n \ge 1$,
- ① $\det S_n^{(2)} = 2^{\binom{n+1}{2}} (2^{n+1} 1)$ for $n \ge 1$

Definition

For the Schröder numbers S_0 , S_1 , S_2 ,..., let

$$S_n^{(t)} = (S_{i+j+t})_{0 \leq i,j \leq n-1}$$

be the Schröder Hankel matrix.

Theorem

- **1** det $S_n^{(0)} = 2^{\binom{n}{2}}$ for $n \ge 1$,
- 2 det $S_n^{(1)} = 2^{\binom{n+1}{2}}$ for $n \ge 1$,
- ⓐ det $S_n^{(2)} = 2^{\binom{n+1}{2}} (2^{n+1} 1)$ for $n \ge 1$.

Definition

For the Schröder numbers S_0 , S_1 , S_2 ,..., let

$$S_n^{(t)} = (S_{i+j+t})_{0 \leq i,j \leq n-1}$$

be the Schröder Hankel matrix.

Theorem

- det $S_n^{(0)} = 2^{\binom{n}{2}}$ for $n \ge 1$,
- **2** det $S_n^{(1)} = 2^{\binom{n+1}{2}}$ for $n \ge 1$,
- 3 det $S_n^{(2)} = 2^{\binom{n+1}{2}} (2^{n+1} 1)$ for $n \ge 1$.

Schröder Hankel determinants

Definition

For the Schröder numbers S_0 , S_1 , S_2 ,..., let

$$S_n^{(t)} = (S_{i+j+t})_{0 \leq i,j \leq n-1}$$

be the Schröder Hankel matrix.

Theorem

We have

- **1** det $S_n^{(0)} = 2^{\binom{n}{2}}$ for $n \ge 1$,
- **2** det $S_n^{(1)} = 2^{\binom{n+1}{2}}$ for $n \ge 1$,
- 3 det $S_n^{(2)} = 2^{\binom{n+1}{2}} (2^{n+1} 1)$ for $n \ge 1$.

Moments

Moments

Here we consider the series

$$\mu_n = \frac{(aq; q)_n}{(abq^2; q)_n}$$
 $(n = 0, 1, 2, ...).$

Specializations

If we put $a = q^{\alpha}$, $b = q^{\beta}$ and let $q \to 1$, then

$$\mu_n \to \frac{(\alpha+1)_n}{(\alpha+\beta+2)_n}$$
.

Note that

$$\frac{\left(\frac{1}{2}\right)_n}{(2)_n} = \frac{C_n}{2^{2n}}, \quad \frac{\left(\frac{1}{2}\right)_n}{(1)_n} = \frac{1}{2^{2n}} {2n \choose n}, \quad \frac{\left(\frac{3}{2}\right)_n}{(2)_n} = \frac{1}{2^{2n}} {2n+1 \choose n}.$$

Moments

Moments

Here we consider the series

$$\mu_n = \frac{(aq; q)_n}{(abq^2; q)_n}$$
 $(n = 0, 1, 2, ...).$

Specializations

If we put $a=q^{\alpha}$, $b=q^{\beta}$ and let $q\to 1$, then

$$\mu_n \to \frac{(\alpha+1)_n}{(\alpha+\beta+2)_n}.$$

Note that

$$\frac{\left(\frac{1}{2}\right)_n}{(2)_n} = \frac{C_n}{2^{2n}}, \quad \frac{\left(\frac{1}{2}\right)_n}{(1)_n} = \frac{1}{2^{2n}} \binom{2n}{n}, \quad \frac{\left(\frac{3}{2}\right)_n}{(2)_n} = \frac{1}{2^{2n}} \binom{2n+1}{n}.$$

Purpose of this talk

Theorem

Let n be a positive integer. Then

$$\det (\mu_{i+j})_{0 \le i, j \le n-1} = a^{\frac{1}{2}n(n-1)} q^{\frac{1}{6}n(n-1)(2n-1)} \\ \times \prod_{k=1}^{n} \frac{(q, aq, bq; q)_{n-k}}{(abq^{n-k+1}; q)_{n-k}(abq^{2}; q)_{2(n-k)}}.$$

Corollary

Let *n* be a positive integer and *t* non-negative integer. Then

$$\begin{split} \det \left(\mu_{i+j+t} \right)_{0 \leq i, j \leq n-1} &= a^{\frac{1}{2}n(n-1)} q^{\frac{1}{6}n(n-1)(2n-1)} \left\{ \frac{(aq;q)_t}{(abq^2;q)_t} \right\}^n \\ &\times \prod_{k=1}^n \frac{(q,aq^{t+1},bq;q)_{n-k}}{(abq^{n-k+t+1};q)_{n-k}(abq^{t+2};q)_{2(n-k)}} \end{split}$$

Purpose of this talk

Theorem

Let *n* be a positive integer. Then

$$\det (\mu_{i+j})_{0 \le i, j \le n-1} = a^{\frac{1}{2}n(n-1)} q^{\frac{1}{6}n(n-1)(2n-1)} \\ \times \prod_{k=1}^{n} \frac{(q, aq, bq; q)_{n-k}}{(abq^{n-k+1}; q)_{n-k}(abq^{2}; q)_{2(n-k)}}.$$

Corollary

Let *n* be a positive integer and *t* non-negative integer. Then

$$\det (\mu_{i+j+t})_{0 \le i,j \le n-1} = a^{\frac{1}{2}n(n-1)} q^{\frac{1}{6}n(n-1)(2n-1)} \left\{ \frac{(aq;q)_t}{(abq^2;q)_t} \right\}^n \\ \times \prod_{k=1}^n \frac{(q,aq^{t+1},bq;q)_{n-k}}{(abq^{n-k+t+1};q)_{n-k}(abq^{t+2};q)_{2(n-k)}}.$$

Main Theorem

Theorem

Let n be a positive integer and k_1, k_2, \ldots, k_n non-negative integers. Then we have

$$\det \left(\mu_{k_{i+1}+j}\right)_{0 \leq i,j \leq n-1} = a^{\binom{n}{2}} q^{\binom{n+1}{3}} \prod_{i=1}^{n} \frac{(aq;q)_{k_i}}{(abq^2;q)_{k_i+n-1}} \\ \times \prod_{1 \leq i < j \leq n} (q^{k_i} - q^{k_j}) \prod_{i=1}^{n} (bq;q)_{n-i}.$$

Proof methods

- Lattice path method (the Lindström-Gessel-Viennot theorem)
- Orthogonal polynomials and continued fractions (the little q-Jacobi polynomials)
- LU-decompositions (*q*-Dougall's formula)
- Desnanot-Jacobi adjoint matrix theorem (Dodgson's formula

Proof methods

- Lattice path method (the Lindström-Gessel-Viennot theorem)
- Orthogonal polynomials and continued fractions (the little q-Jacobi polynomials)
- LU-decompositions (q-Dougall's formula)
- Desnanot-Jacobi adjoint matrix theorem (Dodgson's formula

Proof methods

- Lattice path method (the Lindström-Gessel-Viennot theorem)
- Orthogonal polynomials and continued fractions (the little q-Jacobi polynomials)
- LU-decompositions (q-Dougall's formula)
- Desnanot-Jacobi adjoint matrix theorem (Dodgson's formula

Proof methods

- Lattice path method (the Lindström-Gessel-Viennot theorem)
- Orthogonal polynomials and continued fractions (the little q-Jacobi polynomials)
- LU-decompositions (*q*-Dougall's formula)
- Desnanot-Jacobi adjoint matrix theorem (Dodgson's formula

Proof methods

- Lattice path method (the Lindström-Gessel-Viennot theorem)
- Orthogonal polynomials and continued fractions (the little q-Jacobi polynomials)
- LU-decompositions (*q*-Dougall's formula)
- Desnanot-Jacobi adjoint matrix theorem (Dodgson's formula)

Definition

- $\mathcal{P}(u, v)$: the set of all directed paths from u to v.
- An *n*-vertex $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple of vertices of *D*.
- An *n-path* from $\mathbf{u} = (u_1, \dots, u_n)$ to $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple $\mathbf{P} = (P_1, \dots, P_n)$ such that $P_i \in \mathscr{P}(u_i, v_i)$.
- The n-path P is said to be non-intersecting if any two different paths P_i and P_i have no vertex in common.
- $\mathcal{P}(u, v)$ (resp. $\mathcal{P}_0(u, v)$): the set of all (resp. non-intersecting) *n*-paths from u to v
- u is said to be D-compatible with v if every path $P \in \mathcal{P}(u_i, v_l)$ intersects with every path $Q \in \mathcal{P}(u_j, v_k)$ whenever i < j and k < l.

Definition

- $\mathcal{P}(u, v)$: the set of all directed paths from u to v.
- An *n-vertex* $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple of vertices of D.
- An *n-path* from $\mathbf{u} = (u_1, \dots, u_n)$ to $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple $\mathbf{P} = (P_1, \dots, P_n)$ such that $P_i \in \mathscr{P}(u_i, v_i)$.
- The n-path P is said to be non-intersecting if any two different paths P_i and P_j have no vertex in common.
- \$\mathcal{P}(\mu, \nu)\$ (resp. \$\mathcal{P}_0(\mu, \nu)\$): the set of all (resp. non-intersecting) \$n\$-paths from \$\mu\$ to \$\nu\$
- u is said to be D-compatible with v if every path $P \in \mathcal{P}(u_i, v_l)$ intersects with every path $Q \in \mathcal{P}(u_j, v_k)$ whenever i < j and k < l.

Definition

- $\mathcal{P}(u, v)$: the set of all directed paths from u to v.
- An *n*-vertex $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple of vertices of *D*.
- An *n-path* from $\mathbf{u} = (u_1, \dots, u_n)$ to $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple $\mathbf{P} = (P_1, \dots, P_n)$ such that $P_i \in \mathcal{P}(u_i, v_i)$.
- The n-path P is said to be non-intersecting if any two different paths P_i and P_i have no vertex in common.
- $\mathscr{P}(u, v)$ (resp. $\mathscr{P}_0(u, v)$): the set of all (resp. non-intersecting) n-paths from u to v
- \boldsymbol{u} is said to be D-compatible with \boldsymbol{v} if every path $P \in \mathcal{P}(u_i, v_l)$ intersects with every path $Q \in \mathcal{P}(u_j, v_k)$ whenever i < j and k < l.

Definition

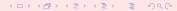
- $\mathcal{P}(u, v)$: the set of all directed paths from u to v.
- An *n*-vertex $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple of vertices of *D*.
- An *n-path* from $\mathbf{u} = (u_1, \dots, u_n)$ to $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple $\mathbf{P} = (P_1, \dots, P_n)$ such that $P_i \in \mathcal{P}(u_i, v_i)$.
- The *n*-path P is said to be *non-intersecting* if any two different paths P_i and P_j have no vertex in common.
- P(u, v) (resp. P₀(u, v)): the set of all (resp. non-intersecting) n-paths from u to v
- \boldsymbol{u} is said to be D-compatible with \boldsymbol{v} if every path $P \in \mathcal{P}(u_i, v_l)$ intersects with every path $Q \in \mathcal{P}(u_j, v_k)$ whenever i < j and k < l.

Definition

- $\mathcal{P}(u, v)$: the set of all directed paths from u to v.
- An *n*-vertex $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple of vertices of *D*.
- An *n-path* from $\mathbf{u} = (u_1, \dots, u_n)$ to $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple $\mathbf{P} = (P_1, \dots, P_n)$ such that $P_i \in \mathscr{P}(u_i, v_i)$.
- The *n*-path P is said to be *non-intersecting* if any two different paths P_i and P_j have no vertex in common.
- $\mathscr{P}(u, v)$ (resp. $\mathscr{P}_0(u, v)$): the set of all (resp. non-intersecting) n-paths from u to v
- \boldsymbol{u} is said to be D-compatible with \boldsymbol{v} if every path $P \in \mathcal{P}(u_i, v_l)$ intersects with every path $Q \in \mathcal{P}(u_j, v_k)$ whenever i < j and k < l.

Definition

- $\mathcal{P}(u, v)$: the set of all directed paths from u to v.
- An *n*-vertex $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple of vertices of *D*.
- An *n-path* from $\mathbf{u} = (u_1, \dots, u_n)$ to $\mathbf{v} = (v_1, \dots, v_n)$ is an *n*-tuple $\mathbf{P} = (P_1, \dots, P_n)$ such that $P_i \in \mathcal{P}(u_i, v_i)$.
- The *n*-path P is said to be *non-intersecting* if any two different paths P_i and P_j have no vertex in common.
- $\mathscr{P}(u, v)$ (resp. $\mathscr{P}_0(u, v)$): the set of all (resp. non-intersecting) n-paths from u to v
- u is said to be D-compatible with v if every path P ∈ P(u_i, v_l) intersects with every path Q ∈ P(u_j, v_k) whenever i < j and k < l.



- We assign a weight x_e of each edge e of D.
- w(P): the product of the weights of its edges for P∈ P(u, v).
- w(P): the product of the weights of its components for $w(P) \in \mathscr{P}(\mathbf{u}, \mathbf{v})$.
- GF $[S] = \sum_{P \in S} w(P)$ for $S \subseteq \mathscr{P}(u, v)$.
- $f(u, v) = GF [\mathscr{P}(u, v)] \text{ for } u, v \in V.$ $F(u, v) = GF [\mathscr{P}(u, v)] \text{ for } n\text{-vertices } u, v.$
 - $F_0(\mathbf{u}, \mathbf{v}) = \mathrm{GF}\left[\mathscr{P}_0\left(\mathbf{u}, \mathbf{v}\right)\right]$ for *n*-vertices u, v.

- We assign a weight x_e of each edge e of D.
- w(P): the product of the weights of its edges for $P \in \mathcal{P}(u, v)$.
- w(P): the product of the weights of its components for $w(P) \in \mathscr{P}(\mathbf{u}, \mathbf{v})$.
- GF $[S] = \sum_{P \in S} w(P)$ for $S \subseteq \mathscr{P}(u, v)$.
- $h(u, v) = GF[\mathcal{P}(u, v)]$ for $u, v \in V$. $F(u, v) = GF[\mathcal{P}(u, v)]$ for n-vertices u, v. $F_0(u, v) = GF[\mathcal{P}_0(u, v)]$ for n-vertices u, v.

- We assign a weight x_e of each edge e of D.
- w(P): the product of the weights of its edges for $P \in \mathcal{P}(u, v)$.
- w(P): the product of the weights of its components for $w(P) \in \mathcal{P}(u, v)$.
- GF $[S] = \sum_{P \in S} w(P)$ for $S \subseteq \mathscr{P}(u, v)$.
- $h(u, v) = GF[\mathcal{P}(u, v)]$ for $u, v \in V$. $F(u, v) = GF[\mathcal{P}(u, v)]$ for n-vertices u, v. $F_0(u, v) = GF[\mathcal{P}_0(u, v)]$ for n-vertices u, v.

- We assign a weight x_e of each edge e of D.
- w(P): the product of the weights of its edges for $P \in \mathcal{P}(u, v)$.
- w(P): the product of the weights of its components for $w(P) \in \mathcal{P}(u, v)$.
- GF $[S] = \sum_{P \in S} w(P)$ for $S \subseteq \mathscr{P}(u, v)$.
- $h(u, v) = GF [\mathscr{P}(u, v)]$ for $u, v \in V$. $F(u, v) = GF [\mathscr{P}(u, v)]$ for n-vertices u, v. $F_0(u, v) = GF [\mathscr{P}_0(u, v)]$ for n-vertices u, v.

- We assign a weight x_e of each edge e of D.
- w(P): the product of the weights of its edges for $P \in \mathcal{P}(u, v)$.
- w(P): the product of the weights of its components for w(P) ∈ P(u, v).
- GF $[S] = \sum_{P \in S} w(P)$ for $S \subseteq \mathscr{P}(u, v)$.
- $h(u, v) = GF [\mathscr{P}(u, v)]$ for $u, v \in V$. $F(u, v) = GF [\mathscr{P}(u, v)]$ for n-vertices u, v. $F_0(u, v) = GF [\mathscr{P}_0(u, v)]$ for n-vertices u, v.

Lidström-Gessel-Viennot Theorem

Lemma (Lidström-Gessel-Viennot)

Let $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ be two *n*-vertices in an acyclic digraph D. Then

$$\sum_{\pi \in \mathcal{S}_n} \operatorname{sgn} \pi \ F_0(\textbf{\textit{u}}^\pi, \textbf{\textit{v}}) = \det[h(\textit{u}_i, \textit{v}_j)]_{1 \leq i,j \leq n}.$$

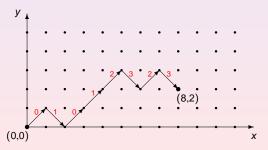
In particular, if \boldsymbol{u} is D-compatible with \boldsymbol{v} , then

$$F_0(\mathbf{u}, \mathbf{v}) = \det[h(u_i, v_j)]_{1 \leq i, j \leq n}.$$

Dyck path

Definition (Dyck path)

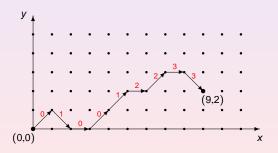
A *Dyck path* is, by definition, a lattice path in the plane lattice \mathbb{Z}^2 consisting of two types of steps: rise vectors (1,1) and fall vectors (1,-1), which never passes below the x-axis. We say a rise vector (resp. fall vector) whose origin is (x,y) and ends at (x+1,y+1) (resp. (x+1,y-1)) has *height* y.



Moztkin path

Definition (Moztkin path)

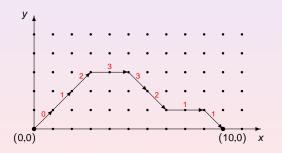
A *Moztkin path* is, by definition, a lattice path in \mathbb{Z}^2 consisting of three types of steps: rise vectors (1,1), fall vectors (1,-1), and (short) level vectors (1,0) which never passes below the *x*-axis.



Schröder path

Definition (Schröder path)

A *Schröder path* is, by definition, a lattice path in \mathbb{Z}^2 consisting of three types of steps: rise vectors (1,1), fall vectors (1,-1), and long level vectors (2,0) which never passes below the *x*-axis.



Definition

- $\mathcal{D}_{m,n}$: the set of Dyck paths starting from (0,0) and ending at (m,n).
- $\mathcal{M}_{m,n}$: the set of Moztkin paths starting from (0,0) and ending at (m,n).
- \$\mathcal{S}_{m,n}\$: the set of Schröder paths starting from (0,0) and ending at (m, n).

Definition (weights)

Definition

- $\mathcal{D}_{m,n}$: the set of Dyck paths starting from (0,0) and ending at (m,n).
- $\mathcal{M}_{m,n}$: the set of Moztkin paths starting from (0,0) and ending at (m,n).
- $\mathscr{S}_{m,n}$: the set of Schröder paths starting from (0,0) and ending at (m,n).

Definition (weights)

Definition

- $\mathcal{D}_{m,n}$: the set of Dyck paths starting from (0,0) and ending at (m,n).
- $\mathcal{M}_{m,n}$: the set of Moztkin paths starting from (0,0) and ending at (m,n).
- $\mathcal{S}_{m,n}$: the set of Schröder paths starting from (0,0) and ending at (m,n).

Definition (weights)

Definition

- $\mathcal{D}_{m,n}$: the set of Dyck paths starting from (0,0) and ending at (m,n).
- $\mathcal{M}_{m,n}$: the set of Moztkin paths starting from (0,0) and ending at (m,n).
- $\mathcal{S}_{m,n}$: the set of Schröder paths starting from (0,0) and ending at (m,n).

Definition (weights)

Definition

- $\mathcal{D}_{m,n}$: the set of Dyck paths starting from (0,0) and ending at (m,n).
- $\mathcal{M}_{m,n}$: the set of Moztkin paths starting from (0,0) and ending at (m,n).
- $\mathcal{S}_{m,n}$: the set of Schröder paths starting from (0,0) and ending at (m,n).

Definition (weights)

Paths and Continued Fractions

Theorem (Flajolet 1980)

Stieltjes type continued fraction (Dyck paths):

$$\sum_{n\geq 0} GF\left[\mathcal{D}_{(2n,0)}\right] t^{2n} = \frac{1}{1 - \frac{a_0 b_1 t^2}{1 - \frac{a_1 b_2 t^2}{1 - \frac{a_2 b_3 t^2}{1 - \frac{$$

Jacobi type continued fraction (Moztkin paths):

$$\sum_{n\geq 0} GF\left[\mathcal{M}_{(n,0)}\right] t^n = \frac{1}{1 - c_0 t - \frac{a_0 b_1 t^2}{1 - c_1 t - \frac{a_1 b_2 t^2}{1 - c_2 t - \frac{a_2 b_3 t^2}{\cdot}}}}.$$

Proposition

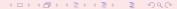
Schröder path:

$$\sum_{n\geq 0} \operatorname{GF}\left[\mathscr{S}_{(2n,0)}\right] t^{2n} = \frac{1}{1 - c_0 t^2 - \frac{a_0 b_1 t^2}{1 - c_1 t^2 - \frac{a_1 b_2 t^2}{1 - c_2 t^2 - \frac{a_2 b_3 t^2}{1 - c_2 t^2}}}}$$

Definition (λ_n)

For non-negative integer *n*, let

$$\lambda_n = \begin{cases} \frac{q^{k-1}(1-aq^k)(1-abq^k)}{(1-abq^{2k-1})(1-abq^{2k})} & \text{if } n = 2k-1\\ \frac{aq^k(1-q^k)(1-bq^k)}{(1-abq^{2k})(1-abq^{2k+1})} & \text{if } n = 2k \text{ is ev} \end{cases}$$



Proposition

Schröder path:

$$\sum_{n\geq 0} GF\left[\mathscr{S}_{(2n,0)}\right] t^{2n} = \frac{1}{1 - c_0 t^2 - \frac{a_0 b_1 t^2}{1 - c_1 t^2 - \frac{a_1 b_2 t^2}{1 - c_2 t^2 - \frac{a_2 b_3 t^2}{1 - c_2 t^2}}}}$$

Definition (λ_n)

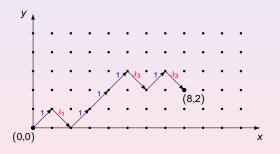
For non-negative integer n, let

$$\lambda_n = \begin{cases} \frac{q^{k-1}(1-aq^k)(1-abq^k)}{(1-abq^{2k-1})(1-abq^{2k})} & \text{if } n = 2k-1 \text{ is odd,} \\ \frac{aq^k(1-q^k)(1-bq^k)}{(1-abq^{2k})(1-abq^{2k+1})} & \text{if } n = 2k \text{ is even.} \end{cases}$$

Weights to realize the moment sequence

Definition (Weights of Dyck paths)

Let $P \in \mathcal{D}_{m,n}$ be a Dyck path. We assign the weight 1 to each rise vector, and λ_h to each fall vector of height h.



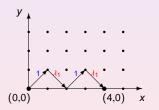
A Dyck Path of weight $\lambda_1 \lambda_3^2$

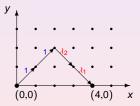
Dyck paths and the generating function

Example

The generating function of $\mathcal{D}_{4,0}$ equals

$$GF(\mathscr{D}_{4,0}) = \lambda_1^2 + \lambda_1 \lambda_2 = \frac{(1 - aq)(1 - aq^2)}{(1 - abq^2)(1 - abq^3)} = \mu_2.$$





Dyck Paths in $\mathcal{D}_{4,0}$

Dyck paths and the generating function

Lemma

Let m and n be non-negative integers such that $m \equiv n \pmod{2}$. Put m = 2r and n = 2s if m and n are both even, m = 2r + 1 and n = 2s + 1 if m and n are both odd. Then we have

$$GF\left[\mathscr{D}_{m,n}\right] = \begin{bmatrix} r \\ s \end{bmatrix}_q \frac{(aq^{1+s}; q)_{r-s}}{(abq^{2+2s}; q)_{r-s}},$$

where

$$\begin{bmatrix} r \\ s \end{bmatrix}_q = \begin{cases} \frac{(q;q)_r}{(q;q)_s(q;q)_{r-s}} & \text{if } 0 \le s \le r, \\ 0 & \text{otherwise.} \end{cases}$$

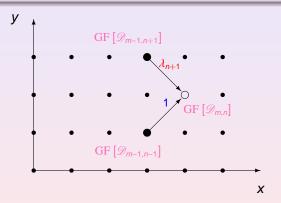
Especially

$$GF\left[\mathscr{D}_{2m,0}\right] = \frac{(aq;q)_m}{(abq^2;q)_m} = \mu_m.$$

Proof by Induction

Proof

Proceed by induction on *m*.



$$GF\left[\mathscr{D}_{m,n}\right] = GF\left[\mathscr{D}_{m-1,n-1}\right] + \lambda_{n+1}GF\left[\mathscr{D}_{m-1,n+1}\right]$$

Stieltjes type continued fraction

Corollary (Stieltjes type continued fraction)

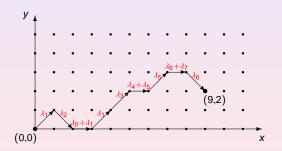
As a corollary of this lemma, we obtain the Stieltjes type continued fraction

$$\sum_{m\geq 0}\mu_m t^m = \frac{1}{1 - \frac{\lambda_1 t}{1 - \frac{\lambda_2 t}{1 - \frac{\lambda_3 t}{1 - \frac{$$

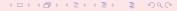
Weights to realize the moment sequence

Definition (Weights of Moztkin paths)

Let $P \in \mathcal{M}_{m,n}$ be a Moztkin path. We assign the weight λ_{2h+1} to each rise vector of height h, λ_{2h} to each fall vector of height h, and $\lambda_{2h} + \lambda_{2h+1}$ to each level vector of height h.



A Moztkin Path of weight $\lambda_1^2 \lambda_2 \lambda_3 \lambda_5 \lambda_6 (\lambda_0 + \lambda_1)(\lambda_4 + \lambda_5)(\lambda_6 + \lambda_7)$



Dyck paths and the generating function

Lemma

Let *m* and *n* be non-negative integers. Then we have

GF
$$[\mathcal{M}_{m,n}] = q^{\binom{n}{2}} \begin{bmatrix} m \\ n \end{bmatrix}_q \frac{(aq;q)_m(1-abq^{2n+1})}{(abq^{n+1};q)_{m+1}}.$$

Especially

$$GF\left[\mathcal{M}_{m,0}\right] = \frac{(aq;q)_m}{(abq^2;q)_m} = \mu_m.$$

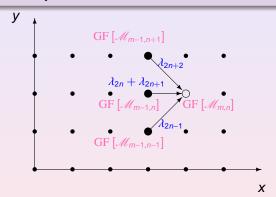
Corollary (Jacobi type continued fraction)

$$\sum_{m\geq 0} \mu_m t^m = \frac{1}{1 - \lambda_1 t - \frac{\lambda_1 \lambda_2 t^2}{1 - (\lambda_2 + \lambda_3)t - \frac{\lambda_3 \lambda_4 t^2}{1 - (\lambda_4 + \lambda_5)t - \frac{\lambda_5 \lambda_6 t^2}{\cdot \cdot \cdot}}}}$$

Proof by Induction

Proof

Proceed by induction on m.



GF
$$[\mathcal{M}_{m,n}] = \lambda_{2n-1}$$
GF $[\mathcal{M}_{m-1,n-1}] + (\lambda_{2n} + \lambda_{2n+1})$ GF $[\mathcal{M}_{m-1,n}] + \lambda_{2n+2}$ GF $[\mathcal{M}_{m-1,n+1}]$

Genetral weights

Assign the weight a_h , b_h to each rise vector, fall vector of height h, respectively.

Theorem

Genetral weights

Assign the weight a_h , b_h to each rise vector, fall vector of height h, respectively.

Theorem

$$lack {f 0} \ \det \left(G_{m+n}
ight)_{0 \le i, i \le n-1} = \prod_{i=1}^n \left(a_{2i-2} b_{2i-1} a_{2i-1} b_{2i} \right)^{n-i}$$

②
$$\det (G_{m+n+1})_{0 \le i, i \le n-1} = \prod_{i=1}^{n} (a_{2i-2}b_{2i-1})^{n-i+1} (a_{2i-1}b_{2i})^{n-i}$$

$$\bigcirc$$
 det $(G_{m+n+2})_{0 \le i, i \le n-1}$ equals

$$\sum_{k=0}^{n} \prod_{i=1}^{k} \left(a_0 a_1 \cdots a_{2i-3} a_{2i-2}^2 b_1 b_2 \cdots b_{2i-1} b_{2i-1}^2 \right) \times \prod_{i=1}^{k} \left(a_0 a_1 \cdots a_{2i-1} b_1 b_2 \cdots b_{2i} \right)$$

Genetral weights

Assign the weight a_h , b_h to each rise vector, fall vector of height h, respectively.

Theorem

$$\bullet \det(G_{m+n})_{0 \le i, j \le n-1} = \prod_{i=1}^n (a_{2i-2}b_{2i-1}a_{2i-1}b_{2i})^{n-i}$$

②
$$\det (G_{m+n+1})_{0 \le i, i \le n-1} = \prod_{i=1}^{n} (a_{2i-2}b_{2i-1})^{n-i+1} (a_{2i-1}b_{2i})^{n-i}$$

$$\bigcirc$$
 det $(G_{m+n+2})_{0 \le i, i \le n-1}$ equals

$$\sum_{k=0}^{n} \prod_{i=1}^{k} (a_0 a_1 \cdots a_{2i-3} a_{2i-2}^2 b_1 b_2 \cdots b_{2i-1} b_{2i-1}^2)$$

$$\times \prod_{i=1}^{k} (a_0 a_1 \cdots a_{2i-1} b_1 b_2 \cdots b_{2i})$$

Genetral weights

Assign the weight a_h , b_h to each rise vector, fall vector of height h, respectively.

Theorem

$$\bullet \det(G_{m+n})_{0 < i, i < n-1} = \prod_{i=1}^n (a_{2i-2}b_{2i-1}a_{2i-1}b_{2i})^{n-i}$$

2
$$\det(G_{m+n+1})_{0 \le i, i \le n-1} = \prod_{i=1}^{n} (a_{2i-2}b_{2i-1})^{n-i+1} (a_{2i-1}b_{2i})^{n-i}$$

$$\bigcirc$$
 det $(G_{m+n+2})_{0 \le i, i \le n-1}$ equals

$$\sum_{k=0}^{n} \prod_{i=1}^{k} \left(a_0 a_1 \cdots a_{2i-3} a_{2i-2}^2 b_1 b_2 \cdots b_{2i-1} b_{2i-1}^2 \right) \times \prod_{i=1}^{k} \left(a_0 a_1 \cdots a_{2i-1} b_1 b_2 \cdots b_{2i} \right)$$

Genetral weights

Assign the weight a_h , b_h to each rise vector, fall vector of height h, respectively.

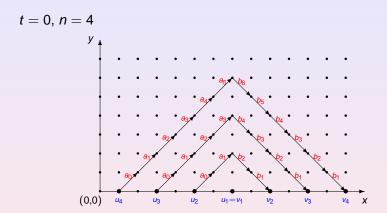
Theorem

$$\bullet \det(G_{m+n})_{0 \le i, i \le n-1} = \prod_{i=1}^n (a_{2i-2}b_{2i-1}a_{2i-1}b_{2i})^{n-i}$$

$$\sum_{k=0}^{n} \prod_{i=1}^{k} \left(a_{0} a_{1} \cdots a_{2i-3} a_{2i-2}^{2} b_{1} b_{2} \cdots b_{2i-1} b_{2i-1}^{2} \right)$$

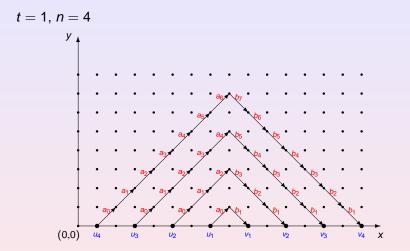
$$\times \prod_{i=1}^{k} \left(a_{0} a_{1} \cdots a_{2i-1} b_{1} b_{2} \cdots b_{2i} \right)$$

Proof by Lindström-Gessel-Viennot theorem



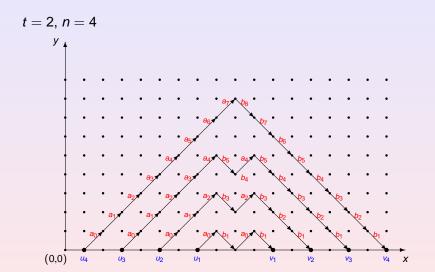
$$\det \left(G_{m+n} \right)_{0 \le i, j \le n-1} = \textstyle \prod_{i=1}^n \left(a_{2i-2} b_{2i-1} a_{2i-1} b_{2i} \right)^{n-i}$$

Proof by Lindström-Gessel-Viennot theorem



$$\det \left(G_{m+n+1}\right)_{0 \leq i,j \leq n-1} = \textstyle \prod_{i=1}^n \left(a_{2i-2}b_{2i-1}\right)^{n-i+1} \left(a_{2i-1}b_{2i}\right)^{n-i}$$

Proof by Lindström-Gessel-Viennot theorem



Proof of Theorem

Theorem

Let *n* be a positive integer. Then

$$\det (\mu_{i+j})_{0 \le i, j \le n-1} = a^{\frac{1}{2}n(n-1)} q^{\frac{1}{6}n(n-1)(2n-1)} \\ \times \prod_{k=1}^{n} \frac{(q, aq, bq; q)_{n-k}}{(abq^{n-k+1}; q)_{n-k}(abq^{2}; q)_{2(n-k)}}.$$

Proof of Theorem

The determinant equals

$$\prod_{k=1}^{n} (\lambda_{2k-1} \lambda_{2k})^{n-k} = \prod_{k=1}^{n} \prod_{i=1}^{n-k} (\lambda_{2i-1} \lambda_{2i})$$

where

$$\lambda_{2i-1}\lambda_{2i} = rac{aq^{2i-1}(1-q^i)(1-aq^i)(1-bq^i)(1-abq^i)}{(1-abq^{2i-1})(1-abq^{2i})^2(1-abq^{2i+1})}.$$

Proof of Theorem

Theorem

Let *n* be a positive integer. Then

$$\det (\mu_{i+j})_{0 \le i, j \le n-1} = a^{\frac{1}{2}n(n-1)} q^{\frac{1}{6}n(n-1)(2n-1)} \\ \times \prod_{k=1}^{n} \frac{(q, aq, bq; q)_{n-k}}{(abq^{n-k+1}; q)_{n-k}(abq^{2}; q)_{2(n-k)}}.$$

Proof of Theorem

The determinant equals

$$\prod_{k=1}^{n} (\lambda_{2k-1} \lambda_{2k})^{n-k} = \prod_{k=1}^{n} \prod_{i=1}^{n-k} (\lambda_{2i-1} \lambda_{2i})$$

where

$$\lambda_{2i-1}\lambda_{2i}=\frac{aq^{2i-1}(1-q^i)(1-aq^i)(1-bq^i)(1-abq^i)}{(1-abq^{2i-1})(1-abq^{2i})^2(1-abq^{2i+1})}.$$

Proof of Corollary

Corollary

Let n be a positive integer and t non-negative integer. Then

$$\begin{split} \det \left(\mu_{i+j+t} \right)_{0 \leq i,j \leq n-1} &= a^{\frac{1}{2}n(n-1)} q^{\frac{1}{6}n(n-1)(2n-1)} \left\{ \frac{(aq;q)_t}{(abq^2;q)_t} \right\}^n \\ &\times \prod_{k=1}^n \frac{(q,aq^{t+1},bq;q)_{n-k}}{(abq^{n-k+t+1};q)_{n-k}(abq^{t+2};q)_{2(n-k)}}. \end{split}$$

Proof of Corollary

Use

$$\mu_{n+t} = rac{(aq;q)_{n+t}}{(abq^2;q)_{n+t}} = rac{(aq;q)_t (aq^{t+1};q)_n}{(abq^2;q)_t (abq^{t+2};q)_n}$$

Proof of Corollary

Corollary

Let n be a positive integer and t non-negative integer. Then

$$\det (\mu_{i+j+t})_{0 \le i,j \le n-1} = a^{\frac{1}{2}n(n-1)} q^{\frac{1}{6}n(n-1)(2n-1)} \left\{ \frac{(aq;q)_t}{(abq^2;q)_t} \right\}^n \\ \times \prod_{k=1}^n \frac{(q,aq^{t+1},bq;q)_{n-k}}{(abq^{n-k+t+1};q)_{n-k}(abq^{t+2};q)_{2(n-k)}}.$$

Proof of Corollary

Use

$$\mu_{n+t} = \frac{(aq;q)_{n+t}}{(abq^2;q)_{n+t}} = \frac{(aq;q)_t(aq^{t+1};q)_n}{(abq^2;q)_t(abq^{t+2};q)_n}.$$

The little *q*-Jacobi polynomials

Definition (Andrews-Askey 1977)

For n = 0, 1, 2, ..., the little q-Jacobi polynomials $p_n(x; a, b; q)$ is defined to be

$$p_n(x; a, b; q) = \frac{(aq; q)_n}{(abq^{n+1}; q)_n} (-1)^n q^{\binom{n}{2}} {}_2\phi_1 \left[\begin{matrix} q^{-n}, q^{n+1} \\ aq \end{matrix}; q, xq \right].$$

Theorem (Three term relation)

 $p_n(x) = p_n(x; a, b; q)$ satisfies the three term relation

$$\rho_{n+1}(x) = \{x - (\lambda_{2n} + \lambda_{2n+1})\} \rho_n(x) - \lambda_{2n-1} \lambda_{2n} \rho_{n-1}(x)$$

where $p_{-1}(x) = 0$ and $p_0(x) = 1$. Especially, $p_n(x)$ is a monic polynimial of degree n for n = 0, 1, 2, ...

The little *q*-Jacobi polynomials

Definition (Andrews-Askey 1977)

For n = 0, 1, 2, ..., the little q-Jacobi polynomials $p_n(x; a, b; q)$ is defined to be

$$p_n(x; a, b; q) = \frac{(aq; q)_n}{(abq^{n+1}; q)_n} (-1)^n q^{\binom{n}{2}} {}_2\phi_1 \left[\begin{matrix} q^{-n}, q^{n+1} \\ aq \end{matrix}; q, xq \right].$$

Theorem (Three term relation)

 $p_n(x) = p_n(x; a, b; q)$ satisfies the three term relation

$$p_{n+1}(x) = \{x - (\lambda_{2n} + \lambda_{2n+1})\} p_n(x) - \lambda_{2n-1} \lambda_{2n} p_{n-1}(x)$$

where $p_{-1}(x) = 0$ and $p_0(x) = 1$. Especially, $p_n(x)$ is a monic polynimial of degree n for n = 0, 1, 2, ...

Moments

Definition (Linear functional)

For a polynomial f(x), we define the linear functional $\mathcal{L}: f \mapsto \mathcal{L}[f]$ by

$$\mathscr{L}[f] = \frac{(aq; q)_{\infty}}{(abq^2; q)_{\infty}} \sum_{j=0}^{\infty} \frac{(bq; q)_j}{(q; q)_j} (aq)^j f(q^j).$$

Proposition (the moment sequence)

From the q-binomial thereom $\sum_{j=0}^\infty rac{(a;q)_j}{(q;q)_j} x^j = rac{(ax;q)_\infty}{(x;q)_\infty},$ we obtair

$$\mathscr{L}[\mathsf{x}^n] = \dfrac{(\mathsf{a}\mathsf{q};\mathsf{q})_n}{(\mathsf{a}\mathsf{b}\mathsf{q}^2;\mathsf{q})_n} = \mu_n.$$

Moments

Definition (Linear functional)

For a polynomial f(x), we define the linear functional $\mathcal{L}: f \mapsto \mathcal{L}[f]$ by

$$\mathscr{L}[f] = \frac{(aq; q)_{\infty}}{(abq^2; q)_{\infty}} \sum_{j=0}^{\infty} \frac{(bq; q)_j}{(q; q)_j} (aq)^j f(q^j).$$

Proposition (the moment sequence)

From the q-binomial thereom $\sum_{j=0}^{\infty} \frac{(a;q)_j}{(q;q)_j} x^j = \frac{(ax;q)_{\infty}}{(x;q)_{\infty}}$, we obtain

$$\mathscr{L}[\mathbf{x}^n] = \frac{(\mathbf{a}\mathbf{q}; \mathbf{q})_n}{(\mathbf{a}\mathbf{b}\mathbf{q}^2; \mathbf{q})_n} = \mu_n.$$

Orthogonality

Proposition (Andrews-Askey 1977)

We have

$$\mathscr{L}[p_n(x)p_m(x)] = \begin{cases} 0 & \text{if } m \neq n, \\ a^n q^{n^2} \frac{(q,aq,bq;q)_n}{(abq;q)_{2n}(abq^{n+1};q)_{n+1}} & \text{if } m = n. \end{cases}$$

Proposition (the continued fraction)

The above three term equation

$$p_{n+1}(x) = \{x - (\lambda_{2n} + \lambda_{2n+1})\} p_n(x) - \lambda_{2n-1} \lambda_{2n} p_{n-1}(x)$$

is equvalent to the Jacobi type continued fraction

$$\sum_{m \geq 0} \mu_m t^m = \frac{1}{1 - \lambda_1 t - \frac{\lambda_1 \lambda_2 t^2}{1 - (\lambda_2 + \lambda_3)t - \frac{\lambda_3 \lambda_4 t^2}{1 - (\lambda_4 + \lambda_5)t - \frac{\lambda_5 \lambda_6 t^2}{1}}}.$$

Orthogonality

Proposition (Andrews-Askey 1977)

We have

$$\mathscr{L}\left[p_n(x)p_m(x)\right] = \begin{cases} 0 & \text{if } m \neq n, \\ a^n q^{n^2} \frac{(q,aq,bq;q)_n}{(abq;q)_{2n}(abq^{n+1};q)_{n+1}} & \text{if } m = n. \end{cases}$$

Proposition (the continued fraction)

The above three term equation

$$p_{n+1}(x) = \{x - (\lambda_{2n} + \lambda_{2n+1})\} p_n(x) - \lambda_{2n-1} \lambda_{2n} p_{n-1}(x)$$

is equvalent to the Jacobi type continued fraction

$$\sum_{m\geq 0} \mu_m t^m = \frac{1}{1 - \lambda_1 t - \frac{\lambda_1 \lambda_2 t^2}{1 - (\lambda_2 + \lambda_3) t - \frac{\lambda_3 \lambda_4 t^2}{1 - (\lambda_4 + \lambda_5) t - \frac{\lambda_5 \lambda_6 t^2}{1}}}.$$

Theorem

Let

$$d_n^{(0)} = \det A_n^0 = \begin{vmatrix} \mu_0 & \mu_1 & \dots & \mu_{n-1} \\ \mu_1 & \mu_2 & \dots & \mu_n \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_n & \dots & \mu_{2n-2} \end{vmatrix}$$

Then

$$\frac{d_{n+1}^{(0)}}{d_n^{(0)}} = \prod_{i=1}^n (\lambda_{2i-1}\lambda_{2i}) = a^n q^{n^2} \frac{(q, aq, bq; q)_n}{(abq; q)_{2n} (abq^{n+1}; q)_{n+1}}$$

A proof by the orthogonal polynomials

Proof

Put

$$D_n(x) = \begin{vmatrix} \mu_0 & \mu_1 & \dots & \mu_{n-1} & \mu_n \\ \mu_1 & \mu_2 & \dots & \mu_n & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mu_{n-1} & \mu_n & \dots & \mu_{2n-2} & \mu_{2n-1} \\ 1 & x & \dots & x^{n-1} & x^n \end{vmatrix}$$

for $n=0,1,2,\ldots$. Then $\frac{1}{\sigma_n^{(0)}}D_n(x)$ is a monic polynomial of degree n. Because $\mathscr{L}[x^mD_n(x)]=0$ for m< n, we have $\mathscr{L}[D_m(x)D_n(x)]=0$ if $m\neq n$. From the uniqueness of the orthogonal polynomials with respect to \mathscr{L} , we obatin

$$p_n(x) = \frac{1}{d_n^{(0)}} D_n(x).$$

Proof

Thus we have

$$\mathscr{L}[x^{n}p_{n}(x)] = \frac{1}{d_{n}^{(0)}} \begin{vmatrix} \mu_{0} & \mu_{1} & \dots & \mu_{n-1} & \mu_{n} \\ \mu_{1} & \mu_{2} & \dots & \mu_{n} & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mu_{n-1} & \mu_{n} & \dots & \mu_{2n-2} & \mu_{2n-1} \\ \mu_{n} & \mu_{n+1} & \dots & \mu_{2n-1} & \mu_{2n} \end{vmatrix} = \frac{d_{n+1}^{(0)}}{d_{n}^{(0)}}$$

Proof

From

$$p_{n+1}(x) = \{x - (\lambda_{2n} + \lambda_{2n+1})\} p_n(x) - \lambda_{2n-1} \lambda_{2n} p_{n-1}(x),$$

we have

$$\mathcal{L}[x^{n-1}p_{n+1}(x)] = \mathcal{L}[x^{n}p_{n}(x)] - (\lambda_{2n} + \lambda_{2n+1})\mathcal{L}[x^{n-1}p_{n}(x)] - \lambda_{2n-1}\lambda_{2n}\mathcal{L}[x^{n-1}p_{n-1}(x)]$$

which implies

$$\frac{\mathscr{L}[x^n p_n(x)]}{\mathscr{L}[x^{n-1} p_{n-1}(x)]} = \lambda_{2n-1} \lambda_{2n}$$

Thus we obtain

$$\frac{d_{n+1}^{(0)}}{d_n^{(0)}} = \prod_{i=1}^n \lambda_{2i-1} \lambda_{2i}.$$

Reduction to an identity on hypergeometric series

q-Dougall's formula

The LU-decomposition of the Hankel matrix is obatined from the following q-Dougall's formula:

$$\frac{6\phi_{5}\left[a,qa^{\frac{1}{2}},-qa^{\frac{1}{2}},b,c,d\\a^{\frac{1}{2}},-a^{\frac{1}{2}},aq/b,aq/c,aq/d;q,\frac{aq}{bcd}\right]}{(qa,aq/bc,aq/bd,aq/cd;q)_{\infty}} = \frac{(qa,aq/bc,aq/bd,aq/cd;q)_{\infty}}{(aq/b,aq/c,aq/d,aq/bcd;q)_{\infty}}.$$

(See Gasper-Rahman 1990.)

Thank you!