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Introduction

In this talk we try to generalize Catalan Hankel determinants and
make a g-analogue. The Catalan numbers are well-know to be the
number of Dyck paths. We replace the Catalan numbers with
Motzkin numbers, Schroder numbers and etc. paths, which counts
certain paths in the plane.
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@ Catalan Hankel determinants

@ A g-analogue

@ Proof by Lindstrom-Gessel-Viennot theorem
© Relation with little g-Jacobi polynomials

@ Relation with g-Dougall’s formula for basic hypergeometric
series
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Hankel Determinants

Hankel matrix

Let ag, a1, a2,... be any sequence of integers. We consider the
Hankel matrix

at at+1 ... &t4n-1
a a ... a
A(t) _ (a_ _ ) . t+1 t42 t+n
n  — \“i++t)o<ij<n-1 — . 0 . :
At4n-1 At4n ... Gt42n-2

of degree n.
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Hankel Determinants

Let ag, a1, a2,... be any sequence of integers. We consider the
Hankel matrix

at at+1 ... &t4n-1
a a ... a
A(t) _ (a_ _ ) . t+1 t42 t+n
n — 1+]+t O<ij<n-1 — a o .
At4n-1 At4n ... Gt42n-2

of degree n.

Hankel determinants

How can we compute detAr(,t)?
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Catalan numbers

Forn=0,1,2,..., The Catalan number C, is defined to be

1 (Zn)
Cn = .
n+1\n
The Catalan number C, counts the Dyck paths from (0, 0) to
(2n,0).
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Catalan numbers

Forn=0,1,2,..., The Catalan number C, is defined to be

1 (Zn)
Cn = .
n+1\n
The Catalan number C, counts the Dyck paths from (0, 0) to
(2n,0).

The generating function for the Catalan numbers is given by

1- V1-4t
2t

:chtn=1+t+2t2—|—5t3+14t4+...‘

n>0
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Catalan Hankel determinants

Fact (Mays-Wojciechowski 2000)
For the Catalan numbers Cy, Cq, Co,. .., let

t
C,E ) _ (Ci+j+t)ogi,j3n—1

denote the Hankel matrix. Then, for n > 0, the following identities
hold:

detCr(,O) = detCr(,l) =1
detCr(]z) =n+1,

detc® — %(n +1)(n +2)(2n + 3).
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Catalan Hankel determinants

Theorem (Desainte-Catherine-Viennot 1986)

In general

O<i<j<t-1

holds fort,n > 0.
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Catalan Hankel determinants

Theorem (Desainte-Catherine-Viennot 1986)

In general

O<i<j<t-1

holds fort,n > 0.

Theorem (Krattenthaler 2007)

n .
(i+n)!(2k;)!
get (Ck‘+1+j)0<i,j<n—1 - l_[ (ki = k) (2i)ki!(ki + n)!
T 1<i<j<n i=1 AN :
for a positive integer n and non-negative integers ki, ko,. .., ky.
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Fibonacci Numbers

Fibonacci Numbers
Let n > 0. The sequence {F,} integers defined by Fo = F; = 1,
and

Fn=Fn_1 +Fno

is called the Fibonacci sequence.
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Fibonacci Numbers

Fibonacci Numbers

Let n > 0. The sequence {F,} integers defined by Fo = F; = 1,
and
Fn=Fn_1 +Fno

is called the Fibonacci sequence.

The generating function for the Fibonacci numbers is given by

1

_ n_ 2 3 4 5
m_ZFnt —14+t+2t2 433 154485+ ...

n>0
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Catalan determinants and Fibonacci numbers

Fact (Cvetkovi€¢-Rajkovic-Ivkovi€ 2002)
We consider the Hankel matrix

=(t
Cr(]) = (Ci+j+t + Ci+j+t+1)osi,jsn—1

Ci + Cit1 Ciy1+Ciy2 ... Ctyn-1+ Cign
| Gttt Criz Ciy2+Ciyz ... Ciyn-+Ciiny1
Citn-1 +Ciyn Ciyn +Cint1 ... Cigon-2 +Ciiona

Then the follwoing identities hold for n > 1:

6[’(]0) = an’

—~(1
C,ﬁ ) = Font1.
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Notation

g-shifted factorials

We use the notation:

forn=0,1,2,....
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Notation

g-shifted factorials

We use the notation:

(@ @) = [ (2~ 2

forn=0,1,2,.... (a;q)n is called the g-shifted factorial.
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Notation

g-shifted factorials

We use the notation:

forn =0,1,2,.... (a;q)n is called the g-shifted factorial.
Frequently used compact natation:

(a1,82,...,a;0)e = (82, 9)0(82; )0 - - - (Ar; U)cos
(ag,az,...,ar;q)n = (a1;9)n(a2; q)n - -~ (ar; d)n
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More Notation

Raising factorials

If we put a = q¢, then

im @%@ (-7 (-9 (1-gTT)
im lim

-1 (1-q)" a1 (1-q) (1-q) (1-aq)
=(a)(@a+1)---(a+n-1).
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More Notation

Raising factorials

If we put a = q¢, then

o (@%an . (1-97)(1-g*")  (1-gvt"Y)
lim = lim .
-1 (1-q)" -1 (1-q) (1-q) (1-a)
=(a)(e+1)---(@¢+n-1).
n-1
We write ( (a + k), which is called the raising factorial.
k=0
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Basic hypergeomrtric series

Basic hypergeomrtric series

We shall define the ;.1 ¢, basic hypergeomriric series by

(o)

Z (al,az,...,ar+1;q)nzn
n=0 (q’ bl,---,br;q)n .

aj,az,...,ar+1
bl,...,br

r+1¢r

;q,Z]:
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Basic hypergeomrtric series

Basic hypergeomrtric series

We shall define the ;.1 ¢, basic hypergeomriric series by

r+1¢r

a;,az,...,ar41 } (8182, @i Q)
ig,Z2 | = V4
bl,...,br FIZ—;) (q,bl,---,br;q)n

Hypergeomrtric series

If we put a; = g% and b; = ¢ in the above series and letq — 1,
then we obtain the 1 F, hypergeomrtric series

@1, @2,...,0r 41

v (@)n(@2)n - (@rga)n
ﬁle---’ﬁr - Z £

24 n1(B)n - (Br)n

r+1Fr
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Motzkin numbers

Definition (Motzkin numbers)

The Motzkin number M, is defined to be

Mn = 2F21 [(l - n)/22,—n/2;4]‘

The Motzkin number M;, counts the number of Moztkin paths from
(0,0) to (n,0).
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Motzkin numbers

Definition (Motzkin numbers)
The Motzkin number M, is defined to be

Mn = 2F21 [(l - n)/22,—n/2;4]'

The Motzkin number M;, counts the number of Moztkin paths from
(0,0) to (n,0).

The generating function

The generating function for Motzkin numbers is

o op l-x-V1-2x-3x2
>
n=0

2x2

=14+X4+2x2+4x3+9x* +21x° + -+
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Motzkin Hankel determinants

Definition

For the Motzkin numbers Mg, M1, Ms,. .., define the Hankel matrix
Mr(,t) to be

t
Mr(1 ) — (Misj+)osijen-t -
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Motzkin Hankel determinants

For the Motzkin numbers Mg, M1, Ms,. .., define the Hankel matrix
Mr(,t) to be

t
Mr(1 ) — (Misj+)osijen-t -

Theorem (Aigner 1998)

We have
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Motzkin Hankel determinants

For the Motzkin numbers Mg, M1, Ms,. .., define the Hankel matrix
Mr(,t) to be

t
Mr(1 ) — (Misj+)osijen-t -

Theorem (Aigner 1998)

We have
Q detM,(]O) =1forn>1,
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Motzkin Hankel determinants

For the Motzkin numbers Mg, M1, Ms,. .., define the Hankel matrix
Mr(,t) to be

t
Mr(1 ) — (Misj+)osijen-t -

Theorem (Aigner 1998)

We have
Q detM,(]O) =1forn>1,

Q@ detM™ = 1,0,-1 forn = 0,1 (mod6), n = 2,5 (Mod6),
n = 3,4 (mod6), respectively.

Masao Ishikawa Catalan Hankel Determinants



Schréder numbers

Definition (Schréder numbers)

The Schroder number S, is defined to be

-n+1,n+2

forn > 1 (Sgp = 1). The Schréder number S, counts the number of
Schroder paths from (0, 0) to (2n,0).
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Schréder numbers

Definition (Schréder numbers)

The Schroder number S, is defined to be

-n+1,n+2

forn > 1 (Sgp = 1). The Schréder number S, counts the number of
Schroder paths from (0, 0) to (2n,0).

The generating function

The generating function for Schroder numbers is

= 1-x— V1-6x+x2
2X
n=0

=1+ 2X + 6x2 + 22x3 + 90x* + 394x° + - - -
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Schroder Hankel determinants

Definition

For the Schroder numbers Sg, S, Ss,. .., let

t
SI‘(I) = (Si+j+t)0§i,j§n—l

be the Schroder Hankel matrix.
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Schroder Hankel determinants

For the Schroder numbers Sg, S, Ss,. .., let

t
SI‘(I) = (Si+j+t)0§i,j§n—l

be the Schroder Hankel matrix.

Theorem

We have
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Schroder Hankel determinants

For the Schroder numbers Sg, S, Ss,. .., let

t
SI‘(I) = (Si+j+t)0§i,j§n—l

be the Schroder Hankel matrix.

Theorem

We have
O dets!? =20 forn > 1,
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Schroder Hankel determinants

For the Schroder numbers Sg, S, Ss,. .., let

t
SI‘(I) = (Si+j+t)0§i,j§n—l
be the Schroder Hankel matrix.

Theorem

We have
O dets!? =20 forn > 1,
Q dets =203 forn > 1,
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Schroder Hankel determinants

For the Schroder numbers Sg, S, Ss,. .., let
t
Sr(m) = (Si-H'—&-t)ogi,jgn_l
be the Schroder Hankel matrix.

Theorem

We have
O dets!? =20 forn > 1,
Q dets =203 forn > 1,
Q dets!? =227 — 1) forn > 1.
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Here we consider the series

(ad; d)n

= — (n:O,1,2,...).
" (abg?; q)n
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Moments

Here we consider the series

_ (a9;9)n
" (aqu; Q)n

Specializations

If we puta = q% b = g and let q — 1, then

(n=0,1,2,...).

(¢ + 1),

HMn — —(a+ﬁ+2)n'

Note that

($n Cn (3 l(Zn)’ ($)n 1(2n+1)'

2)n 22 @O, 2o\n) @, 220\ n

Masao Ishikawa Catalan Hankel Determinants



Purpose of this talk

Let n be a positive integer. Then

det (’uiJrj)0<ij<n—l — a%n(n—l)q%n(n—l)(Zn—l)

n

o l—[ (9,aq, bg; q)n-k
k=1 (abg"*+1; q)n-k (abg?; Q)Z(n—k)
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Purpose of this talk

Let n be a positive integer. Then

det (,Lt|+J)O<”<n L= g3n(n- 1)qgn(n 1)(2n-1)

n

o l—[ (9,aq, bg; q)n-k
k=1 (abg"*+1; q)n-k (abg?; Q)Z(n—k)

Corollary

Let n be a positive integer and t non-negative integer. Then

zn(n— 1)q n(n-1)(2n- 1){ (aq; q)r }n
(abg?; q):

9 l—[ (0,ag'™, bg; q)n-«
(abg=*++1; q)n i (abq'+2; )2(n-k)

Masao Ishikawa Catalan Hankel Determinants
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Main Theorem

Let n be a positive integer and ki, k»,. .., k, non-negative integers.
Then we have

n 0
. . (n) (n+1) (aqvq)ki
Ee ('uki““)osi,isn—l =arqre 1_[ 1 (aba?; Q)k+n-1

< ] (@ ~a) ] [tbas .

1<i<j<n i=1
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Methods to prove theorem

Proof methods

The methods to prove the theorems
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Methods to prove theorem

Proof methods

The methods to prove the theorems
@ Lattice path method (the Lindstrom-Gessel-Viennot theorem)
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Methods to prove theorem

Proof methods

The methods to prove the theorems
@ Lattice path method (the Lindstrom-Gessel-Viennot theorem)

@ Orthogonal polynomials and continued fractions (the little
g-Jacobi polynomials)
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Methods to prove theorem

Proof methods

The methods to prove the theorems
@ Lattice path method (the Lindstrom-Gessel-Viennot theorem)

@ Orthogonal polynomials and continued fractions (the little
g-Jacobi polynomials)

@ LU-decompositions (g-Dougall’s formula)
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Methods to prove theorem

Proof methods

The methods to prove the theorems
@ Lattice path method (the Lindstrom-Gessel-Viennot theorem)

@ Orthogonal polynomials and continued fractions (the little
g-Jacobi polynomials)

@ LU-decompositions (g-Dougall’s formula)

@ Desnanot-Jacobi adjoint matrix theorem (Dodgson’s formula)
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Non-intersecting lattice paths

Let D = (V, E) be an acyclic digraph.

@ Z(u,v) : the set of all directed paths from u to v.
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Non-intersecting lattice paths

Let D = (V, E) be an acyclic digraph.

@ Z(u,v) : the set of all directed paths from u to v.
@ An n-vertexVv = (vi,...,Vy) is an n-tuple of vertices of D.
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Non-intersecting lattice paths

Let D = (V, E) be an acyclic digraph.
@ Z(u,v) : the set of all directed paths from u to v.
@ An n-vertexVv = (vi,...,Vn) is an n-tuple of vertices of D.

@ An n-path fromu = (uy,...,up) tov = (v1,...,Vy) isan
n-tuple P = (P, ...,Py) such that Py € & (uj, ;).
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Non-intersecting lattice paths

Let D = (V, E) be an acyclic digraph.
@ Z(u,v) : the set of all directed paths from u to v.

@ An n-vertexVv = (vi,...,Vn) is an n-tuple of vertices of D.

@ An n-path fromu = (ug,...,up) toV = (v1,...,Vp) is an
n-tuple P = (P, ...,Py) such that P; € & (u;, V).

@ The n-path P is said to be non-intersecting if any two different
paths P; and P; have no vertex in common.
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Non-intersecting lattice paths

Let D = (V, E) be an acyclic digraph.

@ Z(u,v) : the set of all directed paths from u to v.

@ An n-vertexVv = (vi,...,Vn) is an n-tuple of vertices of D.

@ An n-path fromu = (ug,...,up) toV = (v1,...,Vp) is an
n-tuple P = (P, ...,Py) such that P; € & (u;, V).

@ The n-path P is said to be non-intersecting if any two different
paths P; and P; have no vertex in common.

@ Z(u,v) (resp. #;(u,v)): the set of all (resp.
non-intersecting) n-paths from u to v
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Non-intersecting lattice paths

Let D = (V, E) be an acyclic digraph.

@ Z(u,v) : the set of all directed paths from u to v.

@ An n-vertexVv = (vi,...,Vn) is an n-tuple of vertices of D.

@ An n-path fromu = (ug,...,up) toV = (v1,...,Vp) is an
n-tuple P = (P, ...,Py) such that P; € & (u;, V).

@ The n-path P is said to be non-intersecting if any two different
paths P; and P; have no vertex in common.

o Z(u,v) (resp. Z(u,v)) : the set of all (resp.
non-intersecting) n-paths from u to v

@ u is said to be D-compatible with v if every path P € Z2(u;,v)
intersects with every path Q € #(u;, vi) wheneveri < j and
k <.
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Generating functions

@ We assign a weight x¢ of each edge e of D.
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Generating functions

@ We assign a weight xe of each edge e of D.

@ w(P) : the product of the weights of its edges for
PeZ(uv).
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Generating functions

@ We assign a weight xe of each edge e of D.

@ w(P) : the product of the weights of its edges for
PeZ(u,v).

@ w(P) : the product of the weights of its components for
w(P) € & (u,v).
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Generating functions

@ We assign a weight xe of each edge e of D.

@ w(P) : the product of the weights of its edges for
PeZ(u,v).

@ w(P) : the product of the weights of its components for
w(P) € & (u,v).

@ GF[S] = YpcsW(P)forS € Z (u,v).
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Generating functions

@ We assign a weight xe of each edge e of D.

@ w(P) : the product of the weights of its edges for
PeZ(u,v).

@ w(P) : the product of the weights of its components for
w(P) € & (u,v).

@ GF[S] = YpcsW(P)forS € Z (u,v).

@ h(u,v) = GF[Z (u,v)] foru,v € V.
F(u,v) = GF[Z (u,v)] for n-vertices u, V.
Fo(u,v) = GF[% (u,V)] for n-vertices u, v.
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Lidstrom-Gessel-Viennot Theorem

Lemma (Lidstrom-Gessel-Viennot)

Letu = (ug,...,uy) andv = (vq,...,Vn) be two n-vertices in an
acyclic digraph D. Then

> sgm Fo(u”,v) = detfh(u;, v;)]a<ij<n.

TESH

In particular, if u is D-compatible with v, then

Fo(u,v) = det[h(u;, vj)]1<ij<n-
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Dyck path

Definition (Dyck path)

A Dyck path is, by definition, a lattice path in the plane lattice Z2
consisting of two types of steps: rise vectors (1, 1) and fall vectors
(1,-1), which never passes below the x-axis. We say a rise vector
(resp. fall vector) whose origin is (x,y) and ends at (x + 1,y + 1)
(resp. (x + 1,y — 1)) has height y.
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Moztkin path

Definition (Moztkin path)
A Moztkin path is, by definition, a lattice path in Z? consisting of

three types of steps: rise vectors (1, 1), fall vectors (1,-1), and
(short) level vectors (1,0) which never passes below the x-axis.

Y
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Schrdder path

Definition (Schréder path)

A Schroder path is, by definition, a lattice path in Z? consisting of
three types of steps: rise vectors (1, 1), fall vectors (1,-1), and
long level vectors (2,0) which never passes below the x-axis.

Y

0 . . . . . 60

(0,0) (10,0) x
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Paths and weights
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Paths and weights

@ Zmn : the set of Dyck paths starting from (0, 0) and ending at
(m,n).
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Paths and weights

@ Pmn : the set of Dyck paths starting from (0, 0) and ending at
(m,n).

@ /mn : the set of Moztkin paths starting from (0, 0) and
ending at (m, n).
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Paths and weights

@ Pmn : the set of Dyck paths starting from (0, 0) and ending at
(m,n).

@ /mn : the set of Moztkin paths starting from (0, 0) and
ending at (m, n).

@ Ymn : the set of Schroder paths starting from (0, 0) and
ending at (m, n).
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Paths and weights

@ Pmn : the set of Dyck paths starting from (0, 0) and ending at
(m,n).

@ /mn : the set of Moztkin paths starting from (0, 0) and
ending at (m, n).

@ Ymn : the set of Schroder paths starting from (0, 0) and
ending at (m,n).

Definition (weights)

Assign the weight ay,, by, ¢, to each rise vector, fall vector, (short
or long) level vector of height h, respectively.
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Paths and Continued Fractions

Theorem (Flajolet 1980)

Stieltjes type continued fraction (Dyck paths):

1
2n __
Z GF [Q(Zn,o)] 17 = —aob1t2 .
n=0 1-—0
B . a2b3t2

Jacobi type continued fraction (Moztkin paths):

1
n_
Z GF [%(n’o):l t = a0b1t2
n=0 1 - Cot - a1b2t2
1-cyt— >
1—c2t—ﬂ
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Paths and Weights

Schroder path:
1
GF fjﬂ(Zn,O) tzn =
é(:) [ ] 1 -cot? - i
1—C1t2— Agbpt
l—cztz—ﬂ
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Paths and Weights

Schroder path:
1
GF|(2n0) | 1" =
g) [ ] 1-— Cotz _ aph;t2 >
1—Clt2— ajbot
l—cztz—ﬂ

Definition (4n)

For non-negative integer n, let

g (1-aq¥)(1-abg)

__ J (1—abg?-1)(1-abg?¥)
=1 “aq(1-a)(a-b9")
(1-abg?¢)(1-abg?<+1)

if n =2k — 1 is odd,

if n = 2k is even.
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Weights to realize the moment sequence

Definition (Weights of Dyck paths)

Let P € Ymn be a Dyck path. We assign the weight 1 to each rise
vector, and Ay, to each fall vector of height h.

Y

A Dyck Path of weight 1.3
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Dyck paths and the generating function

The generating function of 7, equals

(1-aq)(1-ag?)
GF(Z40) = 22 + 1315 = = Uo.
(Za0) 17 A2 (1 -abg?)(1 - abg?®) 2

(0,0) (4,0) x (0,0) (4,0) x

Dyck Paths in 240
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Dyck paths and the generating function

Lemma

Let m and n be non-negative integers such that m = n (mod2). Put
m = 2r and n = 2s if m and n are both even, m = 2r + 1 and

n = 2s + 1 if m and n are both odd. Then we have

1+s.
where
[r] :{% fo<s<r,
S 0 otherwise.
Especially
GF[Z2m,o] = % .
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Proof by Induction

Proceed by induction on m. \

GF[-@m,n] — GF[-@m—l,n—l] + /ln+lGF[-@m—l,n+l]
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Stieltjes type continued fraction

Corollary (Stieltjes type continued fraction)

As a corollary of this lemma, we obtain the Stieltjes type continued
fraction

1
m _
Z,umt 1 T At

m>0 ot
LY
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Weights to realize the moment sequence

Definition (Weights of Moztkin paths)

Let P € .#nn be a Moztkin path. We assign the weight A2+ to
each rise vector of height h, A2, to each fall vector of height h, and
Aon + Aon+1 to each level vector of height h.

Y4

(0,0) X
A Moztkin Path of weight A24,A31546(Ao + A1)(A4 + A5)(Ae + A7)
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Dyck paths and the generating function

Lemma

Let m and n be non-negative integers. Then we have

n : ml_ 2n+1
CF o) =[] (D)

nlg  (abg"t1; q)my1
Especially
(aq; q)m
GF|[ ol = ——— = um.
[ m,O] (aqu; q)m HMm

Corollary (Jacobi type continued fraction)

1
m __
Z“mt - Q1 At?

1-(A2+3)t—

Azst2

A5 gt2
1-(Ag+15)t- 228
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Proof by Induction

Proceed by induction on m. \
y
L] L] L] [ ]
2n+2
/12n + /12n+1
. ®o—0O

o L] L] ]

GF[«//m,n] == AZn—lGF[«/fm—l,n—l] I (/12n o /12n+1)GF[f//m—1,n] aF
Aony2GF [ Mm-1,n+1]
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Hankel determinants

Genetral weights

Assign the weight ay,, by, to each rise vector, fall vector of height h,
respectively.
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Hankel determinants
Genetral weights

Assign the weight ay,, by, to each rise vector, fall vector of height h,
respectively.

Let Gm = GF[Z2m ] for non-negative integer m.
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Hankel determinants
Genetral weights

Assign the weight ay,, by, to each rise vector, fall vector of height h,
respectively.

Let Gm = GF[Z2m ] for non-negative integer m.
Q@ det(Gmin)osijen-1 = [Tty (azi—2b2i—18i-1bi)"™
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Hankel determinants
Genetral weights

Assign the weight ay,, by, to each rise vector, fall vector of height h,
respectively.

Let Gm = GF[Z2m ] for non-negative integer m.
Q det(Gm+n)osijen-1 = [Ty (azi—2bi—1azi—1b2i)""

Q det(Gmin+1)osijen-1 = [1i1 (82i-2b2i-1)" " (@zi-1b2i)"”
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Hankel determinants
Genetral weights

Assign the weight ay,, by, to each rise vector, fall vector of height h,
respectively.

Let Gm = GF[Z2m ] for non-negative integer m.
@ det(Gmin)osijen_1 = [1i-y (B2i-2b2i-182i-1b2i)""
Q det(Gmtn+1)osijen-1 = [Tig (a2i-2b2i-1)" " (azi-1ba)™

Q det(Gmn+2)oxijen_1 €QUals

n k
Z (aOal - agi_gas ,biby - b2i—1b22i_1)
k=0 i=1
K
X l_l (apay - - - agi—1b1by - - - byy)
i—1
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Proof by Lindstrom-Gessel-Viennot theorem

(0,0) us uz uz up=vy V2 v3 V4 X

det (Gm+n)o<ijen-1 = I1i=1 (azi-2bzi_1az_1bg)"
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Proof by Lindstrom-Gessel-Viennot theorem

t=1,n=4
Y

det (Gmn+1)osijen-1 = [1iLg (a2i-2b2i-1)"" " (azi-1b2i)""
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Proof by Lindstrom-Gessel-Viennot theorem

(0,0) us uz uz up V1 2 V3 Ve X
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Proof of Theorem

Let n be a positive integer. Then

det (ti+i)o<ijan_1 = a#n(n-1)ggn-1)(2n-1)

n

" l—[ (9,aq, bg; q)n-k
k=1 (abqn_k+l; C])n—k (aqu; Q)Z(n—k)
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Proof of Theorem

Let n be a positive integer. Then

det (1t ) oxi <no1 = a%n(n—l)q In(n-1)(2n-1)
n

o l—[ (9,aq, bg; q)n-k
k=1 (abqn_k+l; C])n—k (aqu; Q)Z(n—k)

Proof of Theorem

The determinant equals

]_[(/12k—1/12k )n—k = ]—[ (/12i—1/12i)
k=1i

where _ . . | |
ag?*(1-¢')(1-aq')(1 - bg')(1 - abq’)
(1 - abq?T)(1 - abg? (1 - abg?+1)
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Aoi—1doi =




Proof of Corollary

Corollary

Let n be a positive integer and t non-negative integer. Then
$(n-1) g n(n-1)(20- 1){%}“
(abg?; q)t

y 1—[ (0.aq"™, bg; q)n-k
(abgnk+t+L; q)n i (abQ'2; q)p(n-k)

det (/’lI+J+t)0<|J<n 1= a2z
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Proof of Corollary
Corollary

Let n be a positive integer and t non-negative integer. Then

n
» _ abnn-1)gintr-nn-n [ (399
det (“'+J+t)0si,jsn—1 —an e n {(aqu; a)t

n

» 1—[ (a,a9"*, ba; q)nk
c_1 (abgnk+t+1q), 4 (abgt*2; q) (k)

V.

Proof of Corollary
Use

(ad; q)n+t _ (ag; 9)c(ag'*t; g)n
abg?; q)n+t  (abg?; q)i(abatt2;q)n

HMn+t =
(
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The little g-Jacobi polynomials

Definition (Andrews-Askey 1977)

Forn =0,1,2,..., the little g-Jacobi polynomials p,(x;a,b; q) is
defined to be

pn(x;a,b;q) = M(—1)”q‘3)z¢>l

_ q—n’ qn+l
(abg"t1; q)n a
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The little g-Jacobi polynomials

Definition (Andrews-Askey 1977)

Forn =0,1,2,..., the little g-Jacobi polynomials p,(x;a,b; q) is
defined to be

pn(x;a,b;q) = M(—1)”q‘3)z¢>1

_ q—n’ qn+l
(abg"t1; q)n a

Theorem (Three term relation)

pn(Xx) = pn(x;a,b;q) satisfies the three term relation

Pnt1(X) = {X = (A2n + A2n+1)} Pn(X) — A2n-142nPn-1(X)

where p_1(x) = 0 and po(x) = 1. Especially, pn(x) is @ monic
polynimial of degree n forn =0,1,2,....
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by
(ag; q)eo i (bg; q);

Al = (aba?; a)e =5 (a:9);
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Definition (Linear functional)

For a polynomial f(x), we define the linear functional .Z : f — Z[f]
by

(a9;9)w < (ba; q);
(aqu;q)ooj-zz0 (a; )

Proposition (the moment sequence)

Z[f] =

From the g-binomial thereom Zfio E:g;i = (&qu)f we obtain
(ag; a)n
LIx" = ——— = .
¥ Gz,

Masao Ishikawa Catalan Hankel Determinants



Orthogonality

Proposition (Andrews-Askey 1977)

We have

0 if m # n,
(9,29,bg;9)n

if m=n.
(aba;g)2n(abg"t1;q)nt1

Z [pn(x)pm(X)] = {

anqn2
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Orthogonality
Proposition (Andrews-Askey 1977)

We have

0 if m # n,
(9,29,bg;9)n
(aba;g)2n(abg"t1;q)nt1

Proposition (the continued fraction)

The above three term equation

if m=n.

Z [pn(x)pm(X)] = {

anqn2

Pnt1(X) = {X = (A2n + A2n+1)} Pn(X) — A2n-142nPn-1(X)

is equvalent to the Jacobi type continued fraction

1
m_
Zﬂmt - L Aot?

1-(A2+23)t—

A34t2

A5 gt2
(i A =
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The Hankel determinants

Let
Mo M1 ... Mn-1
1 pH2 ... M
d® — detad = |71 2
Mn-1 Mn ... HM2n-2
Then
(0)
din & 2 (9,aq,bg; q)n
= A2i-142) = a"q"
dr(10) D( 142 (abg; g)2n(abg"*1; q)nq1
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A proof by the orthogonal polynomials

Put

Ho M1 ... Hn-1 HMn
M1 M2 ... Hn Hn+1

Dn(x) =1 : P :
Mn-1 Mn ... HMon-2 M2n-1

1 x ... x"tooxn

forn=0,1,2,.... Then d(—lo)Dn(x) is @ monic polynomial of degree

n. Because .Z[x"Dy(x)] = 0form < n, we have
Z[Dm(x)Dn(x)] = 0if m # n. From the uniqueness of the
orthogonal polynomials with respect to .#, we obatin
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Proof

Thus we have
Mo M1 .- Mol Hn
1 M1 M2 ... Mn  Hnyl d©
LIx"on(x)] = — | : : .. : : _ _nti
] I R R e -
N |Mn-1  Mn ... H2n-2 Hon-1 m
Mn  HMn+1 ... HMon-1  M2n
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Proof

From

Pn+1(X) = {X = (A2n + A2n41)} Pn(X) — A2n-142nPn-1(X),
we have
ZX"pnya(X)] = Z[X"pn(x)]
— (A2n + /12n+1)$[xn_1pn(x)] - ﬂZn—lﬂan[Xn_lpn—l(X)]

which implies
Z[x"pn(x)]
Z[x"tpn-a (x)]

= Aon-142n

Thus we obtain
(0) n

n+1
d(o) 1_[ /12| 1/12|
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Reduction to an identity on hypergeometric series

g-Dougall’'s formula

The LU-decomposition of the Hankel matrix is obatined from the
following g-Dougall’s formula:

a,qaz,-qaz,b,c,d aq

65| 1 1 10—

az,—az?,aq/b,aq/c,aq/d ~ bcd
(ga,aq/bc,aq/bd,aq/cd; q)c

(aq/b,aq/c,aq/d,aq/bcd; q)e

(See Gasper-Rahman 1990.)
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Thank you!
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