Enumeration problems of plane partitions and determinant generating functions

Masao Ishikawa ${ }^{\dagger}$
${ }^{\dagger}$ Department of Mathematics
Tottori University

Expansion of Combinatorial Representation Theory, RIMS, Kyoto University
Octorber 7 - 10, 2008.

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions

Restricted column-strict plane partitions

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(9) $\tau=-1$ Conjectures
(6) Restricted column-strict domino plane partitions with all rows
and columns of even lenth

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) $\tau=-1$ Conjectures

Restricted column-strict domino plane partitions with all rows
and columns of even lenth
© Restricted column-strict domin plane partitions with all rows of even lenth

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) $\tau=-1$ Conjectures
(5) Restricted column-strict domino plane partitions with all rows and columns of even lenth

6 Restricted column-strict domino plane partitions with all rows of even lenth
a Restricted column-strict domino plane partitions with all columns of even Ienth

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) $\tau=-1$ Conjectures
(5) Restricted column-strict domino plane partitions with all rows and columns of even lenth
(6) Restricted column-strict domino plane partitions with all rows of even lenth

Restricted column-strict domino plane partitions with all
columns of even lenth

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) $\tau=-1$ Conjectures
(5) Restricted column-strict domino plane partitions with all rows and columns of even lenth
(6) Restricted column-strict domino plane partitions with all rows of even lenth
(3) Restricted column-strict domino plane partitions with all columns of even lenth

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns.
then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i, j \geq 1} \pi_{i j}=n$, then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the weight n.

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i, j \geq 1} \pi_{i j}=n$, then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the weight n.

Example

A plane partition of 14

3	2	1	1	0	\ldots
2	2	1	0	\ldots	
1	1	0	0	\ldots	
0	0	0	\ddots		

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
 - The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i}
nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s

A plane partition of shape (432) with 3 rows and 4 columns:

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s columns if $s=\ell\left(\lambda^{\prime}\right)$.

Example A plane partition of shape (432) with 3 rows and 4 columns:

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s columns if $s=\ell\left(\lambda^{\prime}\right)$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

3	2	1	1
2	2	1	
1	1		

Example of plane partitions

Example

－Plane partitions of 0：\emptyset
－Plane partitions of 1 ： 1
－Plane partitions of 2 ：

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of 1 : 1
- Plane partitions of 2 :
- Plane partitions of 3 :

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of 1 : 1
- Plane partitions of 2 :

$$
\begin{array}{|ll|l|}
\hline 2 & 1 & 1 \\
\hline & & \begin{array}{|l|}
\hline 1 \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Plane partitions of 3 :

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of 1 : 1
- Plane partitions of 2 :

$$
\begin{array}{|l|l|l|}
\hline 2 & \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline & \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Plane partitions of 3 :

Schur functions

Definition
 A plane partition is said to be column-strict if it is strictly decreasing in coulumns.

where π runs over all column-strict plane partitions of shape λ and

Schur functions

Definition

A plane partition is said to be column-strict if it is strictly decreasing in coulumns.

Schur functions

Let x_{1}, \ldots, x_{n} be n variables, and fix a shape λ. The Schur function $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ is defined to be

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\pi} x^{\pi}
$$

where π runs over all column-strict plane partitions of shape λ and $x^{\pi}=\prod_{i} x_{i}^{\# \text { of } i \text { in } \pi}$.

An Example of Schur functions

Example

If $\lambda=(22)$ and $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then the followings are column-strict plane partitions with all parts ≤ 3.

2	2
1	1

3	2
1	1

3	3
1	1

3	2
2	1

3	3
2	1

3	3
2	2

Hence we have

$$
s_{\left(2^{2}\right)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}
$$

Ferrers graph

Definition

The Ferrers graph $D(\pi)$ of π is the subset of \mathbb{P}^{3} defined by

$$
D(\pi)=\left\{(i, j, k): k \leq \pi_{i j}\right\}
$$

Ferrers graph

Definition

The Ferrers graph $D(\pi)$ of π is the subset of \mathbb{P}^{3} defined by

$$
D(\pi)=\left\{(i, j, k): k \leq \pi_{i j}\right\}
$$

Example

Ferrers graph

Symmetries of plane paritior

Example

Definition

If $\pi=\left(\pi_{i j}\right)$ is a plane partition, then the transpose π^{*} of π is defined by $\pi^{*}=\left(\pi_{j i}\right)$.

Symmetries of plane paritior

Example

Definition

If $\pi=\left(\pi_{i j}\right)$ is a plane partition, then the transpose π^{*} of π is defined by $\pi^{*}=\left(\pi_{j i}\right)$.

- π is symmetric if $\pi=\pi^{*}$.
whenever $(i, j, k) \in \pi$ then
- π is called it is cyclically symmetric and
symmetric.

Symmetries of plane paritior

Example

Definition

If $\pi=\left(\pi_{i j}\right)$ is a plane partition, then the transpose π^{*} of π is defined by $\pi^{*}=\left(\pi_{j i}\right)$.

- π is symmetric if $\pi=\pi^{*}$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called it is cyclically symmetric and symmetric.

Symmetries of plane paritior

Example

Definition

If $\pi=\left(\pi_{i j}\right)$ is a plane partition, then the transpose π^{*} of π is defined by $\pi^{*}=\left(\pi_{j i}\right)$.

- π is symmetric if $\pi=\pi^{*}$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called totally symmetric if it is cyclically symmetric and symmetric.

Complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, s, t)=[r] \times[s] \times[t]$.
Define the complement π^{C} of π by

Example

$B(2,3,3)$

Complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, s, t)=[r] \times[s] \times[t]$.
Define the complement π^{c} of π by
$\pi^{c}=\{(r+1-i, s+1-j, t+1-k):(i, j, k) \notin \pi\}$.

Example

complement

Complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, s, t)=[r] \times[s] \times[t]$.
Define the complement π^{c} of π by $\pi^{c}=\{(r+1-i, s+1-j, t+1-k):(i, j, k) \notin \pi\}$.

- π is said to be (r, s, t)-self-complementary if $\pi=\pi^{c}$. i.e.

$$
(i, j, k) \in \pi \Leftrightarrow(r+1-i, s+1-j, t+1-k) \notin \pi .
$$

Example

A ($2,3,3$)-self-complementary PP

Transpose-complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, r, t)$.
Define the
$\pi^{\text {tc }}=$

Example

Transpose-complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, r, t)$. Define the transpose-complement $\pi^{\text {tc }}$ of π by

$$
\pi^{t c}=\{(r+1-j, r+1-i, t+1-k):(i, j, k) \notin \pi\} .
$$

Example

Transpose-complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, r, t)$. Define the transpose-complement $\pi^{t c}$ of π by

$$
\pi^{t c}=\{(r+1-j, r+1-i, t+1-k):(i, j, k) \notin \pi\} .
$$

- π is said to be complement=transpose if $\pi=\pi^{\text {tc }}$, i.e.

$$
(i, j, k) \in \pi \Leftrightarrow(r+1-j, r+1-i, t+1-k) \notin \pi .
$$

Example

Totally symmetric self-complementary plane partitions

Definition

A plane partition contained in $B(2 n, 2 n, 2 n)$ is said to be totally symmetric self-complementary plane parition of size n if it is totally symmetric and ($2 n, 2 n, 2 n$)-self-complementary.

Totally symmetric self-complementary plane partitions

Definition

A plane partition contained in $B(2 n, 2 n, 2 n)$ is said to be totally symmetric self-complementary plane parition of size n if it is totally symmetric and ($2 n, 2 n, 2 n$)-self-complementary. We denote the set of all self-complementary totally symmetric plane partitions of size n by \mathscr{T}_{n}.

Totally symmetric self-complementary plane partitions

Definition

A plane partition contained in $B(2 n, 2 n, 2 n)$ is said to be totally symmetric self-complementary plane parition of size n if it is totally symmetric and ($2 n, 2 n, 2 n$)-self-complementary.
We denote the set of all self-complementary totally symmetric plane partitions of size n by \mathscr{T}_{n}.

Example

\mathscr{T}_{1} consists of the single partition

TSSCPPs of size 2

Example

\mathscr{T}_{2} consists of the following two partitions:

TSSCPPs of size 2

Example

\mathscr{T}_{2} consists of the following two partitions:

TSSCPPs of size 3

Example

\mathscr{T}_{3} consists of the following seven partitions:

TSSCPPs of size 3

Example

\mathscr{T}_{3} consists of the following seven partitions:

Example

\mathscr{T}_{3} consists of the following seven partitions:

TSSCPPs of size 3

Example

\mathscr{T}_{3} consists of the following seven partitions:

Tc-symmetric plane partitions

Definition

A plane partition in $B(2 n, 2 n, 2 n)$ is defined to be tc-symmetric of size n if it is cyclically symmetric and it is equal to its transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by

Tc-symmetric plane partitions

Definition

A plane partition in $B(2 n, 2 n, 2 n)$ is defined to be tc-symmetric of size n if it is cyclically symmetric and it is equal to its transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by \mathscr{C}_{n}.

Tc-symmetric plane partitions

Definition

A plane partition in $B(2 n, 2 n, 2 n)$ is defined to be tc-symmetric of size n if it is cyclically symmetric and it is equal to its transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by \mathscr{C}_{n}.

Example

\mathscr{C}_{1} consists of the single partition

Tc-symmetric PPs of size 2

Example

\mathscr{C}_{2} consists of the following two partitions:

Tc-symmetric PPs of size 2

Example

\mathscr{C}_{2} consists of the following two partitions:

Tc-symmetric PPs of size 3

Example

\mathscr{C}_{3} consists of the following eleven plane partitions:

n	1	2	3	4	5	6	\cdots
TSSCPP	1	2	7	42	429	7436	\cdots
tc-symmetric PP	1	2	11	170	7429	920460	\cdots

Definition

$$
\begin{aligned}
& A_{n}=\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!} \\
& T C_{n}=\prod_{i=0}^{n-1} \frac{(3 i+1)(6 i)!(2 i)!}{(4 i)!(4 i+1)!}
\end{aligned}
$$

The Numbers of HTSASMs and VSASMs

Definition

$$
\begin{aligned}
& A_{2 n}^{\mathrm{HTS}}=\prod_{i=0}^{n-1} \frac{(3 i)!(3 i+2)!}{\{(n+i)!\}^{2}} \quad A_{2 n+1}^{\mathrm{HTS}}=\frac{n!(3 n)!}{\{(2 n)!\}^{2}} \cdot A_{2 n}^{\mathrm{HTS}}, \\
& A_{2 n+1}^{\mathrm{VS}}=\frac{1}{2^{n}} \prod_{k=1}^{n} \frac{(6 k-2)!(2 k-1)!}{(4 k-2)!(4 k-1)!} .
\end{aligned}
$$

The Numbers of HTSASMs and VSASMs

Definition

$$
\begin{aligned}
& A_{2 n}^{\mathrm{HTS}}=\prod_{i=0}^{n-1} \frac{(3 i)!(3 i+2)!}{\{(n+i)!\}^{2}} \quad A_{2 n+1}^{\mathrm{HTS}}=\frac{n!(3 n)!}{\{(2 n)!\}^{2}} \cdot A_{2 n}^{\mathrm{HTS}}, \\
& A_{2 n+1}^{\mathrm{VS}}=\frac{1}{2^{n}} \prod_{k=1}^{n} \frac{(6 k-2)!(2 k-1)!}{(4 k-2)!(4 k-1)!} .
\end{aligned}
$$

Example

n	1	2	3	4	5	6	7	8	9	\cdots
$A_{n}^{\text {HTS }}$	1	2	3	10	25	140	588	5544	39204	\cdots
$A_{n}^{\text {VS }}$	1		1		3		26		646	\cdots

Enumeration polynomials

Definition

$$
A_{2 n+1}^{\mathrm{vs}}(t)=\frac{A_{2 n-1}^{\mathrm{Vs}}}{(4 n-2)!} \sum_{r=1}^{2 n} t^{r-1} \sum_{k=1}^{r}(-1)^{r+k} \frac{(2 n+k-2)!(4 n-k-1)!}{(k-1)!(2 n-k)!}
$$

Enumeration polynomials

Definition

$$
A_{2 n+1}^{\mathrm{VS}}(t)=\frac{A_{2 n-1}^{\mathrm{VS}}}{(4 n-2)!} \sum_{r=1}^{2 n} t^{r-1} \sum_{k=1}^{r}(-1)^{r+k} \frac{(2 n+k-2)!(4 n-k-1)!}{(k-1)!(2 n-k)!}
$$

Example

$$
\begin{aligned}
& A_{3}^{\mathrm{VS}}(t)=1 \\
& A_{5}^{\mathrm{VS}}(t)=1+t+t^{2} \\
& A_{7}^{\mathrm{VS}}(t)=3+6 t+8 t^{2}+6 t^{3}+3 t^{4} \\
& A_{9}^{\mathrm{VS}}(t)=26+78 t+138 t^{2}+162 t^{3}+138 t^{4}+78 t^{5}+26 t^{6}
\end{aligned}
$$

Enumeration polynomials

Definition

$$
\begin{aligned}
& A_{n}(t)=\frac{A_{n}}{\binom{3 n-2}{n-1}} \sum_{r=1}^{n}\binom{n+r-2}{n-1}\binom{2 n-1-r}{n-1} t^{r-1} \\
& \frac{\widetilde{A}_{2 n}^{\mathrm{HTS}}(t)}{\widetilde{A}_{2 n}^{\mathrm{HTS}}}=\frac{(3 n-2)(2 n-1)!}{(n-1)!(3 n-1)!} \\
& \times \sum_{r=0}^{n} \frac{\left\{n(n-1)-n r+r^{2}\right\}(n+r-2)!(2 n-r-2)!}{r!(n-r)!} t^{r} \\
& A_{2 n}^{\mathrm{HTS}}(t)=\widetilde{A}_{2 n}^{\mathrm{HTS}}(t) A_{n}(t) \\
& A_{2 n+1}^{\mathrm{HTS}}(t)=\frac{1}{3}\left\{A_{n+1}(t) \widetilde{A}_{2 n}^{\mathrm{HTS}}(t)+A_{n}(t) \widetilde{A}_{2 n+2}^{\mathrm{HTS}}(t)\right\}
\end{aligned}
$$

where $\widetilde{A}_{2 n}^{\mathrm{HTS}}=\prod_{i=0}^{n-1} \frac{(3 i)!(3 i+2)!}{(3 i+1)!(n+i)!}$.

Examples

Example

$$
\begin{aligned}
& A_{1}(t)=1 \\
& A_{2}(t)=1+t \\
& A_{3}(t)=2+3 t+3 t^{2} \\
& A_{4}(t)=7+14 t+14 t^{2}+7 t^{3}
\end{aligned}
$$

Examples

Example

$$
\begin{aligned}
& A_{1}(t)=1 \\
& A_{2}(t)=1+t \\
& A_{3}(t)=2+3 t+3 t^{2} \\
& A_{4}(t)=7+14 t+14 t^{2}+7 t^{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
& A_{1}^{\mathrm{HTS}}(t)=1 \\
& A_{2}^{\mathrm{HTS}}(t)=1+t \\
& A_{3}^{\mathrm{HTS}}(t)=1+t+t^{2} \\
& A_{4}^{\mathrm{HTS}}(t)=2+3 t+3 t^{2}+2 t^{3}
\end{aligned}
$$

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition.

Example

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{1} consists of the single PP \emptyset.

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{2} consists of the following 2 PPs:

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{2} consists of the following 2 PPs:
\emptyset

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{3} consists of the followng 7 PPs

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{3} consists of the followng 7 PPs

Bjections

Theorem

Let n be a positive integer. Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $U_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

5	5			2	2
4	4	3		1	
3	2				
2	1				
1					

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}$, Saturated parts

5	5	4			2
4	4				
3	2				
2	1				
1					

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=1, \bar{U}_{1}(c)=3$

5	5	4			2
4	4				
3	2				
2	1				
1					

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=2, \bar{U}_{2}(c)=5$

5	5	4			2
4	4				
3	2				
2	1				
1					

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=3, \bar{U}_{3}(c)=3$

5	5		2	2
4	4			
3	2			
2	1			
1				

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=4, \bar{U}_{4}(c)=4$

5	5		2	2
4	4			
3	2			
2	1			
1				

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=5, \bar{U}_{5}(c)=4$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=6, \bar{U}_{6}(c)=3$

5	5		2	2
4	4		1	
3	2			
2	1			
1				

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=7, \bar{U}_{7}(c)=3$

5	5	4			2
4	4				
3	2				
2	1				
1					

Generating function

Generating function

We consider the generating function

$$
f_{k, n}(\tau, t)=\sum_{\pi \in \mathscr{P}_{n}^{R}} \tau^{N(\pi)} t^{\bar{U}_{k}(\pi)}
$$

where $N(\pi)$ denotes the number of boxes in π.

Generating function

Generating function

We consider the generating function

$$
f_{k, n}(\tau, t)=\sum_{\pi \in \mathscr{P}_{n}^{\mathrm{R}}} \tau^{N(\pi)} t^{\bar{U}_{k}(\pi)}
$$

where $N(\pi)$ denotes the number of boxes in π.

Example

if $n=3$, then $\mathscr{P}_{3}^{\mathrm{R}}$ is composed of the following 7 plane partitions:

$$
\begin{aligned}
& \begin{array}{llllll|l|}
& 1 & 1 & 1 & 1 & 2 & 2
\end{array} \begin{array}{|lll|l|}
\hline 2 & \begin{array}{|l|l|}
\hline 2 & 1 \\
\hline 1 & \\
\hline
\end{array}
\end{array} \\
& f_{k, 3}(\tau, t)=1+(1+t) \tau+t(2+t) \tau^{2}+t^{2} \tau^{3},
\end{aligned}
$$

for $k=1,2,3$.

A Pfaffian expression

Definition

Let $B_{n, N}=\left(b_{i, j}(\tau, t)\right)_{0 \leq i \leq n-1,0 \leq j \leq N-1}$ denote the n by N matrix defined by

$$
b_{i, j}(\tau, t)= \begin{cases}\delta_{i, j} & \text { if } i=0 \\ \left\{\binom{i-1}{j-i}+t\binom{i-1}{j-i-1}\right\} \tau^{j-i} & \text { if } i>0\end{cases}
$$

A Pfaffian expression

Definition

Let $B_{n, N}=\left(b_{i, j}(\tau, t)\right)_{0 \leq i \leq n-1,0 \leq j \leq N-1}$ denote the n by N matrix defined by

$$
b_{i, j}(\tau, t)= \begin{cases}\delta_{i, j} & \text { if } i=0 \\ \left\{\binom{i-1}{j-i}+t\binom{i-1}{j-i-1}\right\} \tau^{j-i} & \text { if } i>0\end{cases}
$$

Example

If $n=3$ and $N=5$, then we have

$$
B_{3,5}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & t \tau & 0 & 0 \\
0 & 0 & 1 & (1+t) \tau & t \tau^{2}
\end{array}\right)
$$

A Pfaffian expression

Definition

Let S_{n} denote the anti-symmetric $n \times n$ matrix defined by $S_{n}=\left((-1)^{j-i-1}\right)_{1 \leq i<j \leq n}$, and let $J_{n}=\left(\delta_{i, n+1-j}\right)_{1 \leq i, j \leq n}$ denote the anti-diagonal matrix of size n.

A Pfaffian expression

Definition

Let S_{n} denote the anti-symmetric $n \times n$ matrix defined by $S_{n}=\left((-1)^{j-i-1}\right)_{1 \leq i<j \leq n}$, and let $J_{n}=\left(\delta_{i, n+1-j}\right)_{1 \leq i, j \leq n}$ denote the anti-diagonal matrix of size n.

Example

$$
S_{4}=\left(\begin{array}{cccc}
0 & 1 & -1 & 1 \\
-1 & 0 & 1 & -1 \\
1 & -1 & 0 & 1 \\
-1 & 1 & -1 & 0
\end{array}\right), \quad J_{4}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

A Pfaffian expression

Theorem

For a positive integer n, let N be the least integer such that $N \geq 2 n-1$ and $n+N$ is even. Then we have

$$
f_{k, n}(\tau, t)=\operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n, N} \\
-B_{n, N}^{T} J_{n} & S_{N}
\end{array}\right),
$$

for $k=1, \ldots, n$.

A Pfaffian expression

Theorem

For a positive integer n, let N be the least integer such that $N \geq 2 n-1$ and $n+N$ is even. Then we have

$$
f_{k, n}(\tau, t)=\operatorname{Pf}\left(\begin{array}{cc}
O_{n} & J_{n} B_{n, N} \\
-B_{n, N}^{T} J_{n} & S_{N}
\end{array}\right),
$$

for $k=1, \ldots, n$.

Example

If $n=3$ and $N=5$, then we obtain

$$
\operatorname{Pf}\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 1 & (1+t) \tau & t \tau^{2} \\
0 & 0 & 0 & 0 & 1 & t \tau & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & -1 & 1 & -1 \\
0 & -1 & 0 & -1 & 0 & 1 & -1 & 1 \\
-1 & -t \tau & 0 & 1 & -1 & 0 & 1 & -1 \\
-(1+t) \tau & 0 & 0 & -1 & 1 & -1 & 0 & 1 \\
-t \tau^{2} & 0 & 0 & 1 & -1 & 1 & -1 & 0
\end{array}\right)
$$

equals $1+(1+t) \tau+t(2+t) \tau^{2}+t^{2} \tau^{3}$.

$\tau=1$

Example

If we put $\tau=1$ into $f_{k, 3}(\tau, t)=1+(1+t) \tau+t(2+t) \tau^{2}+t^{2} \tau^{3}$, then we obtain $A_{3}(t)=2+3 t+2 t^{2}$.

$\tau=1$

Example

If we put $\tau=1$ into $f_{k, 3}(\tau, t)=1+(1+t) \tau+t(2+t) \tau^{2}+t^{2} \tau^{3}$, then we obtain $A_{3}(t)=2+3 t+2 t^{2}$.

Fact

If we put $\tau=1$, then

$$
f_{k, n}(1, t)=A_{n}(t)
$$

for $n \geq 1$.

$$
\tau=-1
$$

Example

If we put $\tau=-1$ into $f_{k, 3}(\tau, t)=1+(1+t) \tau+t(2+t) \tau^{2}+t^{2} \tau^{3}$, then we obtain $f_{k, 3}(-1, t)=t$.

Example
The first few terms of $f_{k, n}(-1, t)$ looks as follows:

$\tau=-1$

Example

If we put $\tau=-1$ into $f_{k, 3}(\tau, t)=1+(1+t) \tau+t(2+t) \tau^{2}+t^{2} \tau^{3}$, then we obtain $f_{k, 3}(-1, t)=t$.

Example

The first few terms of $f_{k, n}(-1, t)$ looks as follows:

$$
\begin{aligned}
& f_{k, 3}(-1, t)=t \\
& f_{k, 4}(-1, t)=(1-t)\left(1+t+t^{2}\right) \\
& f_{k, 5}(-1, t)=3 t\left(1+t+t^{2}\right) \\
& f_{k, 6}(-1, t)=3(1-t)\left(3+6 t+8 t^{2}+6 t^{3}+3 t^{4}\right) \\
& f_{k, 7}(-1, t)=26 t\left(3+6 t+8 t^{2}+6 t^{3}+3 t^{4}\right)
\end{aligned}
$$

$\tau=-1$ conjecture

Conjecture

Let n be a positive integer such that $n \geq 3$.
(1) If n is even, then we would have

$$
f_{k, n}(-1, t)=A_{n-1}^{\mathrm{VS}} \cdot(1-t) A_{n+1}^{\mathrm{VS}}(t)
$$

(2) If n is odd, then we would have

$\tau=-1$ conjecture

Conjecture

Let n be a positive integer such that $n \geq 3$.
(1) If n is even, then we would have

$$
f_{k, n}(-1, t)=A_{n-1}^{\mathrm{VS}} \cdot(1-t) A_{n+1}^{\mathrm{VS}}(t)
$$

(2) If n is odd, then we would have

$$
f_{k, n}(-1, t)=A_{n}^{\mathrm{VS}} \cdot t A_{n}^{\mathrm{VS}}(t)
$$

Link patterns

Definition

A non-crossing perfect matching (link pattern) of the vertex set $[2 n]=\{1,2, \ldots, 2 n\}$ is an unordered collection of vertices, or edges, which does not contain edges $\{i, j\}$ and $\{k, l\}$ such that $i<k<j<I$. Let $\mathscr{F}_{2 n}$ denote the set of all link patterns of [2n]. We consider the periodic case by identifying 1 and $2 n$.

Link patterns

Definition

A non-crossing perfect matching (link pattern) of the vertex set $[2 n]=\{1,2, \ldots, 2 n\}$ is an unordered collection of vertices, or edges, which does not contain edges $\{i, j\}$ and $\{k, l\}$ such that $i<k<j<I$. Let $\mathscr{F}_{2 n}$ denote the set of all link patterns of [2n]. We consider the periodic case by identifying 1 and $2 n$.

Example

For $n=3$,

$$
\begin{aligned}
\mathscr{F}_{6}=\{ & \{1,2\}\{3,4\}\{5,6\},\{1,2\}\{3,4\}\{4,5\},\{1,4\}\{2,3\}\{5,6\}, \\
& \{1,6\}\{2,3\}\{4,5\},\{1,6\}\{2,5\}\{3,4\}\} .
\end{aligned}
$$

Link patterns

Definition

A convenient typographical notation for non-crossing perfect matching of $[2 n]$ is obtained by using parentheses for paired vertices.

Example

$$
\mathscr{F}_{6}=\{()()(),()(()),(())(),(()()),((()))\} .
$$

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$

Matchmakers

Definition

Throughout the following we put $\tau=-\left(q+q^{-1}\right)$. Define generators or matchmakers $e_{j}, j \in[2 n]$, acting non-trivially on elements $F \in \mathscr{F}_{2 n}$ by

$$
e_{j}:\left\{\begin{array}{l}
\{j, j+1\} \mapsto \tau\{j, j+1\} \\
\{i, j\}\{j+1, k\} \mapsto\{i, k\}\{j, j+1\} .
\end{array}\right.
$$

Temperley-Lieb Algebras

Temperley-Lieb Algebra

The match makers $e_{j}, j \in[2 n]$ satisfy the following relations:

$$
\begin{aligned}
& e_{i}^{2}=\tau e_{i}, i=1, \ldots, 2 n, \\
& e_{i} e_{i \pm 1} e_{i}=e_{i}, \\
& e_{i} e_{j}=e_{j} e_{i}, \quad|i-j|>1 .
\end{aligned}
$$

We also have the cyclic operator σ such that $e_{i+1}=\sigma e_{i} \sigma^{-1}$. This algebra is called the (affine) Temperley-Lieb Algebra and denoted by $T L_{2 n}$.

Example

Example

For $n=2$ case, we have two link patters. The order of the basis is $(()),()()$ (or equivalently label by 0011, 0101). Explicitly, the generators are written

$$
e_{1}=e_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & \tau
\end{array}\right), \quad e_{2}=e_{4}=\left(\begin{array}{ll}
\tau & 1 \\
0 & 0
\end{array}\right)
$$

Example

Example

For $n=3$ cases. We have five basis. The order of basis is $((())),(()()),(())(),()(()),()()()$, (or equivalently label by 000111, 001011, 001101, 010011, 010101). For example, the generator e_{1} is written as

$$
e_{1}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & \tau & 0 \\
1 & 0 & 1 & 0 & \tau
\end{array}\right), \quad \sigma=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

Other generators are obtained from $e_{i+1}=\sigma e_{i} \sigma^{-1}$

Polynomial representations

Definition

We determine a vector

$$
\psi=\sum_{\pi \in \mathscr{F}_{n}} \psi_{\pi}\left(z_{i}\right)|\pi\rangle
$$

by the following manner. The vectors $|\pi\rangle$ are basis vectors on which $T L_{2 n}$ acts from left. The $\psi_{\pi}\left(z_{i}\right)=\psi_{\pi}\left(z_{1}, \ldots, z_{2 n}\right)$ are polynomials on which $T L_{2 n}$ from right by

$$
f \bar{E}_{i}=\left(q z_{i}-q^{-1} z_{i+1}\right) \frac{f\left(\ldots, z_{i}, z_{i+1}, \ldots\right)-f\left(\ldots, z_{i+1}, z_{i}, \ldots\right)}{z_{i}-z_{i+1}}
$$

where $E_{i}=e_{i}-\tau$.

Polynomial representations

Fact

The polynomials $\psi_{\pi}\left(z_{i}\right)$ are uniquely determined by

$$
\begin{aligned}
& \psi_{\pi_{0}}=\prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{i+n}-q^{-1} z_{j+n}\right), \\
& E_{i} \psi=\psi \bar{E}_{i} \quad \text { for } i=1, \ldots, 2 n,
\end{aligned}
$$

where $\pi_{0}=(((\ldots() \ldots)))$.

Polynomial representations

Fact

The polynomials $\psi_{\pi}\left(z_{i}\right)$ are uniquely determined by

$$
\begin{aligned}
& \psi_{\pi_{0}}=\prod_{1 \leq i<j \leq n}\left(q z_{i}-q^{-1} z_{j}\right)\left(q z_{i+n}-q^{-1} z_{j+n}\right), \\
& E_{i} \psi=\psi \bar{E}_{i} \quad \text { for } i=1, \ldots, 2 n,
\end{aligned}
$$

where $\pi_{0}=(((\ldots() \ldots)))$.

Example

If $n=2$, then we obtain

$$
\begin{aligned}
& \psi_{(())}=\left(q x_{1}-q^{-1} x_{2}\right)\left(q x_{3}-q^{-1} x_{4}\right), \\
& \psi_{()()}=\psi_{(())} \bar{E}_{2}=\left(-q^{2} x_{1}+q^{-2} x_{4}\right)\left(q x_{2}-q^{-1} x_{3}\right) .
\end{aligned}
$$

$\tau=1$

Fact

If we substitute $q=e^{2 \pi i / 3}$ (i.e. $\tau=1$), then we obtain

$$
\sum_{\pi \in \mathscr{F}_{n}} \psi_{\pi}\left(z_{i}\right)=s_{\lambda}\left(z_{1}, \ldots, z_{2 n}\right)
$$

where $\lambda=(n-1, n-1, \ldots, 1,1,0,0)$.

$\tau=1$

Fact

If we substitute $q=e^{2 \pi i / 3}$ (i.e. $\tau=1$), then we obtain

$$
\sum_{\pi \in \mathscr{F}_{n}} \psi_{\pi}\left(z_{i}\right)=s_{\lambda}\left(z_{1}, \ldots, z_{2 n}\right)
$$

where $\lambda=(n-1, n-1, \ldots, 1,1,0,0)$.
Further, if we substitute $z_{1}=\frac{1+q t}{t+q}, z_{2}=\cdots=z_{2 n}=1$, then we obtain

$$
\frac{\sum_{\pi \in \mathscr{F}_{n}} \psi_{\pi}\left(z_{i}\right)}{\psi_{\pi_{0}}\left(z_{i}\right)}=A_{n}(t)
$$

Example $(\tau=1)$

Example

If $n=2$ and $q=e^{2 \pi i / 3}$, then

$$
\begin{aligned}
& \psi_{(())}+\psi_{()()}=s_{1^{2}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \\
& =x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}
\end{aligned}
$$

and, when $z_{1}=\frac{1+q t}{t+q}, z_{2}=z_{3}=z_{4}=1$, we obtain

$$
\frac{\psi_{(())}+\psi_{()()}}{\psi_{(())}}=1+t .
$$

$\tau=-1$ conjecture

Conjecture

If we substitute $q=e^{\pi i / 3}$ (i.e. $\left.\tau=-\left(q+q^{-1}\right)=-1\right), z_{1}=\frac{1-q t}{t-q}$, $z_{2}=\cdots=z_{2 n}=1$, then we would obtain

$$
\frac{\sum_{\pi \in \mathscr{F}_{n}} \psi_{\pi}\left(z_{i}\right)}{\psi_{\pi_{0}}\left(z_{i}\right)}= \begin{cases}A_{n-1}^{\mathrm{VS}} \cdot(1-t) A_{n+1}^{\mathrm{VS}}(t) & \text { if } n \text { is even } \\ A_{n}^{\mathrm{VS}} \cdot t A_{n}^{\mathrm{VS}}(t) & \text { if } n \text { is odd. }\end{cases}
$$

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{1} consists of the single pair (\emptyset, \emptyset).

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{2} consists of the following 2 pairs:

$$
(\emptyset, \emptyset) \quad(\boxed{1}, \boxed{1})
$$

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{2} consists of the following 2 pairs:

$$
(\emptyset, \emptyset) \quad(\boxed{1}, \boxed{1})
$$

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{3} consists of the followng 11 pairs

$$
\begin{aligned}
& (0, \emptyset) \quad(\boxed{1}, 1) \quad(2,1) \quad(\boxed{1}, 2) \quad(2,2)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
2 & 2 \\
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{llll}
2 & 1 & 2 & 1 \\
\hline 1 & , & 1 \\
\hline
\end{array}\right)
\end{aligned}
$$

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{3} consists of the followng 11 pairs

$$
\begin{aligned}
& (0,0) \quad(\boxed{1}, 1) \quad(2,1) \quad(\boxed{1}, 2) \quad(2,2) \\
& (\boxed{1|1, ~ 1| 1]}) \quad(\boxed{|\mid 1}, 2 \mid 1) \quad([2|1,|1| 1) \quad(\boxed{2 \mid 1}, 2 \mid 1) \\
& \left(\begin{array}{l|l}
2 & 2 \\
\hline 1 & 2 \\
1
\end{array}\right)\left(\begin{array}{llll}
\hline \frac{2}{2} & 1 & \frac{2}{2} & 1 \\
\hline 1 & , & 1 \\
\hline
\end{array}\right)
\end{aligned}
$$

Bjections

Theorem

Let n be a positive integer. Then we can construct a bijection from \mathscr{C}_{n} to \mathscr{Q}_{n}.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that

```
    (0) each number in a domino crossing the 2j-1st column does
    not exceed n-j
    D. aach numbor in a comino crossing the 2jth column does not
for j=1,\ldots,n-1.
```


Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2jth column does not for $j=1, \ldots, n-1$. If a part in the $2 j-1$ th or $2 j$ th column is equal

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2jth column does not exceed $n-j$,
for $j=1, \ldots, n-1$.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the $2 j$ th column does not exceed $n-j$,
for $j=1, \ldots, n-1$. If a part in the $2 j-1$ th or $2 j$ th column is equal to $n-j$, then we call it a saturated part.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the $2 j$ th column does not exceed $n-j$,
for $j=1, \ldots, n-1$. If a part in the $2 j-1$ th or $2 j$ th column is equal to $n-j$, then we call it a saturated part. For a positive integer k and $\pi \in \mathscr{D}_{n}^{(e)}$, set $\bar{U}_{k}(\pi)$ denote the number of parts in c equal to k plus the number of saturated parts less than k.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the $2 j$ th column does not exceed $n-j$,
for $j=1, \ldots, n-1$. If a part in the $2 j-1$ th or $2 j$ th column is equal to $n-j$, then we call it a saturated part. For a positive integer k and $\pi \in \mathscr{D}_{n}^{(e)}$, set $\bar{U}_{k}(\pi)$ denote the number of parts in c equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of dominoes in π.

Example

Example

The following domino plane partition π is an element of $\mathscr{D}_{3}^{(e)}$

since the 1st and 2 nd columns ≤ 2, the 3 rd and 4 th columns ≤ 1. The red numbers stand for saturated parts. Hence we have $\bar{U}_{1}(\pi)=\bar{U}_{2}(\pi)=\bar{U}_{3}(\pi)=3$. Since π has 4 dominoes, we have $N(\pi)=4$.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(o)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2jth column does not exceed $n-j-1$
for $j=1, \ldots, n-1$.
and can be defined

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(o)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2 jth column does not exceed $n-j-1$,
for $j=1, \ldots, n-1$.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(o)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2 jth column does not exceed $n-j-1$,
for $j=1, \ldots, n-1$. The statistics $\bar{U}_{k}(\pi)$ and can be defined similarly.

Example

Example

The following domino plane partition π is an element of $\mathscr{D}_{3}^{(o)}$

since the 1 st column ≤ 2, the 2 nd and 3rd columns ≤ 1. The red numbers stand for saturated parts. Hence we have
$\bar{U}_{1}(\pi)=\bar{U}_{2}(\pi)=\bar{U}_{3}(\pi)=3$. Since π has 4 dominoes, we have $N(\pi)=4$.

The Stanton-White Bijection

Theorem (Stanton-White)

There are bijections

$$
\pi \in \mathscr{D}_{n}^{(e)} \longleftrightarrow(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n},
$$

and

$$
\pi \in \mathscr{D}_{n}^{(o)} \longleftrightarrow(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n-1} .
$$

By this bijection, we have

The Stanton-White Bijection

Theorem (Stanton-White)

There are bijections

$$
\pi \in \mathscr{D}_{n}^{(e)} \longleftrightarrow(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n},
$$

and

$$
\pi \in \mathscr{D}_{n}^{(o)} \longleftrightarrow(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n-1} .
$$

By this bijection, we have

$$
\begin{aligned}
& \bar{U}_{k}(\pi)=\bar{U}_{k}(\sigma)+\bar{U}_{k}(\tau), \\
& N(\pi)=N(\sigma)+N(\tau)
\end{aligned}
$$

Tc-symmetric plane partitions and domino plane partitions

Theorem

There is a bijection between domino plane partitions $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\pi \in \mathscr{D}_{n}^{(o)}$) whose row and column lengths are all even and pairs $(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n}$ (resp. $\left.(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n-1}\right)$ such that σ and τ have the same shape.

Tc-symmetric plane partitions and domino plane partitions

Theorem

There is a bijection between domino plane partitions $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\pi \in \mathscr{D}_{n}^{(o)}$) whose row and column lengths are all even and pairs $(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n}$ (resp. $\left.(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n-1}\right)$ such that σ and τ have the same shape. Especially, there is a pijection between tc-symmetric plane partitions and domino plane partitions in $\mathscr{D}_{n}^{(e)}$ whose row and column lengths are all even.

(τ, t)-enumeration of tc-symmetric plane partitions

Definition

Let $\mathscr{D}_{n}^{(e, R C)}$ (resp. $\mathscr{D}_{n}^{(0, R C)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\left.\pi \in \mathscr{D}_{n}^{(o)}\right)$ whose row and column lengths are both all even.

(τ, t)-enumeration of tc-symmetric plane partitions

Definition

Let $\mathscr{D}_{n}^{(e, R C)}$ (resp. $\mathscr{D}_{n}^{(o, R C)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\pi \in \mathscr{D}_{n}^{(o)}$) whose row and column lengths are both all even. We consider the generating functions

$$
T_{n}^{(e)}(\tau, t)=\sum_{\pi \in \mathscr{O}_{n}^{(e, R C)}} \tau^{N(\pi)} t^{\bar{U}_{k}(\pi)}
$$

and

$$
T_{n}^{(o)}(\tau, t)=\sum_{\pi \in \mathscr{O}_{n}^{(o, R C)}} \tau^{N(\pi)} t^{\bar{U}_{k}(\pi)} .
$$

We will see the generating functions does not depend on k later.

Example

$\mathscr{D}_{3}^{(e, R C)}$ is composed of the following 11 elements;

$$
\emptyset,
$$

2
1

Example

$$
T_{3}^{(e, R C)}(\tau, t)=1+\left(1+2 t+t^{2}\right) \tau^{2}+\left(2 t^{2}+2 t^{3}+t^{4}\right) \tau^{4}+t^{4} \tau^{6}
$$

A determinant expression

Theorem

Let
$T_{i j}^{e}(\tau, t)= \begin{cases}\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\left(\begin{array}{c}\left.\binom{-1}{k-j}+t\binom{j-1}{k-j-1}\right\} \tau^{2 k-i-j} \\ \delta_{i j}\end{array} \text { if } i, j>0,\right.\right. \\ \text { otherwise },\end{cases}$
and

$$
T_{i j}^{o}(\tau, t)= \begin{cases}\left.\sum_{k=0}^{\infty}\left\{\begin{array}{c}
i-1 \\
k-i
\end{array}\right)+t\binom{i-1}{k-i-1}\right\}\left\{\binom{j-2}{k-j}+t\binom{j-2}{k-j-1}\right\} \tau^{2 k-i-j} & \text { if } i, j-1>0, \\
\delta_{i j} & \text { otherwise } .\end{cases}
$$

Then we have

$$
T_{n}^{(e)}(\tau, t)=\operatorname{det}\left(T_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1},
$$

and

$$
T_{n}^{(o)}(\tau, t)=\operatorname{det}\left(T_{i j}^{o}(\tau, t)\right)_{0 \leq, i, j \leq n-1}
$$

A refined enumeration of tc-symmetric plane partition!

Definition

We define the polynomials $t c_{n}(t)$ by

$$
t c_{n}(t)=T_{n}^{(e)}(1, t)
$$

A refined enumeration of tc-symmetric plane partitions

Definition

We define the polynomials $t c_{n}(t)$ by

$$
t c_{n}(t)=T_{n}^{(e)}(1, t) .
$$

Example

$$
\begin{aligned}
& t c_{1}(t)=1 \\
& t c_{2}(t)=1+t^{2} \\
& t c_{3}(t)=2+2 t+3 t^{2}+2 t^{3}+2 t^{4} \\
& t c_{4}(t)=11+22 t+34 t^{2}+36 t^{3}+34 t^{4}+22 t^{5}+11 t^{6} \\
& t c_{5}(t)=170+510 t+969 t^{2}+1326 t^{3}+1479 t^{4}+1326 t^{5} \\
& \\
& \quad+969 t^{6}+510 t^{7}+170 t^{8}
\end{aligned}
$$

A refined enumeration of tc-symmetric plane partition!

Definition

We define the polynomials $t c_{n}(t)$ by

$$
t c_{n}(t)=T_{n}^{(e)}(1, t)
$$

Observations

$$
\begin{aligned}
& t c_{n}(-1)=2^{n-1} \prod_{i=1}^{n-1} \frac{(6 i-6)!(3 i+1)!(2 i-1)!}{(4 i-3)!(4 i)!(3 i-3)!} \\
& t c_{n}(2)=\prod_{i=1}^{n-1} \frac{(6 i-1)!(3 i-2)!(2 i-1)!}{(4 i-2)!(4 i-1)!(3 i-1)!}
\end{aligned}
$$

Column-strict domino plane partitions of even rows

Definition

Let $\mathscr{D}_{n}^{(e, R)}$ (resp. $\mathscr{D}_{n}^{(o, R)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\pi \in \mathscr{D}_{n}^{(o)}$) whose row lengths are all even.

Column-strict domino plane partitions of even rows

Definition

Let $\mathscr{D}_{n}^{(e, R)}$ (resp. $\mathscr{D}_{n}^{(o, R)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\pi \in \mathscr{D}_{n}^{(o)}$) whose row lengths are all even.

Theorem

Let n be a positive integer. We can construct an explicit bijection of $\mathscr{D}_{n}^{(e, R)}$ onto a subset of TSSCPPs which is defined by Mills, Robbins and Rumsey and conjectured to have the same cardinality with VSASMs. Further we have $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$.

Example

Example

$\mathscr{D}_{1}^{(e, R)}=\{\emptyset\}$ is the set of column-strict domino plane partitions with all columns ≤ 0.

Example

Example

$\mathscr{D}_{2}^{(e, R)}$ is composed of the following 3 elements:

$$
\emptyset,
$$

This is the set of column-strict domino plane partitions with the first and second columns ≤ 1, other columns ≤ 0 and each row of even length.

Example

Example

$\mathscr{D}_{3}^{(e, R)}$ is the set of column-strict domino plane partitions with the 1 st and 2 nd columns ≤ 2, the 3rd and 4 th columns ≤ 1, other columns ≤ 0 and each row of even length (26 elements):

Example

Example

2	2
1	1

$\mathscr{D}_{4}^{(e, R)}$ is the set of column-strict domino plane partitions with the 1 st and 2 nd columns ≤ 3, the 3 rd and 4 th columns ≤ 2, the 5 rd and 6 th columns ≤ 1, other columns ≤ 0 and each row of even length (646 elements).

(τ, t)-enumeration

Definition

We consider the generating functions

$$
V_{n}^{(e)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(e, R)}} \tau^{N(\pi)} t \bar{U}_{k}(\pi),
$$

and

$$
V_{n}^{(o)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(o, R)}} \tau^{N(\pi)} t \bar{U}_{k}(\pi)
$$

(τ, t)-enumeration

Definition

We consider the generating functions

$$
V_{n}^{(e)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(e, R)}} \tau^{N(\pi)} t^{U_{k}(\pi)}
$$

and

$$
V_{n}^{(o)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(o, R)}} \tau^{N(\pi)} t \bar{U}_{k}(\pi)
$$

Example

$$
\begin{gathered}
V_{3}^{(e)}(\tau, t)=1+(1+t) \tau+\left(1+3 t+2 t^{2}\right) \tau^{2}+\left(2 t+3 t^{2}+t^{3}\right) \tau^{3} \\
+\left(3 t^{2}+3 t^{3}+t^{4}\right) \tau^{4}+\left(2 t^{3}+t^{4}\right) \tau^{5}+t^{4} \tau^{6}
\end{gathered}
$$

A determinant expression

Theorem

Let

$$
V_{i j}^{e}(\tau, t)=\left\{\begin{array}{c}
\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\binom{j-1}{k-j}+t\binom{j-1}{k-j-1}\right\} \tau^{2 k-i-j} \\
+\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i-1}+t\binom{i-1}{k-i-2}\right\}\left\{\binom{j-1}{k-j}+t\binom{j-1}{k-j-1}\right\} \tau^{2 k-i-j-1} \\
\text { if } i, j>0,
\end{array}\right.
$$

$$
\delta_{i j}
$$

otherwise,
and

$$
V_{i j}^{O}(\tau, t)=\left\{\begin{array}{l}
\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\left(\begin{array}{c}
\left.\binom{i-2}{k-j}+t\binom{j-2}{k-j-1}\right\} \tau^{2 k-i-j} \\
+\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i-1}+t\binom{i-1}{k-2-2}\right\}\left\{\binom{j-2}{k-j}+t\binom{j-j}{k-j-1}\right\} \tau^{2 k-i-j-1} \\
\text { if } i, j-1>0,
\end{array}\right.\right. \\
\delta_{i j} \quad
\end{array}\right.
$$

otherwise.

A determinant expression

Theorem

Then we have

$$
V_{n}^{(e)}(\tau, t)=\operatorname{det}\left(V_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1},
$$

and

$$
V_{n}^{(o)}(\tau, t)=\operatorname{det}\left(V_{i j}^{o}(\tau, t)\right)_{0 \leq, i, j \leq n-1} .
$$

A determinant expression

Theorem

Then we have

$$
V_{n}^{(e)}(\tau, t)=\operatorname{det}\left(V_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1},
$$

and

$$
V_{n}^{(o)}(\tau, t)=\operatorname{det}\left(V_{i j}^{o}(\tau, t)\right)_{0 \leq, i, j \leq n-1} .
$$

Theorem

$$
V_{n}^{(e)}(1,1)=\frac{1}{2^{n}} \prod_{i=0}^{n-1} \frac{(6 i+4)!(2 i+1)!}{(4 i+2)!(4 i+3)!}
$$

A determinant expression

Theorem

Then we have

$$
V_{n}^{(e)}(\tau, t)=\operatorname{det}\left(V_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1},
$$

and

$$
V_{n}^{(o)}(\tau, t)=\operatorname{det}\left(V_{i j}^{o}(\tau, t)\right)_{0 \leq, i, j \leq n-1} .
$$

Theorem

$$
V_{n}^{(e)}(1,1)=\frac{1}{2^{n}} \prod_{i=0}^{n-1} \frac{(6 i+4)!(2 i+1)!}{(4 i+2)!(4 i+3)!}
$$

Conjecture

$$
V_{n}^{(e)}(1, t)=A_{2 n+1}^{\mathrm{VS}}(t)
$$

Observations

Observations

$$
\begin{aligned}
& V_{n}^{(e)}(1,-1)=\left(\frac{3}{4}\right)^{n-1} \prod_{i=1}^{n-1} \frac{(6 i-2)!(3 i+2)!(2 i)!}{(4 i-1)!(4 i+1)!(3 i)!} \\
& V_{n}^{(e)}(1,2)=2^{n-1} \prod_{i=1}^{n-1} \frac{(6 i-5)!(2 i-2)!}{(4 i-4)!(4 i-3)!} \\
& V_{n}^{(o)}(1,1)=\prod_{i=0}^{n-1} \frac{(6 i+4)!(3 i+5)!(2 i+1)!(2 i+3)!i!}{(4 i+3)!(4 i+6)!(3 i+2)!(2 i)!(i+2)!} \\
& V_{n+1}^{(o)}(1,2)=2^{n-1} \prod_{i=1}^{n-1} \frac{(6 i-2)!(2 i-1)!}{(4 i-3)!(4 i)!} .
\end{aligned}
$$

$\tau=-1$ Conjecture

Conjectures

We would have

$$
V_{n}^{(e)}(-1, t)= \begin{cases}\left(A_{2 m-1}^{\mathrm{VS}}\right)^{2} t c_{m}(t)^{2} & \text { if } n=2 m-1 \\ \left(T C_{m}\right)^{2}\left(1-t+t^{2}\right) A_{2 m+1}^{\mathrm{Vs}}(t)^{2} & \text { if } n=2 m\end{cases}
$$

and

$$
V_{n}^{(o)}(-1, t)= \begin{cases}A_{2 m-1}^{\mathrm{VS}} T C_{m-1} A_{2 m-1}^{\mathrm{VS}}(t) t c_{m}(t) & \text { if } n=2 m-1, \\ A_{2 m-1}^{\mathrm{VS}} T C_{m} A_{2 m+1}^{\mathrm{VS}}(t) t c_{m}(t) & \text { if } n=2 m,\end{cases}
$$

Column-strict domino plane partitions of even column

Definition

Let $\mathscr{D}_{n}^{(e, C)}$ (resp. $\mathscr{D}_{n}^{(0, C)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp.
$\left.\pi \in \mathscr{D}_{n}^{(0)}\right)$ whose column lengths are all even.

Column-strict domino plane partitions of even column

Definition

Let $\mathscr{D}_{n}^{(e, C)}$ (resp. $\mathscr{D}_{n}^{(o, C)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp.
$\pi \in \mathscr{D}_{n}^{(0)}$) whose column lengths are all even.
Problem
Let n be a positive integer. Can we construct an explicit bijection of $\mathscr{D}_{n}^{(e, R)}$ onto a subset of TSSCPPs which is defined by Mills, Robbins and Rumsey and conjectured to have the same cardinality with HTSASMs?

RCSDPPs with all columns of even length

Example

$\mathscr{D}_{1}^{(e, C)}=\{\emptyset\}$
$\mathscr{D}_{1}^{(0, C)}=\{\emptyset, \boxed{1}\}$
$\mathscr{D}_{2}^{(e, C)}$ has the following 3 elements:

RCSDPPs with all columns of even length

Example

$\mathscr{D}_{3}^{(0, C)}$ has the following 10 elements:

$\mathscr{D}_{3}^{(e, C)}$ has 25 elements, $\mathscr{D}_{4}^{(e, C)}$ has 140 elements, and $\mathscr{D}_{4}^{(e, C)}$ has 588 elements.

(τ, t)-enumeration

Definition

Let $\mathscr{D}_{n}^{(e, C)}$ (resp. $\mathscr{D}_{n}^{(0, C)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp.
$\left.\pi \in \mathscr{D}_{n}^{(e)}\right)$ whose column lengths are all even. We consider the generating functions

$$
H_{n}^{(e)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(e, C)}} \tau^{N(\pi)} t^{\bar{U}_{k}(\pi)},
$$

and

$$
H_{n}^{(o)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(o, C)}} \tau^{N(\pi)} \bar{U}_{k}(\pi)
$$

Example

Example

$\mathscr{D}_{3}^{(0, C)}$ consists of the following 10 elements:

Thus we have

$$
H_{3}^{(o)}(\tau, t)=1+(1+t) \tau+\left(2 t+t^{2}\right) \tau^{2}+\left(2 t^{2}+t^{3}\right) \tau^{3}+t^{3} \tau^{4} .
$$

A determinant expression

Theorem

Let

$$
H_{i j}^{e}(\tau, t)=\left\{\begin{array}{l}
\sum_{k=0}^{\infty} \sum_{l=0}^{k}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\binom{j-1}{l-j}+t\binom{j-1}{l-j-1}\right\} \tau^{k+l-i-j} \\
\text { if } i, j>0, \\
(1+t \tau)(1+\tau)^{i-1} \quad \text { if } i>0 \text { and } j=0, \\
\delta_{0, j} \quad \text { if } i=0,
\end{array}\right.
$$

and

$$
H_{i j}^{o}(\tau, t)=\left\{\begin{array}{l}
\sum_{k=0}^{\infty} \sum_{l=0}^{k}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\binom{j-2}{1-j}+t\binom{j-2}{l-j-1}\right\} \tau^{k+l-i-j} \\
\text { if } i, j-1>0, \\
(1+t \tau)(1+\tau)^{i-1} \quad \text { if } i>0 \text { and } j=0,1, \\
\delta_{i j} \quad \text { if } i=0 .
\end{array}\right.
$$

A determinant expression

Theorem

Then we have

$$
H_{n}^{(e)}(\tau, t)=\operatorname{det}\left(H_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1}
$$

and

$$
H_{n}^{(o)}(\tau, t)=\operatorname{det}\left(H_{i j}^{o}(\tau, t)\right)_{0 \leq, i, j \leq n-1}
$$

Theorem and Conjecture

Theorem

$$
\begin{aligned}
& H_{n}^{(e)}(1,1)=\frac{3^{n}}{2^{2 n}} \prod_{i=0}^{n-1} \frac{\{(3 i+2)!i!\}^{2}}{\{(2 i+1)!\}^{4}} \\
& H_{n}^{(o)}(1,1)=\prod_{i=0}^{n-1} \frac{(3 i)!(3 i+2)!(i!)^{2}}{\{(2 i)!(2 i+1)!\}^{2}} .
\end{aligned}
$$

Theorem and Conjecture

Theorem

$$
\begin{aligned}
& H_{n}^{(e)}(1,1)=\frac{3^{n}}{2^{2 n}} \prod_{i=0}^{n-1} \frac{\{(3 i+2)!i!\}^{2}}{\{(2 i+1)!\}^{4}} \\
& H_{n}^{(o)}(1,1)=\prod_{i=0}^{n-1} \frac{(3 i)!(3 i+2)!(i!)^{2}}{\{(2 i)!(2 i+1)!\}^{2}} .
\end{aligned}
$$

Conjecture

$$
\begin{aligned}
& H_{n}^{(e)}(1, t)=A_{2 n-1}^{\mathrm{HTS}}(t), \\
& H_{n}^{(o)}(1, t)=A_{2 n}^{\mathrm{HTS}}(t),
\end{aligned}
$$

$\tau=-1$ Conjecture

Conjecture
We would have

$$
H_{n}^{(e)}(-1, t)=\left(1-t+t^{2}\right) A_{2 n-1}^{\mathrm{VS}}(t),
$$

and

$$
H_{n}^{(o)}(-1, t)=t(1-t) V_{n-2}^{(o)}(1, t) \quad \text { for } n \geq 3 .
$$

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $m+n-j$.

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $m+n-j$.
(C3) c has at most n columns.

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $m+n-j$.
(C3) c has at most n columns.

Example

$\mathscr{P}_{0,4}$ consists of the followng 1 element:
\emptyset

More General Definition

Definition

Let $\mathscr{P}_{n, m}$ denote the set of (ordinary) plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $m+n-j$.
(C3) c has at most n columns.

Example

$\mathscr{P}_{1,3}$ consists of the followng 8 elements:

More General Definition

Example

$\mathscr{P}_{2,2}$ consists of the followng 25 elements:
$\mathscr{P}_{3,1}=\mathscr{P}_{4,0}$ consists of 42 elements.

Generating functions

Using Binet-Caucy formula, we obatin the following theorem:

Theorem

Let $\mathscr{Q}_{n, x, y}$ denote the set of pairs $\left(c_{1}, c_{2}\right)$ such that $c_{1} \in \mathscr{P}_{n, x}$, $c_{2} \in \mathscr{P}_{n, y}$, and c_{1} and c_{2} have the same shape. Then we have

$$
\sum_{\left(c_{1}, c_{2}\right) \in \mathscr{Q}_{n, x, y}} \tau^{\left|\mathrm{sh} c_{1}\right|+\left|\mathrm{sh} c_{2}\right|}=\operatorname{det}\left[\sum_{k}\binom{i+x}{k-i}\binom{j+y}{k-j} \tau^{2 k-i-j}\right]_{0 \leq, i, j \leq n-1}
$$

Desnanot-Jacobi formula

Theorem (Desnanot-Jacobi formula)

Given a matrix M, let
$M_{j}^{i}=$ the submatrix of M obtained by removing row i and column j,
$M_{j, l}^{i, k}=$ the submatrix of M obtained by removing row i, row k, column j, and column I.

Then the Desnanot-Jacobi formula is

$$
\operatorname{det} M \cdot \operatorname{det} M_{1, n}^{1, n}=\operatorname{det} M_{n}^{n} \cdot \operatorname{det} M_{1}^{1}-\operatorname{det} M_{1}^{n} \cdot \operatorname{det} M_{n}^{1} .
$$

Hirota-Miwa type equation

Definition

Let

$$
f_{n, x, y}=\operatorname{det}\left[\sum_{k}\binom{i+x}{k-i-x}\binom{j+y}{k-j-y} \tau^{2 k-i-j-x-y}\right]_{0 \leq, i, j \leq n-1} .
$$

Definition

Let

$$
f_{n, x, y}=\operatorname{det}\left[\sum_{k}\binom{i+x}{k-i-x}\binom{j+y}{k-j-y} \tau^{2 k-i-j-x-y}\right]_{0 \leq, i, j \leq n-1}
$$

Theorem (Hirota-Miwa type equation)

Then $f_{n, x, y}$ satisfies the following equation:

$$
\begin{aligned}
& f_{n, x, y} f_{n-2, x+1, y+1}=f_{n-1, x, y} f_{n-1, x+1, y+1}-f_{n-1, x+1, y} f_{n, x, y+1}, \\
& f_{0, x, y}=1, \quad f_{1, x, y}=\sum_{k}\binom{x}{k-x}\binom{y}{k-y} \tau^{2 k-x-y}
\end{aligned}
$$

Hirota-Miwa type equation

Definition

Let

$$
\begin{aligned}
g_{n, x, y}=\operatorname{det}[& \sum_{k}\left\{\binom{i+x}{k-i-x} \tau^{k-i-x}+\binom{i+x}{k-i-x-1} \tau^{k-i-x-1}\right\} \\
& \left.\times\binom{ j+y}{k-j-y} \tau^{k-j-y}\right]_{0 \leq, i, j \leq n-1}
\end{aligned}
$$

Hirota-Miwa type equation

Definition

Let

$$
\begin{aligned}
g_{n, x, y}=\operatorname{det}[& \sum_{k}\left\{\binom{i+x}{k-i-x} \tau^{k-i-x}+\binom{i+x}{k-i-x-1} \tau^{k-i-x-1}\right\} \\
& \left.\times\binom{ j+y}{k-j-y} \tau^{k-j-y}\right]_{0 \leq, i, j \leq n-1}
\end{aligned}
$$

Theorem (Hirota-Miwa type equation)

Then $g_{n, x, y}$ satisfies the following equation:

$$
\begin{aligned}
& g_{n, x, y} g_{n-2, x+1, y+1}=g_{n-1, x, y} g_{n-1, x+1, y+1}-g_{n-1, x+1, y} g_{n, x, y+1} \\
& g_{0, x, y}=1, \quad g_{1, x, y}=\sum_{k}\left\{\binom{x}{k-x} \tau^{k-x}+\binom{x}{k-x-1} \tau^{k-x-1}\right\}\binom{y}{k-y} \tau^{k-y}
\end{aligned}
$$

Hirota-Miwa type equation

Definition

Let

$$
h_{n, x, y}=\operatorname{det}\left[\sum_{k} \sum_{l=0}^{k}\binom{i+x}{k-i-x}\binom{j+y}{I-j-y} \tau^{k+l-i-j-x-y}\right]_{0 \leq, i, j \leq n-1} .
$$

Hirota-Miwa type equation

Definition

Let

$$
h_{n, x, y}=\operatorname{det}\left[\sum_{k} \sum_{l=0}^{k}\binom{i+x}{k-i-x}\binom{j+y}{I-j-y} \tau^{k+l-i-j-x-y}\right]_{0 \leq, i, j \leq n-1}
$$

Theorem (Hirota-Miwa type equation)

Then $h_{n, x, y}$ satisfies the following equation:

$$
\begin{aligned}
& h_{n, x, y} h_{n-2, x+1, y+1}=h_{n-1, x, y} h_{n-1, x+1, y+1}-h_{n-1, x+1, y} h_{n, x, y+1}, \\
& h_{0, x, y}=1, \quad h_{1, x, y}=\sum_{k} \sum_{l=0}^{k}\binom{x}{k-x}\binom{y}{I-y} \tau^{k+l-x-y} .
\end{aligned}
$$

Thank you!

