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A plane partition is an array π = (πij)i,j≥1 of nonnegative integers
such that π has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns. If

∑
i,j≥1 πij = n,

then we write |π| = n and say that π is a plane partition of n, or π
has the weight n.

.

Example

.

.

.

. ..

.

.

A plane partition of 14

3 2 1 1 0 . . .

2 2 1 0 . . .

1 1 0 0 . . .

0 0 0
. . .
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Let π = (πij)i,j≥1 be a plane partition.

A part is a positive entry πij > 0.

The shape of π is the ordinary partition λ for which π has λi

nonzero parts in the ith row.

We say that π has r rows if r = `(λ). Similarly, π has s
columns if s = `(λ′).

.

Example

.

.

.
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.
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A plane partition of shape (432) with 3 rows and 4 columns:

3 2 1 1
2 2 1
1 1
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A plane partition is said to be column-strict if it is strictly
decreasing in coulumns.

.

Schur functions

.
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Let x1,. . . , xn be n variables, and fix a shape λ. The Schur function
sλ(x1, . . . , xn) is defined to be

sλ(x1, . . . , xn) =
∑

π

xπ,

where π runs over all column-strict plane partitions of shape λ and
xπ =

∏
i x# of i in π

i .
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If λ = (22) and x = (x1, x2, x3), then the followings are
column-strict plane partitions with all parts ≤ 3.

2 2

1 1

3 2

1 1

3 3

1 1

3 2

2 1

3 3

2 1

3 3

2 2

Hence we have

s(22)(x1, x2, x3) = x2
1 x2

2 + x2
1 x2

3 + x2
2 x2

3 + x2
1 x2x3 + x1x2

2 x3 + x1x2x2
3 .
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The Ferrers graph D(π) of π is the subset of P3 defined by

D(π) =
{
(i, j, k) : k ≤ πij

}

.
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Ferrers graph

3 2 1 1

2 2 1

1 1 ←→
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If π = (πij) is a plane partition,
then the transpose π∗ of π is
defined by π∗ = (πji).

π is symmetric if π = π∗ .

π is cyclically symmetric if
whenever (i, j, k) ∈ π then
(j, k , i) ∈ π.

π is called totally symmetric if
it is cyclically symmetric and
symmetric.
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then the transpose π∗ of π is
defined by π∗ = (πji).
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Let π = (πij) be a plane partition contained in the box
B(r , s, t) = [r] × [s] × [t].
Define the complement πc of π by
πc = { (r + 1 − i, s + 1 − j, t + 1 − k) : (i, j, k) < π }.

π is said to be (r , s, t)-self-complementary if π = πc . i.e.
(i, j, k) ∈ π⇔ (r + 1 − i, s + 1 − j, t + 1 − k) < π.

.

Example

.

.

.
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.

.

B(2, 3, 3)
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Let π = (πij) be a plane partition contained in the box B(r , r , t).
Define the transpose-complement πtc of π by
πtc = { (r + 1 − j, r + 1 − i, t + 1 − k) : (i, j, k) < π }.
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Totally symmetric self-complementary plane partitions
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A plane partition contained in B(2n, 2n, 2n) is said to be totally
symmetric self-complementary plane parition of size n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.
We denote the set of all self-complementary totally symmetric
plane partitions of size n by Tn.

.

Example

.

.

.

. ..

.

.

T1 consists of the single partition
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TSSCPPs of size 2
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T2 consists of the following two partitions:
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T3 consists of the following seven partitions:

π1 π2

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

TSSCPPs of size 3

.

Example

.

.

.

. ..

.

.

T3 consists of the following seven partitions:
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T3 consists of the following seven partitions:

π5 π6
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A plane partition in B(2n, 2n, 2n) is defined to be tc-symmetric of
size n if it is cyclically symmetric and it is equal to its
transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by
Cn.

.
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C1 consists of the single partition
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We denote the set of all tc-symmetric plane partitions of size n by
Cn.

.

Example

.

.

.

. ..

.

.

C1 consists of the single partition
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.

.

Tc-symmetric PPs of size 2

.

Example

.

.

.

. ..

.

.

C2 consists of the following two partitions:
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. . . . . .

.

.

Tc-symmetric PPs of size 2

.

Example

.

.

.

. ..

.

.

C2 consists of the following two partitions:
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.

.

Tc-symmetric PPs of size 3

.

Example

.

.

.

. ..

.

.

C3 consists of the following eleven plane partitions:

π8 π9
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.

.

Numbers

n 1 2 3 4 5 6 · · ·
TSSCPP 1 2 7 42 429 7436 · · ·
tc-symmetric PP 1 2 11 170 7429 920460 · · ·

.

Definition

.

.

.

. ..

. .

An =
n−1∏

i=0

(3i + 1)!

(n + i)!

TCn =
n−1∏

i=0

(3i + 1)(6i)!(2i)!

(4i)!(4i + 1)!
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.

.

The Numbers of HTSASMs and VSASMs

.

Definition

.

.

.

. ..

.

.

AHTS
2n =

n−1∏

i=0

(3i)!(3i + 2)!
{
(n + i)!

}2 AHTS
2n+1 =

n!(3n)!
{
(2n)!

}2 · A
HTS
2n ,

AVS
2n+1 =

1
2n

n∏

k=1

(6k − 2)!(2k − 1)!

(4k − 2)!(4k − 1)!
.

.

Example

.

.

.

. ..

.

.

n 1 2 3 4 5 6 7 8 9 · · ·
AHTS

n 1 2 3 10 25 140 588 5544 39204 · · ·
AVS

n 1 1 3 26 646 · · ·
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.

The Numbers of HTSASMs and VSASMs

.

Definition

.

.

.

. ..

.

.

AHTS
2n =

n−1∏

i=0

(3i)!(3i + 2)!
{
(n + i)!

}2 AHTS
2n+1 =

n!(3n)!
{
(2n)!

}2 · A
HTS
2n ,

AVS
2n+1 =

1
2n

n∏

k=1

(6k − 2)!(2k − 1)!

(4k − 2)!(4k − 1)!
.

.

Example

.

.

.

. ..

.

.

n 1 2 3 4 5 6 7 8 9 · · ·
AHTS

n 1 2 3 10 25 140 588 5544 39204 · · ·
AVS

n 1 1 3 26 646 · · ·
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.

.

Enumeration polynomials

.

Definition

.

.

.

. ..

.

.

AVS
2n+1(t) =

AVS
2n−1

(4n − 2)!

2n∑

r=1

t r−1
r∑

k=1

(−1)r+k (2n + k − 2)!(4n − k − 1)!

(k − 1)!(2n − k)!
,

.

Example

.

.

.

. ..

.

.

AVS
3 (t) = 1

AVS
5 (t) = 1 + t + t2

AVS
7 (t) = 3 + 6t + 8t2 + 6t3 + 3t4

AVS
9 (t) = 26 + 78t + 138t2 + 162t3 + 138t4 + 78t5 + 26t6
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.

.

Enumeration polynomials

.

Definition

.

.

.

. ..

.

.

AVS
2n+1(t) =

AVS
2n−1

(4n − 2)!

2n∑

r=1

t r−1
r∑

k=1

(−1)r+k (2n + k − 2)!(4n − k − 1)!

(k − 1)!(2n − k)!
,

.

Example

.

.

.

. ..

.

.

AVS
3 (t) = 1

AVS
5 (t) = 1 + t + t2

AVS
7 (t) = 3 + 6t + 8t2 + 6t3 + 3t4

AVS
9 (t) = 26 + 78t + 138t2 + 162t3 + 138t4 + 78t5 + 26t6
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. . . . . .

.

.

Enumeration polynomials

.

Definition

.

.

.

. ..

.

.

An(t) =
An(

3n−2
n−1

)
n∑

r=1

(
n + r − 2

n − 1

)(
2n − 1 − r

n − 1

)
t r−1

ÃHTS
2n (t)

ÃHTS
2n

=
(3n − 2)(2n − 1)!

(n − 1)!(3n − 1)!

×
n∑

r=0

{n(n − 1) − nr + r2}(n + r − 2)!(2n − r − 2)!

r!(n − r)!
t r

AHTS
2n (t) = ÃHTS

2n (t)An(t)

AHTS
2n+1(t) =

1
3

{
An+1(t)Ã

HTS
2n (t) + An(t)Ã

HTS
2n+2(t)

}

where ÃHTS
2n =

∏n−1
i=0

(3i)!(3i+2)!

(3i+1)!(n+i)!
.
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.

.

Examples

.

Example

.

.

.

. ..

.

.

A1(t) = 1

A2(t) = 1 + t

A3(t) = 2 + 3t + 3t2

A4(t) = 7 + 14t + 14t2 + 7t3

.

Example

.

.

.

. ..

.

.

AHTS
1 (t) = 1

AHTS
2 (t) = 1 + t

AHTS
3 (t) = 1 + t + t2

AHTS
4 (t) = 2 + 3t + 3t2 + 2t3

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Examples

.

Example

.

.

.

. ..

.

.

A1(t) = 1

A2(t) = 1 + t

A3(t) = 2 + 3t + 3t2

A4(t) = 7 + 14t + 14t2 + 7t3

.

Example

.

.

.

. ..

.

.

AHTS
1 (t) = 1

AHTS
2 (t) = 1 + t

AHTS
3 (t) = 1 + t + t2

AHTS
4 (t) = 2 + 3t + 3t2 + 2t3
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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. . . . . .

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P1 consists of the single PP ∅.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 PPs:

∅ 1
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 PPs:

∅ 1
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 7 PPs

∅ 1 1 1 2 2 1 2
1

2 1
1
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 7 PPs

∅ 1 1 1 2 2 1 2
1

2 1
1
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.

.

Bijections

.

Theorem

.

.

.

. ..

. .

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.
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.

.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, Saturated parts

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 1, U1(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 2, U2(c) = 5

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 3, U3(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 4, U4(c) = 4

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 5, U5(c) = 4

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 6, U6(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 7, U7(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

Generating function

.

Generating function

.

.

.

. ..

.

.

We consider the generating function

fk ,n(τ, t) =
∑

π∈PR
n

τN(π) tUk (π),

where N(π) denotes the number of boxes in π.

.

Example

.

.

.

. ..

.

.

if n = 3, then PR
3 is composed of the following 7 plane partitions:

∅ 1 1 1 2 2 1
2
1

2 1
1

fk ,3(τ, t) = 1 + (1 + t)τ+ t(2 + t)τ2 + t2τ3,

for k = 1, 2, 3.
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.

.

Generating function

.

Generating function

.

.

.

. ..

.

.

We consider the generating function

fk ,n(τ, t) =
∑

π∈PR
n

τN(π) tUk (π),

where N(π) denotes the number of boxes in π.

.

Example

.

.

.

. ..

.

.

if n = 3, then PR
3 is composed of the following 7 plane partitions:

∅ 1 1 1 2 2 1
2
1

2 1
1

fk ,3(τ, t) = 1 + (1 + t)τ+ t(2 + t)τ2 + t2τ3,

for k = 1, 2, 3.
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.

.

A Pfaffian expression

.

Definition

.

.

.

. ..

.

.

Let Bn,N = (bi,j(τ, t))0≤i≤n−1, 0≤j≤N−1 denote the n by N matrix
defined by

bi,j(τ, t) =


δi,j if i = 0,{(

i−1
j−i

)
+ t

(
i−1

j−i−1

)}
τj−i if i > 0.

.

Example

.

.

.

. ..

.

.

If n = 3 and N = 5, then we have

B3,5 =


1 0 0 0 0
0 1 tτ 0 0
0 0 1 (1 + t)τ tτ2

 .
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.

A Pfaffian expression

.

Definition

.

.

.

. ..

.

.

Let Bn,N = (bi,j(τ, t))0≤i≤n−1, 0≤j≤N−1 denote the n by N matrix
defined by

bi,j(τ, t) =


δi,j if i = 0,{(

i−1
j−i

)
+ t

(
i−1

j−i−1

)}
τj−i if i > 0.

.

Example

.

.

.

. ..

.

.

If n = 3 and N = 5, then we have

B3,5 =


1 0 0 0 0
0 1 tτ 0 0
0 0 1 (1 + t)τ tτ2

 .

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

A Pfaffian expression

.

Definition

.

.

.

. ..

.

.

Let Sn denote the anti-symmetric n × n matrix defined by
Sn = ((−1)j−i−1)1≤i<j≤n, and let Jn = (δi,n+1−j)1≤i,j≤n denote the
anti-diagonal matrix of size n.

.

Example

.

.

.

. ..

.

.

S4 =



0 1 −1 1
−1 0 1 −1
1 −1 0 1
−1 1 −1 0


, J4 =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


.
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.

.

A Pfaffian expression

.

Definition

.

.

.

. ..

.

.

Let Sn denote the anti-symmetric n × n matrix defined by
Sn = ((−1)j−i−1)1≤i<j≤n, and let Jn = (δi,n+1−j)1≤i,j≤n denote the
anti-diagonal matrix of size n.

.

Example

.

.

.

. ..

.

.

S4 =



0 1 −1 1
−1 0 1 −1
1 −1 0 1
−1 1 −1 0


, J4 =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


.
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.

A Pfaffian expression

.

Theorem

.

.

.

. ..

.

.

For a positive integer n, let N be the least integer such that N ≥ 2n − 1
and n + N is even. Then we have

fk ,n(τ, t) = Pf

(
On Jn Bn,N

−BT
n,N Jn SN

)
,

for k = 1, . . . , n.

.

Example

.

.

.

. ..

.

.

If n = 3 and N = 5, then we obtain

Pf



0 0 0 0 0 1 (1 + t)τ tτ2

0 0 0 0 1 tτ 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 1 −1 1 −1
0 −1 0 −1 0 1 −1 1
−1 −tτ 0 1 −1 0 1 −1

−(1 + t)τ 0 0 −1 1 −1 0 1
−tτ2 0 0 1 −1 1 −1 0



equals 1 + (1 + t)τ+ t(2 + t)τ2 + t2τ3.
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.

A Pfaffian expression

.

Theorem

.

.

.

. ..

.

.

For a positive integer n, let N be the least integer such that N ≥ 2n − 1
and n + N is even. Then we have

fk ,n(τ, t) = Pf

(
On Jn Bn,N

−BT
n,N Jn SN

)
,

for k = 1, . . . , n.

.

Example

.

.

.

. ..

.

.

If n = 3 and N = 5, then we obtain

Pf



0 0 0 0 0 1 (1 + t)τ tτ2

0 0 0 0 1 tτ 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 1 −1 1 −1
0 −1 0 −1 0 1 −1 1
−1 −tτ 0 1 −1 0 1 −1

−(1 + t)τ 0 0 −1 1 −1 0 1
−tτ2 0 0 1 −1 1 −1 0



equals 1 + (1 + t)τ+ t(2 + t)τ2 + t2τ3.
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.

.

τ = 1

.

Example

.

.

.

. ..

.

.

If we put τ = 1 into fk ,3(τ, t) = 1 + (1 + t)τ+ t(2 + t)τ2 + t2τ3,
then we obtain A3(t) = 2 + 3t + 2t2.

.

Fact

.

.

.

. ..

.

.

If we put τ = 1, then

fk ,n(1, t) = An(t),

for n ≥ 1.
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.

τ = 1

.

Example

.

.

.

. ..

.

.

If we put τ = 1 into fk ,3(τ, t) = 1 + (1 + t)τ+ t(2 + t)τ2 + t2τ3,
then we obtain A3(t) = 2 + 3t + 2t2.

.

Fact

.

.

.

. ..

.

.

If we put τ = 1, then

fk ,n(1, t) = An(t),

for n ≥ 1.
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.

.

τ = −1

.

Example

.

.

.

. ..

.

.

If we put τ = −1 into fk ,3(τ, t) = 1 + (1 + t)τ+ t(2 + t)τ2 + t2τ3,
then we obtain fk ,3(−1, t) = t .

.

Example

.

.

.

. ..

. .

The first few terms of fk ,n(−1, t) looks as follows:

fk ,3(−1, t) = t

fk ,4(−1, t) = (1 − t)(1 + t + t2)

fk ,5(−1, t) = 3t(1 + t + t2)

fk ,6(−1, t) = 3(1 − t)(3 + 6t + 8t2 + 6t3 + 3t4)

fk ,7(−1, t) = 26t(3 + 6t + 8t2 + 6t3 + 3t4)
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.

τ = −1

.

Example

.

.

.

. ..

.

.

If we put τ = −1 into fk ,3(τ, t) = 1 + (1 + t)τ+ t(2 + t)τ2 + t2τ3,
then we obtain fk ,3(−1, t) = t .

.

Example

.

.

.

. ..

. .

The first few terms of fk ,n(−1, t) looks as follows:

fk ,3(−1, t) = t

fk ,4(−1, t) = (1 − t)(1 + t + t2)

fk ,5(−1, t) = 3t(1 + t + t2)

fk ,6(−1, t) = 3(1 − t)(3 + 6t + 8t2 + 6t3 + 3t4)

fk ,7(−1, t) = 26t(3 + 6t + 8t2 + 6t3 + 3t4)
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.

.

τ = −1 conjecture

.

Conjecture

.

.

.

. ..

.

.

Let n be a positive integer such that n ≥ 3.

.

.
.

1 If n is even, then we would have

fk ,n(−1, t) = AVS
n−1 · (1 − t) AVS

n+1(t).

.

.

.

2 If n is odd, then we would have

fk ,n(−1, t) = AVS
n · t AVS

n (t).
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.
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.

Conjecture

.

.

.

. ..

.

.

Let n be a positive integer such that n ≥ 3.

.

.
.

1 If n is even, then we would have

fk ,n(−1, t) = AVS
n−1 · (1 − t) AVS

n+1(t).

.

.

.

2 If n is odd, then we would have

fk ,n(−1, t) = AVS
n · t AVS

n (t).
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.

Link patterns

.

Definition

.

.

.

. ..

.

.

A non-crossing perfect matching (link pattern) of the vertex set
[2n] = {1, 2, . . . , 2n} is an unordered collection of vertices, or
edges, which does not contain edges {i, j} and {k , l} such that
i < k < j < l. Let F2n denote the set of all link patterns of [2n]. We
consider the periodic case by identifying 1 and 2n.

.

Example

.

.

.

. ..

.

.

For n = 3,

F6 =
{
{1, 2}{3, 4}{5, 6}, {1, 2}{3, 4}{4, 5}, {1, 4}{2, 3}{5, 6},

{1, 6}{2, 3}{4, 5}, {1, 6}{2, 5}{3, 4}
}
.
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.

Link patterns

.

Definition

.

.

.

. ..

.

.

A non-crossing perfect matching (link pattern) of the vertex set
[2n] = {1, 2, . . . , 2n} is an unordered collection of vertices, or
edges, which does not contain edges {i, j} and {k , l} such that
i < k < j < l. Let F2n denote the set of all link patterns of [2n]. We
consider the periodic case by identifying 1 and 2n.

.

Example

.

.

.

. ..

.

.

For n = 3,

F6 =
{
{1, 2}{3, 4}{5, 6}, {1, 2}{3, 4}{4, 5}, {1, 4}{2, 3}{5, 6},

{1, 6}{2, 3}{4, 5}, {1, 6}{2, 5}{3, 4}
}
.
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.

.

Link patterns

.

Definition

.

.

.

. ..

.

.

A convenient typographical notation for non-crossing perfect
matching of [2n] is obtained by using parentheses for paired
vertices.

.

Example

.

.

.

. ..

.

.

F6 =
{
()()(), ()(()), (())(), (()()), ((()))

}
.

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6
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.

.

Matchmakers

.

Definition

.

.

.

. ..

.

.

Throughout the following we put τ = −(q + q−1). Define
generators or matchmakers ej , j ∈ [2n], acting non-trivially on
elements F ∈ F2n by

ej :


{j, j + 1} 7→ τ {j, j + 1}
{i, j}{j + 1, k } 7→ {i, k }{j, j + 1}.

ej =

1 2 j−1 j j+1 j+2 2n−1 2n
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.

.

Temperley-Lieb Algebras

.

Temperley-Lieb Algebra

.

.

.

. ..

.

.

The match makers ej , j ∈ [2n] satisfy the following relations:

e2
i = τei , i = 1, . . . , 2n,

eiei±1ei = ei ,

eiej = ejei , |i − j| > 1.

We also have the cyclic operator σ such that ei+1 = σeiσ
−1. This

algebra is called the (affine) Temperley-Lieb Algebra and denoted
by TL2n.
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.

.

Example

.

Example

.

.

.

. ..

.

.

For n = 2 case, we have two link patters. The order of the basis is
(()), ()() (or equivalently label by 0011, 0101). Explicitly, the
generators are written

e1 = e3 =

(
0 0
1 τ

)
, e2 = e4 =

(
τ 1
0 0

)
.
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.

.

Example

.

Example

.

.

.

. ..

.

.

For n = 3 cases. We have five basis. The order of basis is
((())), (()()), (())(), ()(()), ()()(), (or equivalently label by
000111, 001011, 001101, 010011, 010101). For example, the
generator e1 is written as

e1 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 τ 0
1 0 1 0 τ


, σ =



0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0


.

Other generators are obtained from ei+1 = σeiσ
−1
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.

.

Polynomial representations

.

Definition

.

.

.

. ..

.

.

We determine a vector

Ψ =
∑

π∈Fn

ψπ(zi) |π〉

by the following manner. The vectors |π〉 are basis vectors on
which TL2n acts from left. The ψπ(zi) = ψπ(z1, . . . , z2n) are
polynomials on which TL2n from right by

fE i = (qzi − q−1zi+1)
f(. . . , zi , zi+1, . . . ) − f(. . . , zi+1, zi , . . . )

zi − zi+1

where Ei = ei − τ.
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.

Polynomial representations

.

Fact

.

.

.

. ..

.

.

The polynomials ψπ(zi) are uniquely determined by

ψπ0 =
∏

1≤i<j≤n

(qzi − q−1zj)(qzi+n − q−1zj+n),

EiΨ = ΨE i for i = 1, . . . , 2n,

where π0 = (((. . . () . . . ))).

.

Example

.

.

.

. ..

.

.

If n = 2, then we obtain

ψ(()) = (qx1 − q−1x2)(qx3 − q−1x4),

ψ()() = ψ(())E2 = (−q2x1 + q−2x4)(qx2 − q−1x3).
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.

Polynomial representations

.

Fact

.

.

.

. ..

.

.

The polynomials ψπ(zi) are uniquely determined by

ψπ0 =
∏

1≤i<j≤n

(qzi − q−1zj)(qzi+n − q−1zj+n),

EiΨ = ΨE i for i = 1, . . . , 2n,

where π0 = (((. . . () . . . ))).

.

Example

.

.

.

. ..

.

.

If n = 2, then we obtain

ψ(()) = (qx1 − q−1x2)(qx3 − q−1x4),

ψ()() = ψ(())E2 = (−q2x1 + q−2x4)(qx2 − q−1x3).
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.

.

τ = 1

.

Fact

.

.

.

. ..

.

.

If we substitute q = e2πi/3 (i.e. τ = 1), then we obtain
∑

π∈Fn

ψπ(zi) = sλ(z1, . . . , z2n)

where λ = (n − 1, n − 1, . . . , 1, 1, 0, 0).
Further, if we substitute z1 =

1+qt
t+q , z2 = · · · = z2n = 1, then we

obtain ∑
π∈Fn

ψπ(zi)

ψπ0(zi)
= An(t).
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.

τ = 1

.

Fact

.

.

.

. ..

.

.

If we substitute q = e2πi/3 (i.e. τ = 1), then we obtain
∑

π∈Fn

ψπ(zi) = sλ(z1, . . . , z2n)

where λ = (n − 1, n − 1, . . . , 1, 1, 0, 0).
Further, if we substitute z1 =

1+qt
t+q , z2 = · · · = z2n = 1, then we

obtain ∑
π∈Fn

ψπ(zi)

ψπ0(zi)
= An(t).
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.

Example (τ = 1)

.

Example

.

.

.

. ..

.

.

If n = 2 and q = e2πi/3, then

ψ(()) + ψ()() = s12(x1, x2, x3, x4),

= x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

and, when z1 =
1+qt
t+q , z2 = z3 = z4 = 1, we obtain

ψ(()) + ψ()()

ψ(())
= 1 + t .
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.

.

τ = −1 conjecture

.

Conjecture

.

.

.

. ..

.

.

If we substitute q = eπi/3 (i.e. τ = −(q + q−1) = −1), z1 =
1−qt
t−q ,

z2 = · · · = z2n = 1, then we would obtain

∑
π∈Fn

ψπ(zi)

ψπ0(zi)
=


AVS

n−1 · (1 − t) AVS
n+1(t) if n is even,

AVS
n · t AVS

n (t) if n is odd.
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.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.
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.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P1 consists of the single pair (∅, ∅).
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.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 pairs:

(∅, ∅)
(

1 , 1
)
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.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 pairs:

(∅, ∅)
(

1 , 1
)
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.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 11 pairs

(∅, ∅)
(

1 , 1
) (

2 , 1
) (

1 , 2
) (

2 , 2
)

(
1 1 , 1 1

) (
1 1 , 2 1

) (
2 1 , 1 1

) (
2 1 , 2 1

)


2
1 ,

2
1




2 1
1 ,

2 1
1
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Pairs of Restricted column-strict plane partitions
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Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example
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.
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.

.

P3 consists of the followng 11 pairs

(∅, ∅)
(

1 , 1
) (

2 , 1
) (

1 , 2
) (

2 , 2
)

(
1 1 , 1 1

) (
1 1 , 2 1

) (
2 1 , 1 1

) (
2 1 , 2 1

)


2
1 ,

2
1




2 1
1 ,

2 1
1
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.

Bijections

.

Theorem

.

.

.

. ..

. .

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.
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Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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Domino plane partitions
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Definition

.

.
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.

Let D
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n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Example

.

Example

.

.

.

. ..

.

.

The following domino plane partition π is an element of D
(e)
3

2

1
111 111

since the 1st and 2nd columns ≤ 2, the 3rd and 4th columns ≤ 1.
The red numbers stand for saturated parts. Hence we have
U1(π) = U2(π) = U3(π) = 3. Since π has 4 dominoes, we have
N(π) = 4.
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Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(o)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j − 1,

for j = 1, . . . , n − 1. The statistics Uk (π) and can be defined
similarly.
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Domino plane partitions
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Definition

.

.
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.

Let D
(o)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j − 1,

for j = 1, . . . , n − 1. The statistics Uk (π) and can be defined
similarly.
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Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(o)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j − 1,

for j = 1, . . . , n − 1. The statistics Uk (π) and can be defined
similarly.
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.

.

Example

.

Example

.

.

.

. ..

.

.

The following domino plane partition π is an element of D
(o)
3

222 111 111

1

since the 1st column ≤ 2, the 2nd and 3rd columns ≤ 1. The red
numbers stand for saturated parts. Hence we have
U1(π) = U2(π) = U3(π) = 3. Since π has 4 dominoes, we have
N(π) = 4.

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

The Stanton-White Bijection

.

Theorem (Stanton-White)

.

.

.

. ..

.

.

There are bijections

π ∈ D
(e)
n ←→ (σ, τ) ∈Pn ×Pn,

and
π ∈ D

(o)
n ←→ (σ, τ) ∈Pn ×Pn−1.

By this bijection, we have

Uk (π) = Uk (σ) + Uk (τ),

N(π) = N(σ) + N(τ).

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

The Stanton-White Bijection

.

Theorem (Stanton-White)

.

.

.

. ..

.

.

There are bijections

π ∈ D
(e)
n ←→ (σ, τ) ∈Pn ×Pn,

and
π ∈ D

(o)
n ←→ (σ, τ) ∈Pn ×Pn−1.

By this bijection, we have

Uk (π) = Uk (σ) + Uk (τ),

N(π) = N(σ) + N(τ).
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.

.
Tc-symmetric plane partitions and domino plane
partitions

.

Theorem

.

.

.

. ..

.

.

There is a bijection between domino plane partitions π ∈ D
(e)
n

(resp. π ∈ D
(o)
n ) whose row and column lengths are all even and

pairs (σ, τ) ∈Pn ×Pn (resp. (σ, τ) ∈Pn ×Pn−1) such that σ and
τ have the same shape. Especially, there is a pijection between

tc-symmetric plane partitions and domino plane partitions in D
(e)
n

whose row and column lengths are all even.
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. . . . . .

.

.
Tc-symmetric plane partitions and domino plane
partitions

.

Theorem

.

.

.

. ..

.

.

There is a bijection between domino plane partitions π ∈ D
(e)
n

(resp. π ∈ D
(o)
n ) whose row and column lengths are all even and

pairs (σ, τ) ∈Pn ×Pn (resp. (σ, τ) ∈Pn ×Pn−1) such that σ and
τ have the same shape. Especially, there is a pijection between

tc-symmetric plane partitions and domino plane partitions in D
(e)
n

whose row and column lengths are all even.
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.

.

(τ, t)-enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e,RC)
n (resp. D

(o,RC)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose row and column lengths are both all even. We

consider the generating functions

T (e)
n (τ, t) =

∑

π∈D(e,RC)
n

τN(π)tUk (π),

and
T (o)

n (τ, t) =
∑

π∈D (o,RC)
n

τN(π)tUk (π).

We will see the generating functions does not depend on k later.
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.

.

(τ, t)-enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e,RC)
n (resp. D

(o,RC)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose row and column lengths are both all even. We

consider the generating functions

T (e)
n (τ, t) =

∑

π∈D(e,RC)
n

τN(π)tUk (π),

and
T (o)

n (τ, t) =
∑

π∈D (o,RC)
n

τN(π)tUk (π).

We will see the generating functions does not depend on k later.
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.

.

Example

D
(e,RC)
3 is composed of the following 11 elements;

∅, 1 1
,

222 1
,

222 222
,

222
1 ,

1 1 111 111
,

222 1 111 111
,

222 222 111 111
,

222
1

111 111
,

222 222

1 1
,

222 222 1 1

1 1
.

.

Example

.

.

.

. ..

.

.

T (e,RC)
3 (τ, t) = 1 + (1 + 2t + t2)τ2 + (2t2 + 2t3 + t4)τ4 + t4τ6.
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.

.

A determinant expression

.

Theorem

.

.

.

. ..

.

.

Let

Te
ij (τ, t) =


∑∞

k=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−1
k−j

)
+ t

(
j−1

k−j−1

)}
τ2k−i−j if i, j > 0,

δij otherwise,

and

To
ij (τ, t) =


∑∞

k=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−2
k−j

)
+ t

(
j−2

k−j−1

)}
τ2k−i−j if i, j − 1 > 0,

δij otherwise.

Then we have

T (e)
n (τ, t) = det

(
Te

ij (τ, t)
)
0≤,i,j≤n−1

,

and
T (o)

n (τ, t) = det
(
To

ij (τ, t)
)
0≤,i,j≤n−1

.
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.

.

A refined enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

We define the polynomials tcn(t) by

tcn(t) = T (e)
n (1, t).

.

Example

.

.

.

. ..

. .
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.

.

A refined enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

We define the polynomials tcn(t) by

tcn(t) = T (e)
n (1, t).

.

Example

.

.

.

. ..

. .

tc1(t) = 1

tc2(t) = 1 + t2

tc3(t) = 2 + 2 t + 3 t2 + 2 t3 + 2 t4

tc4(t) = 11 + 22 t + 34 t2 + 36 t3 + 34 t4 + 22 t5 + 11 t6

tc5(t) = 170 + 510 t + 969 t2 + 1326 t3 + 1479 t4 + 1326 t5

+ 969 t6 + 510 t7 + 170 t8
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.

.

A refined enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

We define the polynomials tcn(t) by

tcn(t) = T (e)
n (1, t).

.

Observations

.

.

.

. ..

. .

tcn(−1) = 2n−1
n−1∏

i=1

(6i − 6)!(3i + 1)!(2i − 1)!

(4i − 3)!(4i)!(3i − 3)!

tcn(2) =
n−1∏

i=1

(6i − 1)!(3i − 2)!(2i − 1)!

(4i − 2)!(4i − 1)!(3i − 1)!
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.

.

Column-strict domino plane partitions of even rows

.

Definition

.

.

.

. ..

.

.

Let D
(e,R)
n (resp. D

(o,R)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose row lengths are all even.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. We can construct an explicit bijection of

D
(e,R)
n onto a subset of TSSCPPs which is defined by Mills,

Robbins and Rumsey and conjectured to have the same cardinality
with VSASMs. Further we have U1(τ2n+1(c)) = U2(c).
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.

.

Column-strict domino plane partitions of even rows

.

Definition

.

.

.

. ..

.

.

Let D
(e,R)
n (resp. D

(o,R)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose row lengths are all even.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. We can construct an explicit bijection of

D
(e,R)
n onto a subset of TSSCPPs which is defined by Mills,

Robbins and Rumsey and conjectured to have the same cardinality
with VSASMs. Further we have U1(τ2n+1(c)) = U2(c).
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.

.

Example

.

Example

.

.

.

. ..

.

.

D
(e,R)
1 = {∅} is the set of column-strict domino plane partitions with

all columns ≤ 0.
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.

.

Example

.

Example

.

.

.

. ..

.

.

D
(e,R)
2 is composed of the following 3 elements:

∅, 1 , 1 1
.

This is the set of column-strict domino plane partitions with the first
and second columns ≤ 1, other columns ≤ 0 and each row of even
length.
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.

.

Example

.

Example

.

.

.

. ..

.

.

D
(e,R)
3 is the set of column-strict domino plane partitions with the

1st and 2nd columns ≤ 2, the 3rd and 4th columns ≤ 1, other
columns ≤ 0 and each row of even length (26 elements):

∅ 1 1 1 2 2 1 2
1

2 1
1

2
1

1 1 1 1 2 1 2 2 1 1 1 1

2 1 1 1 2 2 1 1 1 1
1

2 1
1

2 2
1

2 1

1 1

2

1 1

2

1 1
1 1 2 2

1

2 2

1

1
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.

.

Example

.

Example

.

.

.

. ..

.

.

2 2

1

1 1 2 2

1 1

2 2

1 1

1
2 2

1 1

1 1

D
(e,R)
4 is the set of column-strict domino plane partitions with the

1st and 2nd columns ≤ 3, the 3rd and 4th columns ≤ 2, the 5rd
and 6th columns ≤ 1, other columns ≤ 0 and each row of even
length (646 elements).
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.

.

(τ, t)-enumeration

.

Definition

.

.

.

. ..

.

.

We consider the generating functions

V (e)
n (τ, t) =

∑

π∈D (e,R)
n

τN(π)tUk (π),

and
V (o)

n (τ, t) =
∑

π∈D (o,R)
n

τN(π)tUk (π).

.

Example

.

.

.

. ..

.

.

V (e)
3 (τ, t) = 1 + (1 + t)τ+ (1 + 3t + 2t2)τ2 + (2t + 3t2 + t3)τ3

+ (3t2 + 3t3 + t4)τ4 + (2t3 + t4)τ5 + t4τ6
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.

.

(τ, t)-enumeration

.

Definition

.

.

.

. ..

.

.

We consider the generating functions

V (e)
n (τ, t) =

∑

π∈D (e,R)
n

τN(π)tUk (π),

and
V (o)

n (τ, t) =
∑

π∈D (o,R)
n

τN(π)tUk (π).

.

Example

.

.

.

. ..

.

.

V (e)
3 (τ, t) = 1 + (1 + t)τ+ (1 + 3t + 2t2)τ2 + (2t + 3t2 + t3)τ3

+ (3t2 + 3t3 + t4)τ4 + (2t3 + t4)τ5 + t4τ6
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. . . . . .

.

.

A determinant expression

.

Theorem

.

.

.

. ..

.

.

Let

Ve
ij (τ, t) =



∑∞
k=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−1
k−j

)
+ t

(
j−1

k−j−1

)}
τ2k−i−j

+
∑∞

k=0

{(
i−1

k−i−1

)
+ t

(
i−1

k−i−2

)} {(
j−1
k−j

)
+ t

(
j−1

k−j−1

)}
τ2k−i−j−1

if i, j > 0,

δij

otherwise,

and

Vo
ij (τ, t) =



∑∞
k=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−2
k−j

)
+ t

(
j−2

k−j−1

)}
τ2k−i−j

+
∑∞

k=0

{(
i−1

k−i−1

)
+ t

(
i−1

k−i−2

)} {(
j−2
k−j

)
+ t

(
j−2

k−j−1

)}
τ2k−i−j−1

if i, j − 1 > 0,

δij

otherwise.
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.

.

A determinant expression

.

Theorem

.

.

.

. ..

.

.

Then we have

V (e)
n (τ, t) = det

(
Ve

ij (τ, t)
)
0≤,i,j≤n−1

,

and
V (o)

n (τ, t) = det
(
Vo

ij (τ, t)
)
0≤,i,j≤n−1

.

.

Theorem

.

.

.

. ..

.

.

V (e)
n (1, 1) =

1
2n

n−1∏

i=0

(6i + 4)!(2i + 1)!

(4i + 2)!(4i + 3)!
,

.

Conjecture

.

.

.

. ..

.

.

V (e)
n (1, t) = AVS

2n+1(t),
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.

A determinant expression

.

Theorem

.

.

.

. ..

.

.

Then we have

V (e)
n (τ, t) = det

(
Ve

ij (τ, t)
)
0≤,i,j≤n−1

,

and
V (o)

n (τ, t) = det
(
Vo

ij (τ, t)
)
0≤,i,j≤n−1

.

.

Theorem

.

.

.

. ..

.

.

V (e)
n (1, 1) =

1
2n

n−1∏

i=0

(6i + 4)!(2i + 1)!

(4i + 2)!(4i + 3)!
,

.

Conjecture

.

.

.

. ..

.

.

V (e)
n (1, t) = AVS

2n+1(t),
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.

.

A determinant expression

.

Theorem

.

.

.

. ..

.

.

Then we have

V (e)
n (τ, t) = det

(
Ve

ij (τ, t)
)
0≤,i,j≤n−1

,

and
V (o)

n (τ, t) = det
(
Vo

ij (τ, t)
)
0≤,i,j≤n−1

.

.

Theorem

.

.

.

. ..

.

.

V (e)
n (1, 1) =

1
2n

n−1∏

i=0

(6i + 4)!(2i + 1)!

(4i + 2)!(4i + 3)!
,

.

Conjecture

.

.

.

. ..

.

.

V (e)
n (1, t) = AVS

2n+1(t),
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.

.

Observations

.

Observations

.

.

.

. ..

.

.

V (e)
n (1,−1) =

(
3
4

)n−1 n−1∏

i=1

(6i − 2)!(3i + 2)!(2i)!

(4i − 1)!(4i + 1)!(3i)!
,

V (e)
n (1, 2) = 2n−1

n−1∏

i=1

(6i − 5)!(2i − 2)!

(4i − 4)!(4i − 3)!
,

V (o)
n (1, 1) =

n−1∏

i=0

(6i + 4)!(3i + 5)!(2i + 1)!(2i + 3)!i!

(4i + 3)!(4i + 6)!(3i + 2)!(2i)!(i + 2)!
,

V (o)
n+1(1, 2) = 2n−1

n−1∏

i=1

(6i − 2)!(2i − 1)!

(4i − 3)!(4i)!
.
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.

.

τ = −1 Conjecture

.

Conjectures

.

.

.

. ..

.

.

We would have

V (e)
n (−1, t) =



(
AVS

2m−1

)2
tcm(t)2 if n = 2m − 1,

(TCm)2 (1 − t + t2) AVS
2m+1(t)

2 if n = 2m,

and

V (o)
n (−1, t) =


AVS

2m−1 TCm−1 AVS
2m−1(t) tcm(t) if n = 2m − 1,

AVS
2m−1 TCm AVS

2m+1(t) tcm(t) if n = 2m,
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.

.

Column-strict domino plane partitions of even columns

.

Definition

.

.

.

. ..

.

.

Let D
(e,C)
n (resp. D

(o,C)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose column lengths are all even.

.

Problem

.

.

.

. ..

.

.

Let n be a positive integer. Can we construct an explicit bijection of

D
(e,R)
n onto a subset of TSSCPPs which is defined by Mills,

Robbins and Rumsey and conjectured to have the same cardinality
with HTSASMs?
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.

Column-strict domino plane partitions of even columns

.

Definition

.

.

.

. ..

.

.

Let D
(e,C)
n (resp. D

(o,C)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose column lengths are all even.

.

Problem

.

.

.

. ..

.

.

Let n be a positive integer. Can we construct an explicit bijection of

D
(e,R)
n onto a subset of TSSCPPs which is defined by Mills,

Robbins and Rumsey and conjectured to have the same cardinality
with HTSASMs?
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.

.

RCSDPPs with all columns of even length

.

Example

.

.

.

. ..

.

.

D
(e,C)
1 = {∅}

D
(o,C)
1 =

∅, 111


D

(e,C)
2 has the following 3 elements:

∅, 1
,

1 1
.
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.

RCSDPPs with all columns of even length

.

Example

.

.

.

. ..

.

.

D
(o,C)
3 has the following 10 elements:

∅, 1
,

2
,

1 1
,

2 1
,

1 1 1
,

2 1 1
,

2

1
,

2 1

1
,

2 1 1

1
.

D
(e,C)
3 has 25 elements, D

(e,C)
4 has 140 elements, and D

(e,C)
4 has

588 elements.
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.

.

(τ, t)-enumeration

.

Definition

.

.

.

. ..

.

.

Let D
(e,C)
n (resp. D

(o,C)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(e)
n ) whose column lengths are all even. We consider the

generating functions

H(e)
n (τ, t) =

∑

π∈D (e,C)
n

τN(π)tUk (π),

and
H(o)

n (τ, t) =
∑

π∈D (o,C)
n

τN(π)tUk (π).
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.

.

Example

.

Example

.

.

.

. ..

.

.

D
(o,C)
3 consists of the following 10 elements:

∅, 1
,

2
,

1 1
,

2 1
,

1 1 1
,

2 1 1
,

2

1
,

2 1

1
,

2 1 1

1
.

Thus we have

H(o)
3 (τ, t) = 1 + (1 + t)τ+ (2t + t2)τ2 + (2t2 + t3)τ3 + t3τ4.
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.

.

A determinant expression

.

Theorem

.

.

.

. ..

.

.

Let

He
ij (τ, t) =



∑∞
k=0

∑k
l=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−1
l−j

)
+ t

(
j−1

l−j−1

)}
τk+l−i−j

if i, j > 0,

(1 + tτ)(1 + τ)i−1 if i > 0 and j = 0,

δ0,j if i = 0,

and

Ho
ij (τ, t) =



∑∞
k=0

∑k
l=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−2
l−j

)
+ t

(
j−2

l−j−1

)}
τk+l−i−j

if i, j − 1 > 0,

(1 + tτ)(1 + τ)i−1 if i > 0 and j = 0, 1,

δij if i = 0.
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.

.

A determinant expression

.

Theorem

.

.

.

. ..

.

.

Then we have

H(e)
n (τ, t) = det

(
He

ij (τ, t)
)
0≤,i,j≤n−1

,

and
H(o)

n (τ, t) = det
(
Ho

ij (τ, t)
)
0≤,i,j≤n−1

.
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.

Theorem and Conjecture

.

Theorem

.

.

.

. ..

.

.

H(e)
n (1, 1) =

3n

22n

n−1∏

i=0

{
(3i + 2)! i!

}2
{
(2i + 1)!

}4 ,

H(o)
n (1, 1) =

n−1∏

i=0

(3i)!(3i + 2)! (i!)2

{
(2i)!(2i + 1)!

}2 .

.

Conjecture

.

.

.

. ..

.

.

H(e)
n (1, t) = AHTS

2n−1(t),

H(o)
n (1, t) = AHTS

2n (t),
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.

Theorem and Conjecture

.

Theorem

.

.

.

. ..

.

.

H(e)
n (1, 1) =

3n

22n

n−1∏

i=0

{
(3i + 2)! i!

}2
{
(2i + 1)!

}4 ,

H(o)
n (1, 1) =

n−1∏

i=0

(3i)!(3i + 2)! (i!)2

{
(2i)!(2i + 1)!

}2 .

.

Conjecture

.

.

.

. ..

.

.

H(e)
n (1, t) = AHTS

2n−1(t),

H(o)
n (1, t) = AHTS

2n (t),
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.

.

τ = −1 Conjecture

.

Conjecture

.

.

.

. ..

.

.

We would have

H(e)
n (−1, t) = (1 − t + t2) AVS

2n−1(t),

and
H(o)

n (−1, t) = t(1 − t) V (o)
n−2(1, t) for n ≥ 3.
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More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.
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More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.
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.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.
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.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.
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.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.

P0,4 consists of the followng 1 element:

∅
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.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.

P1,3 consists of the followng 8 elements:

∅ 1 2 2
1

3 3
1

3
2

3
2
1
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.

.

More General Definition

.

Example

.

.

.

. ..

.

.

P2,2 consists of the followng 25 elements:

∅ 1 1 1 2 2 1 2 2 2
1

2 1
1

2 2
1

2 2
1 1

3 3 1 3 2 3
1

3 1
1

3 2
1

3 2
1 1

3
2

3 1
2

3 2
2

3 2
2 1

3
2
1

3 1
2
1

3 2
2
1

3 2
2 1
1

P3,1 = P4,0 consists of 42 elements.
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.

Generating functions

Using Binet-Caucy formula, we obatin the following theorem:

.

Theorem

.

.

.

. ..

.

.

Let Qn,x,y denote the set of pairs (c1, c2) such that c1 ∈Pn,x ,
c2 ∈Pn,y , and c1 and c2 have the same shape. Then we have

∑

(c1,c2)∈Qn,x,y

τ|shc1 |+|shc2 | = det


∑

k

(
i + x
k − i

)(
j + y
k − j

)
τ2k−i−j


0≤,i,j≤n−1

.
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.

Desnanot–Jacobi formula

.

Theorem (Desnanot–Jacobi formula)

.

.

.

. ..

.

.

Given a matrix M, let

Mi
j = the submatrix of M obtained by removing row i and column j,

Mi,k
j,l = the submatrix of M obtained by removing row i, row k ,

column j, and column l.

Then the Desnanot–Jacobi formula is

det M · det M1,n
1,n = det Mn

n · det M1
1 − det Mn

1 · det M1
n .

· = · − ·
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.

Hirota-Miwa type equation

.

Definition

.

.

.

. ..

.

.

Let

fn,x,y = det


∑

k

(
i + x

k − i − x

)(
j + y

k − j − y

)
τ2k−i−j−x−y


0≤,i,j≤n−1

.

.

Theorem (Hirota-Miwa type equation)

.

.

.

. ..

.

.

Then fn,x,y satisfies the following equation:

fn,x,y fn−2,x+1,y+1 = fn−1,x,y fn−1,x+1,y+1 − fn−1,x+1,y fn,x,y+1,

f0,x,y = 1, f1,x,y =
∑

k

(
x

k − x

)(
y

k − y

)
τ2k−x−y .
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.

Hirota-Miwa type equation

.

Definition

.

.

.

. ..

.

.

Let

fn,x,y = det


∑

k

(
i + x

k − i − x

)(
j + y

k − j − y

)
τ2k−i−j−x−y


0≤,i,j≤n−1

.

.

Theorem (Hirota-Miwa type equation)

.

.

.

. ..

.

.

Then fn,x,y satisfies the following equation:

fn,x,y fn−2,x+1,y+1 = fn−1,x,y fn−1,x+1,y+1 − fn−1,x+1,y fn,x,y+1,

f0,x,y = 1, f1,x,y =
∑

k

(
x

k − x

)(
y

k − y

)
τ2k−x−y .
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.

.

Hirota-Miwa type equation

.

Definition

.

.

.

. ..

.

.

Let

gn,x,y = det


∑

k

{(
i + x

k − i − x

)
τk−i−x +

(
i + x

k − i − x − 1

)
τk−i−x−1

}

×
(

j + y
k − j − y

)
τk−j−y


0≤,i,j≤n−1

.

.

Theorem (Hirota-Miwa type equation)

.

.

.

. ..

.

.

Then gn,x,y satisfies the following equation:

gn,x,ygn−2,x+1,y+1 = gn−1,x,ygn−1,x+1,y+1 − gn−1,x+1,ygn,x,y+1,

g0,x,y = 1, g1,x,y =
∑

k

{(
x

k − x

)
τk−x +

(
x

k − x − 1

)
τk−x−1

} (
y

k − y

)
τk−y .
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.

Hirota-Miwa type equation

.

Definition

.

.

.

. ..

.

.

Let

gn,x,y = det


∑

k

{(
i + x

k − i − x

)
τk−i−x +

(
i + x

k − i − x − 1

)
τk−i−x−1

}

×
(

j + y
k − j − y

)
τk−j−y


0≤,i,j≤n−1

.

.

Theorem (Hirota-Miwa type equation)

.

.

.

. ..

.

.

Then gn,x,y satisfies the following equation:

gn,x,ygn−2,x+1,y+1 = gn−1,x,ygn−1,x+1,y+1 − gn−1,x+1,ygn,x,y+1,

g0,x,y = 1, g1,x,y =
∑

k

{(
x

k − x

)
τk−x +

(
x

k − x − 1

)
τk−x−1

} (
y

k − y

)
τk−y .
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.

Hirota-Miwa type equation

.

Definition

.

.

.

. ..

.

.

Let

hn,x,y = det


∑

k

k∑

l=0

(
i + x

k − i − x

)(
j + y

l − j − y

)
τk+l−i−j−x−y


0≤,i,j≤n−1

.

.

Theorem (Hirota-Miwa type equation)

.

.

.

. ..

.

.

Then hn,x,y satisfies the following equation:

hn,x,yhn−2,x+1,y+1 = hn−1,x,yhn−1,x+1,y+1 − hn−1,x+1,yhn,x,y+1,

h0,x,y = 1, h1,x,y =
∑

k

k∑

l=0

(
x

k − x

)(
y

l − y

)
τk+l−x−y .
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.

Hirota-Miwa type equation

.

Definition

.

.

.

. ..

.

.

Let

hn,x,y = det


∑

k

k∑

l=0

(
i + x

k − i − x

)(
j + y

l − j − y

)
τk+l−i−j−x−y


0≤,i,j≤n−1

.

.

Theorem (Hirota-Miwa type equation)

.

.

.

. ..

.

.

Then hn,x,y satisfies the following equation:

hn,x,yhn−2,x+1,y+1 = hn−1,x,yhn−1,x+1,y+1 − hn−1,x+1,yhn,x,y+1,

h0,x,y = 1, h1,x,y =
∑

k

k∑

l=0

(
x

k − x

)(
y

l − y

)
τk+l−x−y .
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.

The end

Thank you!
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