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Restricted column-strict domino plane partitions with all rows
of even lenth

© 0 00000

Restricted column-strict domino plane partitions with all
columns of even lenth
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Plane partitions

Definition

A plane partition is an array m = (mjj)ij>1 of nonnegative integers
such that & has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns.
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Plane partitions

Definition

A plane partition is an array 7 = (7jj)ij>1 Of nonnegative integers
such that & has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns. If }’; -, mj = n,
then we write |7] = n and say that « is a plane partition of n, or &
has the weight n.
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Plane partitions

A plane partition is an array 7 = (7jj)ij>1 Of nonnegative integers
such that & has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns. If }’; ;-4 mj = n,
then we write 7] = n and say that x is a plane partition of n, or
has the weight n.

A plane partition of 14

S P NW

O P DNDN

o Or Pk
o
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Shape

Let 7 = ()i j>1 be a plane partition.
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Shape

Let 7 = ()i j>1 be a plane partition.

@ A partis a positive entry mj; > 0.
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Shape

Let 7 = ()i j>1 be a plane partition.

@ A partis a positive entry mj; > 0.

@ The shape of & is the ordinary partition A for which 7 has 4;
nonzero parts in the ith row.
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Shape

Let 7 = ()i j>1 be a plane partition.
@ A partis a positive entry mj; > 0.

@ The shape of & is the ordinary partition A for which 7 has 4;
nonzero parts in the ith row.

@ We say that w has r rows if r = £(2). Similarly, 7 has s
columns if s = ().
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Shape

Let 7 = ()i j>1 be a plane partition.
@ A partis a positive entry mj; > 0.

@ The shape of & is the ordinary partition A for which 7 has 4;
nonzero parts in the ith row.

@ We say that 7 has r rows if r = £(1). Similarly, 7 has s
columns if s = £(’).

A plane partition of shape (432) with 3 rows and 4 columns:

3[2]1]1]
2[2]1
11
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Example of plane partitions

@ Plane partitions of 0: ()
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Example of plane partitions

@ Plane partitions of 0: @

@ Plane partitions of 1:
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Example of plane partitions

@ Plane partitions of 0: @

@ Plane partitions of 1:
@ Plane partitions of 2:
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Example of plane partitions

@ Plane partitions of 0: @

@ Plane partitions of 1:
@ Plane partitions of 2:

@ Plane partitions of 3:

lll
1 1
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Schur functions

Definition

A plane partition is said to be column-strict if it is strictly
decreasing in coulumns.
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Schur functions

Definition

A plane partition is said to be column-strict if it is strictly
decreasing in coulumns.

Schur functions
Let Xq,..., X, be n variables, and fix a shape 4. The Schur function
sa(Xg, ..., Xn) is defined to be

S,l(Xl, ce ,Xn) = Z X”,
7

where 7 runs over all column-strict plane partitions of shape 1 and
To__ yHofiinm
X" =TLiX .
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An Example of Schur functions

If = (22) and x = (X1, X2, X3), then the followings are
column-strict plane partitions with all parts < 3.

212 3|2 313
1|11 1|11 1|11
312 313 313
211 211 2] 2

Hence we have

2 2
S(22) (X1, X2, X3) = XEXZ + XEXG + XZX5 + X2XaX3 + X1X5X3 + X1XoX3.
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Ferrers graph

Definition

The Ferrers graph D(r) of r is the subset of P? defined by

D(r) = {(i.j.k) : k <y}
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Ferrers graph

Definition

The Ferrers graph D(r) of r is the subset of P2 defined by

D(r) = {(i.j.k) : k < my}

Example

Ferrers graph

3211
2|21
1 1 —>
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Symmetries of plane paritions

Definition

If 7 = (7;)) is a plane partition,
then the transpose n* of  is
defined by 7* = (7j).

transpose

yavy
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Symmetries of plane paritions

Definition

If 7 = () is a plane partition,
then the transpose n* of & is A symmetric PP
defined by 7* = (7j).

@ mis symmetric if 1 = * .
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Symmetries of plane paritions

Definition

If 7 = (7;)) is a plane partition,

then the transpose 7* of  is A cyclicaly symmetric PP

defined by 7* = (7j).
@ mis symmetric if m = 7* . yay

@ r is cyclically symmetric if
whenever (i,j,k) € 7 then
(,k,i) e 7.
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Symmetries of plane paritions

Definition

If 7 = (7;)) is a plane partition,
then the transpose 7* of  is A totally symmetric PP
defined by 7* = (7j).

@ mis symmetric if 1 = * .

@ r is cyclically symmetric if
whenever (i,j,k) € 7 then -
(j,k,i) e 7.

@ nis called totally symmetric if
it is cyclically symmetric and
symmetric.
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Complement

Let 7 = (7)) be a plane partition contained in the box
B(r,s,t) = [r] x[s] x [t].

L7 7

B(2,3,3)

v
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Complement

Let 7 = (7)) be a plane partition contained in the box
= [r] x [s] x [t].

Define the complement 7¢ of 7 by

={(r+1-i,s+1-jt+1-k): (i,j,k)e¢n}

’ complement
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Complement

Let 7 = (7)) be a plane partition contained in the box
= [r] x [s] x [t].
Define the complement #° of = by
n={(r+1-i,s+1-jt+1-k): (i,j,k)¢n}
@ ris said to be (r, s, t)-self-complementary if 7 = #°. i.e.
(i,j,k)ene (r+1-i,s+1-j,t+1-k)¢n

A (2,3, 3)-self-complementary PP

v
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Transpose-complement

Let 7 = (7;;) be a plane partition contained in the box B(r,r, t).

ST

B(3.3,2)
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Transpose-complement

Definition

Let 7 = (7;;) be a plane partition contained in the box B(r,r,t).
Define the transpose-complement n'® of z by
A ={(r+1-jr+1-i,t+1-k): (i,j,k) gn}

Example

]
7
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Transpose-complement

Definition

Let 7 = (7;;) be a plane partition contained in the box B(r,r,t).
Define the transpose-complement 7' of & by
A ={(r+1-jr+1-i,t+1-k): (i,j,k) g n}
@ ris said to be complement=transpose if r = '°, i.e.
(i,jjk)ene(r+1-jr+1-i,t+1-k)¢m.

Example

(3, 3, 2)-complement=transpoese
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Totally symmetric self-complementary plane partitions

Definition

A plane partition contained in B(2n, 2n, 2n) is said to be totally
symmetric self-complementary plane parition of size n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.
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Totally symmetric self-complementary plane partitions

Definition

A plane partition contained in B(2n, 2n, 2n) is said to be totally
symmetric self-complementary plane parition of size n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.

We denote the set of all self-complementary totally symmetric
plane partitions of size n by 7.
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Totally symmetric self-complementary plane partitions

A plane partition contained in B(2n, 2n, 2n) is said to be totally
symmetric self-complementary plane parition of size n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.

We denote the set of all self-complementary totally symmetric
plane partitions of size n by 7.

71 consists of the single partition

v
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TSSCPPs of size 2

75 consists of the following two partitions:
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TSSCPPs of size 2

75 consists of the following two partitions:
77

ﬁ
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TSSCPPs of size 3

I3 consists of the following seven partitions:

T T2

7

77
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TSSCPPs of size 3

T3 consists of the following seven partitions:

3 T4

|| i

Masao Ishikawa Enumeration problems of plane partitions



TSSCPPs of size 3

Example

T3 consists of the following seven partitions:

Hi L]

5 T
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TSSCPPs of size 3

Example

T3 consists of the following seven partitions:

7
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Tc-symmetric plane partitions

Definition

A plane partition in B(2n, 2n, 2n) is defined to be tc-symmetric of
size n if it is cyclically symmetric and it is equal to its
transpose-complement.
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Tc-symmetric plane partitions

Definition

A plane partition in B(2n, 2n, 2n) is defined to be tc-symmetric of
size n if it is cyclically symmetric and it is equal to its
transpose-complement.

We denote the set of all tc-symmetric plane partitions of size n by

%n.
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Tc-symmetric plane partitions

A plane partition in B(2n, 2n, 2n) is defined to be tc-symmetric of
size n if it is cyclically symmetric and it is equal to its
transpose-complement.

We denote the set of all tc-symmetric plane partitions of size n by
Gn-

%) consists of the single partition
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Tc-symmetric PPs of size 2

%> consists of the following two partitions:
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Tc-symmetric PPs of size 2

%> consists of the following two partitions:
77

ﬁ
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Tc-symmetric PPs of size 3

Example

3 consists of the following eleven plane partitions:

Us:]

79

f
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TSSCPP 12| 7 | 42 | 429 7436
tc-symmetric PP || 1 | 2 | 11 | 170 | 7429 | 920460

l_[ T (3i+1)!
+i)!

L (3i + 1)(6)!(2i)!
e = ﬂ (4i)!(4i + 1)

i=0
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The Numbers of HTSASMs and VSASMs

-1 q -
AHTS:T—[ (3i)!(3i + 2)! AHTS ni(3n)! | AHTS

S TR T (T
avs _ L N (6k —2)!(2k —1)!
ariton LA (ak - 2)1(ak — 1))
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The Numbers of HTSASMs and VSASMs

11 (3i)!(3i + 2)! AFTS _ n!(3n)! . AHTS
{(n+i) T e T
N (6k — 2)I(2k — 1)!

2l on UL ap —2)1(4k — 1)1

n 1/2(3|4 | 5| 6 | 7 | 8 9 |-

ARTS 111123 |10 | 25 | 140 | 588 | 5544 | 39204
AVS 1 1 3 26 646
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Enumeration polynomials

Definition

A &S o (@2n+k =2)1(4n -k - 1)!
Aé’nsﬂ(t):ﬁzt DS (k —1)!(2n - k)!

r=1 k=1
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Enumeration polynomials

Definition

A &S o (@2n+k =2)1(4n -k - 1)!
Agnsﬂ()ﬁ;t 1241(_1) h (k — 1)!(2n —K)!

AJ3(t) =1

APP(t) =1+t +t?

AY3(t) = 3 + 6t + 8t* + 6t° + 3t*

AJ3(t) = 26 + 78t + 138t% + 162t> + 138t* + 78t°> + 26t°
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Enumeration polynomials

Definition
An o(n+r-2\2n-1-r 1
Ap(t) = —— t
n() (3n—2);( n-1 )( n-1 )

n-1

ASTS(t)  (3n-2)(2n - 1)!
ALiTS ~ (n-1)!(3n-1)!

n(n—1)—nr +r2}(n+r-2)(2n —r - 2)!
XZ ri(n—r)!

AHTS( t) = Az S(DAn(1)

ALTS, () = 5 [Anc s (OBETS(0) + An(DALTS (1)

tl'

(8)!(3i+2)!
where AHTS = [T ém
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Examples

Ai(t) =1

Ax(t) =1+t

As(t) =2+ 3t +3t?

Ay(t) =7 + 14t + 1412 + 7¢3
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Examples

Au(t) =1

Ax(t) =1+

As(t) =2+ 3t +3t?

Ay(t) =7 + 14t + 1412 + 7¢3

w
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) c is column-strict;
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n — .
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &2, a restricted column-strict plane partition.
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part c;j of ¢ is said to be saturated if ¢j = n —].
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

&, consists of the single PP (.
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

2, consists of the following 2 PPs:
0
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

2, consists of the following 2 PPs:
0
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

P53 consists of the followng 7 PPs

0 2[1]
1
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Restricted column-strict plane partitions

Let &, denote the set of plane partitions ¢ = (cjj)1<ij Subject to
the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

P53 consists of the followng 7 PPs

0 2]1]
1
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Let n be a positive integer.
Then we can construct a bijection from 7, to £7,.
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The statistics in words of RCSPP

Definition
Letc = (Cj)1<ij € Pnandk =1,...,n.
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The statistics in words of RCSPP

Definition

Letc = (Cj)i<ij € Pnandk =1,...,n.

Let Uk(c) denote the number of parts equal to k plus the number
of saturated parts less than k. Further let N(7) denote the number
of boxes in 7.
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The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.
Let Ui (c) denote the number of parts equal to k plus the number

of saturated parts less than k. Further let N(7) denote the number
of boxes in x.

RPIN]W] ]| O
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The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.
Let Ui (c) denote the number of parts equal to k plus the number

of saturated parts less than k. Further let N(7) denote the number
of boxes in x.

n =7, c € %3, Saturated parts

RPIN]W] ]| O
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The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.
Let Ui (c) denote the number of parts equal to k plus the number

of saturated parts less than k. Further let N(7) denote the number
of boxes in x.

n=7,ce Pk =1,Us(c)=3

5|15|412]2
414131
3122
211

1

Masao Ishikawa Enumeration problems of plane partitions



The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.
Let Ui (c) denote the number of parts equal to k plus the number

of saturated parts less than k. Further let N(7) denote the number
of boxes in x.

n=7,ce Pk =2U,c)=5

5|15|4]12]2
4141311
3122
211

1
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The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.
Let Ui (c) denote the number of parts equal to k plus the number

of saturated parts less than k. Further let N(7) denote the number
of boxes in x.

n=7c€ %Pk =3,Us(c)=3

5|15|412]2
4141311
3122
211

1

Masao Ishikawa Enumeration problems of plane partitions



The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.
Let Ui (c) denote the number of parts equal to k plus the number

of saturated parts less than k. Further let N(7) denote the number
of boxes in x.

n=7,c€ Ps k =4,U4c) =4

5|15|412]2
4141311
3122
211

1
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The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.

Let Uy (c) denote the number of parts equal to k plus the number
of saturated parts less than k. Further let N(7) denote the number
of boxes in .

n=7c¢€ %P3k =5 Us(c) =4

5S|5|4]2]2
4141311
3122
211

1
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The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.
Let Ui (c) denote the number of parts equal to k plus the number

of saturated parts less than k. Further let N(7) denote the number
of boxes in x.

n=7,c€ %Pk =6,Ug(c) =3

515|1412]2
4141311
3122
211

1

Masao Ishikawa Enumeration problems of plane partitions



The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n.
Let Ui (c) denote the number of parts equal to k plus the number

of saturated parts less than k. Further let N(7) denote the number
of boxes in x.

n=7,ce Pk =7U;(c)=3

515|1412]2
4141311
3122
211

1
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Generating function

Generating function

We consider the generating function

fn(nt) = Y ANE O,

e PR

where N(7) denotes the number of boxes in 7.
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Generating function

We consider the generating function

fn(nt) = Y ANE O,

e PR

where N(7) denotes the number of boxes in 7.

if n = 3, then 95 is composed of the following 7 plane partitions:

2| [2]1]
oi

foa(rt) = 1+ (L O (2 + )22 4 £,
fork =1,2,3.
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A Pfaffian expression

Let Bon = (bij(7,t))o<i<n-1,0<j<n-1 denote the n by N matrix
defined by

0ij ifi =0,

bij(7.t) = {{(lj—_ill) +t(ii_i—_11)}71—i ifi > 0.
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A Pfaffian expression

Let Bon = (bij(7,t))o<i<n-1,0<j<n-1 denote the n by N matrix
defined by

0ij ifi =0,

2400l e oo

Ifn =3 and N = 5, then we have

1 0 O 0 0
B3’5: 0 1 tr 0 0 |.
0

0
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A Pfaffian expression

Definition

Let S, denote the anti-symmetric n X n matrix defined by
Sn = ((=1) 7 H)1<icj<n, and let Jn = (8int1-j)1<ij<n denote the
anti-diagonal matrix of size n.
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A Pfaffian expression

Definition

Let S, denote the anti-symmetric n X n matrix defined by
Sn = ((=1) 7 H)1<icj<n, and let Jn = (8int1-j)1<ij<n denote the
anti-diagonal matrix of size n.

O 1 -1 1 0 0 01
Sy — -1 0 1 -1 Iy = 0 010

1 -1 0 1¢ 0 1 0 O}

-1 1 -1 O 1 0 0 O
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A Pfaffian expression

For a positive integer n, let N be the least integer such that N > 2n - 1
and n + N is even. Then we have

_ on Jn Bn,N
fk’n(T,t) = Pf (_Br':"N Jn SN ),

fork =1,...,n.
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A Pfaffian expression

For a positive integer n, let N be the least integer such that N > 2n - 1
and n + N is even. Then we have

_ on Jn Bn,N
fk’n(T,t) = Pf (—B:—’N Jn SN ),

fork =1,...,n.

If n =3 and N = 5, then we obtain

0 0 0 0 0 1 L+t tr?

0 0 0o o 1 tr 0 0

0 0 0 1 0 o0 0 0

0 0 -1 o 1 -1 1 -1

Pf 0 -1 0 -1 o0 1 =il 1
=4l —tr 0 1 -1 o0 1 -1
-1+t)r O 0o -1 1 -1 0 1

—t72 0 0 1 -1 1 -1 0

equals 1 + (1 +t)r +t(2 +t)r° 4 t37°.




If we put 7 = 1into fy 3(7,t) = 1 + (1 + t)7 + t(2 + t)72 + t273,
then we obtain Az(t) = 2 + 3t + 2t2.
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If we put 7 = 1into f3(7,t) = 1+ (1 +t)r +t(2 + t)r2 + t373,
then we obtain Ag(t) = 2 + 3t + 2t2.

If we put 7 = 1, then

fin(Lt) = An(t),

forn > 1.
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If we put 7 = —1into fy 3(7,t) = 1 + (1 + t)7 + t(2 + t)7? 4+ t273,
then we obtain f 3(-1,t) =t.
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If we put 7 = -1 into fy 3(7,t) = 1 + (1 + t)7 + t(2 + t)72 + t273,
then we obtain fy 3(-1,t) = t.

Example

The first few terms of fy n(—1,t) looks as follows:
foa(~1,t) =t
fioa(=1,t) = (L -t) (1 +t +1%)
fus(~1,t) = 3t(1 +t 4 t?)
fus(=1,t) = 3(1 —t)(3 + 6t + 8t* + 6t° + 3t*)
fu 7(=1,t) = 26t(3 + 6t + 8t? + 6> + 3t*)
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T = —1 conjecture

Let n be a positive integer such that n > 3.
© If nis even, then we would have

fion(=1,8) = A% - (1= ) ARy (0).
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T = —1 conjecture

Let n be a positive integer such that n > 3.
© If nis even, then we would have
fin(-1,t) = AYS - (1- t)ArY—El(t)-

@ Ifnis odd, then we would have

fun(=1,t) = AYS -t AYS(t).
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Definition

A non-crossing perfect matching (link pattern) of the vertex set
[2n] = {1,2,...,2n} is an unordered collection of vertices, or
edges, which does not contain edges {i, j} and {k, I} such that

i <k <j<|I. Let .%,, denote the set of all link patterns of [2n]. We
consider the periodic case by identifying 1 and 2n.
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Link patterns

A non-crossing perfect matching (link pattern) of the vertex set
[2n] = {1,2,...,2n} is an unordered collection of vertices, or
edges, which does not contain edges {i, j} and {k, I} such that

i <k <j<|I. Let .%,, denote the set of all link patterns of [2n]. We
consider the periodic case by identifying 1 and 2n.

Forn =3,

Fe = {{1,2}{3,4}{5,6},{1, 2}{3,4}{4,5},{1,4}{2, 3}{5, 6},

{1,6}{2, 3}{4.5). {1, 6}{2. 5}{3. 4}}.

Masao Ishikawa Enumeration problems of plane partitions



Link patterns

Definition
A convenient typographical notation for non-crossing perfect
matching of [2n] is obtained by using parentheses for paired

vertices.

Example

| A

Fe = {()()(), 00 (DO- (O0) ((()))}-

Ay LAY (A a
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

[y [N

1 2 3 4 5 6 1 2 3 4 5 6
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Matchmakers

Definition

Throughout the following we put r = —(q + q1). Define
generators or matchmakers e, j € [2n], acting non-trivially on
elements F € .%;, by

_{ﬂJ+HHﬂﬂJ+M

PO LM LK) e KM+ 1),
eJ = o o o ° ° )
1 2 j-1 j +1 j+2 2n-1  2n
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Temperley-Lieb Algebras

Temperley-Lieb Algebra

The match makers ej, j € [2n] satisfy the following relations:

2

e =r7e,i=1,...,2n,
€i€i+1€ = €,
eie; =eje;, i—jl>1

We also have the cyclic operator o such that ej;; = oejo L. This
algebra is called the (affine) Temperley-Lieb Algebra and denoted
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Example

Example

For n = 2 case, we have two link patters. The order of the basis is
(), O() (or equivalently label by 0011,0101). Explicitly, the
generators are written

0 0 T 1
61263:(1 T)’ 622642(0 O).
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Example

Example
For n = 3 cases. We have five basis. The order of basis is

(O (O0)- ()0, O(0), OO0, (or equivalently label by

000111,001011,001101,010011,010101). For example, the
generator e; is written as

0 00 0O 0 01 00
0 00 OO 0 00 01
ee=|{0 00 O0O0O])|], o={0 00 1O
01 07O 1 000O0
1 010 7 0 1 000

Other generators are obtained from ej1; = oejot
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Polynomial representations

We determine a vector
V= Z ‘//ﬂ(zi)|7r>

nE€EFn

by the following manner. The vectors |r) are basis vectors on
which TLy, acts from left. The ¥(zi) = ¥x(z1,...,22n) are
polynomials on which TLy, from right by

f(...,Zi,ZH_l,...)—f(...,ZH_l,Zi,...)

Zi — Zjy1

fEi = (qzi - 47 2i11)

where E; = ¢j — 7.
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Polynomial representations

The polynomials y,(z;) are uniquely determined by

Yno = l_[ (az - q_lzj)(quJrn = q‘len),

1<i<j<n

EiV = VE; fori=1,...,2n,

where 70 = (((...()-..))).
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Polynomial representations

The polynomials y,(z;) are uniquely determined by

Yno = l_[ (az - q_lzj)(quJrn = q‘len),

1<i<j<n

EiV = VE; fori=1,...,2n,

where 0 = (((...()...))).

If n = 2, then we obtain

Y(() = (axe = a7 %2)(axs — 47" Xa),
Y00 = ¥(()E2 = (=021 + 9 2xa)(ax2 — 47 'xs).
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If we substitute q = e?™/3 (i.e. T = 1), then we obtain

D" (i) = sa(21, . Z2n)

n€Fn

whereA=(n-1,n-1,...,1,1,0,0).
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If we substitute q = e?™/3 (i.e. T = 1), then we obtain

D" (i) = sa(21, . Z2n)

n€Fn

whereA=(n-1,n-1,...,1,1,0,0).

Further, if we substitute z; = %’ Zo = -+ = Zon = 1, then we
obtain
Zﬂeff\n l//ﬂ(zi) —A (t)
S L~ A1),
wﬂo(zi)
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Example (r = 1)

If n =2 and q = e?/3, then

Y() ¥ = S12(X1, X2, X3, Xa),
= X1X2 + X1X3 + X1X4 —|— X2X3 —|— X2X4 + X3X4,

1+qt

and, when z; = T

, 22 = 23 = Z4 = 1, we obtain

Masao Ishikawa Enumeration problems of plane partitions



T = —1 conjecture

If we substitute q = e™/3 (i.e. 7 = —(q 4+ q71) = -1), z, = ==

t-q’
Zo = --- = 75 = 1, then we would obtain

n+1
Uro(2i) AVS -t AYS(t) if n is odd.

Ynez ¥a(z) {A;’_Sl (1-t)AYS (t) ifnis even,
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Pairs of Restricted column-strict plane partitions

Definition

Let 2, denote the set of all pairs of plane partitions in &, of the
same shape.
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Pairs of Restricted column-strict plane partitions

Let 2, denote the set of all pairs of plane partitions in &, of the
same shape.

21 consists of the single pair  (0,0).

4
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Pairs of Restricted column-strict plane partitions

Let 2, denote the set of all pairs of plane partitions in &, of the
same shape.

&, consists of the following 2 pairs:

(0,0) ( )

4
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Pairs of Restricted column-strict plane partitions

Let 2, denote the set of all pairs of plane partitions in &, of the
same shape.

&, consists of the following 2 pairs:

(0,0) ( )

4
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Pairs of Restricted column-strict plane partitions

Let 2, denote the set of all pairs of plane partitions in &, of the
same shape.

3 consists of the followng 11 pairs

oo (@7) @D) [@E) (@3

UlllH1|10 01|1H2|10 02|1H1|10 02|1H2|10

2][2]) ([2]1][2]1
1] [T

4
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Pairs of Restricted column-strict plane partitions

Let 2, denote the set of all pairs of plane partitions in &, of the
same shape.

3 consists of the followng 11 pairs

oo (@T) @D @E) @3

UlllH1|10 01|1H2|10 02|1H1|10 02|1H2|10

2|[2]] ([2]1]]2]1
1] [T

4
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Let n be a positive integer.
Then we can construct a bijection from %, to 2.
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Domino plane partitions

Let Qr(,e) denote the set of column-strict domino plane partitions ¢
subject to the constraints that

forj=1,...,n—1.
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Domino plane partitions

Let Qr(,e) denote the set of column-strict domino plane partitions ¢
subject to the constraints that

@ each number in a domino crossing the 2j — 1st column does
not exceed n —j,

forj=1,...,n—1.
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Domino plane partitions

Definition
Let Qr(,e) denote the set of column-strict domino plane partitions ¢
subject to the constraints that

© each number in a domino crossing the 2j — 1st column does
not exceed n —j,

@ each number in a domino crossing the 2jth column does not
exceed n —j,

forj=1,...,n—1.
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Domino plane partitions

Let Qr(,e) denote the set of column-strict domino plane partitions ¢
subject to the constraints that
© each number in a domino crossing the 2j — 1st column does
not exceed n —j,
@ each number in a domino crossing the 2jth column does not
exceed n —j,
forj=1,...,n—1. Ifapartinthe 2j — 1th or 2jth column is equal
to n — j, then we call it a saturated part.
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Domino plane partitions

Definition

Let Qr(,e) denote the set of column-strict domino plane partitions ¢
subject to the constraints that
© each number in a domino crossing the 2j — 1st column does
not exceed n —j,
@ each number in a domino crossing the 2jth column does not
exceed n —j,
forj=1,...,n—1. Ifapartinthe 2j — 1th or 2jth column is equal
to n — j, then we call it a saturated part. For a positive integer k

and r € @,ge), set Uy () denote the number of parts in ¢ equal to k
plus the number of saturated parts less than k.
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Domino plane partitions

Definition

Let Qr(,e) denote the set of column-strict domino plane partitions ¢
subject to the constraints that
© each number in a domino crossing the 2j — 1st column does
not exceed n —j,
@ each number in a domino crossing the 2jth column does not
exceed n —j,
forj=1,...,n—1. Ifapartinthe 2j — 1th or 2jth column is equal
to n — j, then we call it a saturated part. For a positive integer k
and r € @,ge), set Uy () denote the number of parts in ¢ equal to k
plus the number of saturated parts less than k. Further let N(r)
denote the number of dominoes in .
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Example

Example

The following domino plane partition  is an element of @3(6)

since the 1st and 2nd columns < 2, the 3rd and 4th columns < 1.
The red numbers stand for saturated parts. Hence we have

Uy () = Uy(nr) = Us(nr) = 3. Since x has 4 dominoes, we have
N(m) = 4.
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Domino plane partitions

Definition

Let y’/rﬁc’) denote the set of column-strict domino plane partitions ¢
subject to the constraints that

@ each number in a domino crossing the 2j — 1st column does
not exceed n — |,

forj=1,...,n—1.
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Domino plane partitions

Definition
Let y’/rﬁc’) denote the set of column-strict domino plane partitions ¢
subject to the constraints that

@ each number in a domino crossing the 2j — 1st column does
not exceed n — |,

© each number in a domino crossing the 2jth column does not
exceedn—j—1,

forj=1,...,n—1.
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Domino plane partitions

Definition
Let y’/rﬁc’) denote the set of column-strict domino plane partitions ¢
subject to the constraints that
@ each number in a domino crossing the 2j — 1st column does
not exceed n — |,
@ each number in a domino crossing the 2jth column does not
exceedn—j—1,
forj=1,...,n—1. The statistics Uy () and can be defined
similarly.
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Example

The following domino plane partition r is an element of @3(0)

since the 1st column < 2, the 2nd and 3rd columns < 1. The red
numbers stand for saturated parts. Hence we have

Us(n) = Uy(nr) = Us(nr) = 3. Since 7 has 4 dominoes, we have
N(m) = 4.
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The Stanton-White Bijection

Theorem (Stanton-White)

There are bijections
meE .@r(,e) — (0,7) € P X Py,

and
e Qr(]o) > (0,7) € P X Pg.
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The Stanton-White Bijection

Theorem (Stanton-White)

There are bijections
meE .@r(,e) — (0,7) € P X Py,

and
e Qr(]o) > (0,7) € P X Pg.

By this bijection, we have

(m) = Uk(o) + Uk(7),

Uk
N(7) = N(o) + N(7).
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Tc-symmetric plane partitions and domino plane
partitions

Theorem

There is a bijection between domino plane partitions 7 € @ée)

(resp. m € 9,20)) whose row and column lengths are all even and
pairs (o, 7) € Py X Py (resp. (0,7) € Pp X Py_1) such that o and
7 have the same shape.
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Tc-symmetric plane partitions and domino plane
partitions

Theorem

There is a bijection between domino plane partitions 7 € @ée)

(resp. m € 9,20)) whose row and column lengths are all even and
pairs (o, 7) € Py X Py (resp. (0,7) € Pp X Py_1) such that o and
7 have the same shape. Especially, there is a pijection between
tc-symmetric plane partitions and domino plane partitions in @,Ee)
whose row and column lengths are all even.
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(7,t)-enumeration of tc-symmetric plane partitions

Let 20°FC) (resp. 2°F®)) denote the set of 7 € 2 (resp.
S 9§°)) whose row and column lengths are both all even.
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(7,t)-enumeration of tc-symmetric plane partitions

Definition
Let 20°FC) (resp. 2°F®)) denote the set of 7 € 2 (resp.
S 9§°)) whose row and column lengths are both all even. We

consider the generating functions

T(e)(T,t) — Z TN(”)tUk(”),

n

ﬂE@r(]e’RC)

and _
Tt = ) N,

ne@éo’RC)

We will see the generating functions does not depend on k later.
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PR i composed of the following 11 elements;

3
0, 1|1 2|1 2|2 2
b 3 3 1’
11]1]1 2(1(1|1 2(2]1|1 ill
2|2 212|112
1)1 1)1

TERO (1) = 14 (14 2t + 12)7% + (22 + 283 + 1) + 1475,
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A determinant expression

Let

R I
jAs Si otherwise,

and

i - (Bl RN = 2
L Si otherwise.

Then we have

T (n,t) = det(T¢(n.1))

0<,i,jsn-1"

and

T\ (1,t) = det(T?(n.1))

0<,i,j<n-1"
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A refined enumeration of tc-symmetric plane partitions

Definition
We define the polynomials tc,(t) by

ten(t) = T (1, 1).
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A refined enumeration of tc-symmetric plane partitions

Definition

We define the polynomials tc,(t) by

ten(t) = T (1, 1).

tcq(t

tco(t

(
(
tca(t
(
(

tcy(t

)
)
) =
)
)

tes(t

1

1+t

24+2t4+3t2 42342t

11+ 22t + 3412+ 3613 +34t% +22t° + 11t°

170 4+ 510t + 969t2 + 1326t + 1479t* 4 1326 t°
+969t° +510t" +170t8

4
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A refined enumeration of tc-symmetric plane partitions

Definition
We define the polynomials tc,(t) by

tea(t) = TP (1, 1)

tcy(—1) = 2"~ ﬁ (6i —6)!1(3i +1)!(2i - 1)!

(4i = 3)1(4i)!(3i - 3)!
n-1 (6 )I( 2)'( )
@ =1 @ @-nE-D

v
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Column-strict domino plane partitions of even rows

Definition

Let 9( ) (resp. _@ )) denote the set of 7 € 9( (resp.
me .@ ) whose row lengths are all even.
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Column-strict domino plane partitions of even rows

Definition
Let 9( ) (resp. _@ )) denote the set of 7 € 9( (resp.
me .@ ) whose row lengths are all even.

Let n be a positive integer. We can construct an explicit bijection of
2'*®) onto a subset of TSSCPPs which is defined by Mills,
Robbins and Rumsey and conjectured to have the same cardinality
with VSASMs. Further we have Uj(72n51(c)) = Uz(c).
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Example

@fe’R) = {0} is the set of column-strict domino plane partitions with
all columns < 0.
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Example

Example

@ée’R) is composed of the following 3 elements:

0 ], T

This is the set of column-strict domino plane partitions with the first
and second columns < 1, other columns < 0 and each row of even
length.
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Example

Example

Qée’R) is the set of column-strict domino plane partitions with the
1st and 2nd columns < 2, the 3rd and 4th columns < 1, other
columns < 0 and each row of even length (26 elements):

2
1
1[1
[ 1 |
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Example

olalilal (2]2] [2[2] [2]2]1]1

@ie’R) is the set of column-strict domino plane partitions with the
1st and 2nd columns < 3, the 3rd and 4th columns < 2, the 5rd
and 6th columns < 1, other columns < 0 and each row of even
length (646 elements).
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(7,t)-enumeration

We consider the generating functions

VO = 3 M),

ne.@,ge’R)

and —
VOnt)y= ) N,

ne@,(,O’R)
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(7,t)-enumeration

We consider the generating functions

VO = 3 M),

ne.@,ge’R)

and —
VOnt)y= ) N,

ne@,(,O’R)

VI (1t) = 14+ (1 + )7+ (1 + 3t + 22)7% + (2t + 32 + 13)73
+ (3% + 3t + t)7* + (23 + t4)1° + 14O
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A determinant expression

Let
T () (AN ) =
+ 2 (k) + (S + )
Vi) = iti.j > 0,
6"’
otherwise,
and
B () £ (D) ()
32t + ) () + ()
Vi (nt) = ifij—1>0,
5"'
otherwise.
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A determinant expression

Then we have

V¥ (n.t) = det(VE(r. 1))

0<,i,j<n-1"

and

V(1) = det (Vp(r.1)),

<jij<n-1°
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A determinant expression

Then we have

V¥ (n.t) = det(VE(r. 1))

0<,i,jsn-1’
and
VO (n,t) = det (VP (x. 1))

0<,i,jsn-1"

Ve 1 (61 +4)1(2i + 1)!
(.1)= 2nn (4i + 2)!(4i + 3)V
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A determinant expression

Then we have

V¥ (n.t) = det(VE(r. 1))

0<,i,jsn-1’
and
Vi(r.t) = det(VO(r.1)),

<ij<n-1°

Ve 1 (61 +4)1(2i + 1)!
(.1)= 2nn (4i + 2)!(4i + 3)V

VrSE)(l’t) Aglns+1( )

v
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Observations

" (3 1n-l )(3i + 2)!(2i)!
Vp '(1,-1) = (Z) 1)! (4i + 21)!(3i)!”

1 (6 — 5)_(2. 2)!
H

(4i — 4)!(4i - 3)V

:!

vi®(1,2) = 271
i=1

n-1 . q . . X
(0) 1 (61 +4)!(3i +5)!(2i +1)!(2i 4 3)!i!
WSS n 5 (41 +3)1(4i 4 6)!(3i + 2)!1(2i)!(i + 2)!

(0) o (61 -2)(2i - 1)
Vn+1(1,2)—2 11_[ (4i_3)!(4i)[ .

i=1
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T = —1 Conjecture

We would have
vs )2 2 .
t fn=2m-1,
Vrge)(—l,t) = {(AZm—lz) tem(t) e i |
(TCm)” (L -t +t5) A0 (1)* ifn=2m,
and
VO (_1,t) = AYS  TCm_1 AYS | (t)tem(t) ifn=2m-1,
T T A TCrAYS (D ten(t)  itn=2m,

Masao Ishikawa Enumeration problems of plane partitions



Column-strict domino plane partitions of even columns

Definition

Let 2% (resp. 2%°°)) denote the set of 7 € 2 (resp.
7 € 2% whose column lengths are all even
g .
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Column-strict domino plane partitions of even columns

Definition
Let 2% (resp. 2%°°)) denote the set of 7 € 2 (resp.
7 € 2% whose column lengths are all even

g .

Let n be a positive integer. Can we construct an explicit bijection of
@r(,e’R) onto a subset of TSSCPPs which is defined by Mills,
Robbins and Rumsey and conjectured to have the same cardinality

with HTSASMs?
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RCSDPPs with all columns of even length

Example

gie,c) _ {(D}

9% = {0, }

.@ée’c) has the following 3 elements:

@1 1 1
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RCSDPPs with all columns of even length

.@?(’O’C) has the following 10 elements:

0, 1|1] [2]1

I s I

@ée’c) has 25 elements, @ﬁe’c) has 140 elements, and @ﬁe’c) has

588 elements.
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(7,t)-enumeration

Definition

Let @(e ) (resp. 2\°)) denote the set of 7 € 2 (resp.
mE _@ ) whose column lengths are all even. We consider the
generating functions

Hr(]e)(T,t) — Z 7—'\'(77)'[01((”)7
ne.@,ge’c)

and _
H,(1°)(T,t) _ Z AN Yk ()
ne@,(,o’c)
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Example

@éo’c) consists of the following 10 elements:

0, 1)1 2|1

Thus we have

HO (7,8) = 14 (1 + ) + (2t + t2)2% + (2t% + £3)7 + 3%,
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A determinant expression

Let
Z0 Zio {(L_—ll) + t(kl__il)} {(jﬁjl) + t(|J,J_,ll)} =]
HS(7,t) = ifi,j >0,
T @@ i > 0.andlj =0,
0, ifi =0,
and
S0 2o {() + t(E2IHED) + (52} -
HO(T t) = ifi,j—1>0,
SR (R CTE ifi >0andj=0,1,
Gij ifi = 0.
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A determinant expression

Then we have

HI® (r,t) = det (HE(n.1))

0<,i,j<n-1"

and

H{"(z.t) = det (HE(n.t)),

<ij<n-1°
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Theorem and Conjecture

n 11 (3 4 2)1i1)2
HE(1,1) = 3—]_[ )
24N -0 2|+1)|

12 (30)1(3i + 2)! (i1)?
o (@)@ +1)1P

H®(1,1)
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Theorem and Conjecture

n— 1
(e) 3N 3|+2)|||
(1.1)= Fl_([ {2 +1)1°

12 (30)1(3i + 2)! (i1)?
o (@)@ +1)1P

HE (L) = ASTS (1),
HEO (L,t) = ARTS(1),
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T = —1 Conjecture

We would have

HO(-1,t) = (1 -t +2) AYS (1),

HO(-1,0) = t(1-t) v (L,t)  forn>3.
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More General Definition

Let ,, » denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that
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More General Definition

Let ,, » denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) c is column-strict;
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More General Definition

Let ,, » denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to m +n —j.
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More General Definition

Let ,, » denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to m 4+ n —j.
(C3) c has at most n columns.
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More General Definition

Let ,, » denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to m 4+ n —j.
(C3) c has at most n columns.

P 4 consists of the followng 1 element:

0
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More General Definition

Let ,, » denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to m 4+ n —j.
(C3) c has at most n columns.

P 3 consists of the followng 8 elements:

0
lll
1

Masao Ishikawa Enumeration problems of plane partitions




More General Definition

P, 5 consists of the followng 25 elements:

032“
1| [1
2[2| |2]2 3] [3]1] [3]2]

1 11 1| [1] 1]
3[2] [3] [3]1] [3]2] [3]2] 3] [3]a] [3]2] [3]2
1(1] [2] (2] 12| 2(1] [2] [2] 12| 2[1
1] [1] 1] 11

P31 = P40 consists of 42 elements.
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Generating functions

Using Binet-Caucy formula, we obatin the following theorem:

Theorem

Let 2,y denote the set of pairs (cy,C2) such that ¢ € Py,
C2 € Yy, and ¢y and ¢ have the same shape. Then we have

Ishea|+ishe| _ X\ 1+ Y\ 2k-ig
Z T det{zk:(k—i)(k—j T

(c1.€2)€E2nxy 0<.i,j<n—1
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Desnanot—Jacobi formula

Theorem (Desnanot-Jacobi formula)

Given a matrix M, let

I\/Iji = the submatrix of M obtained by removing row i and column j
M;:Ik = the submatrix of M obtained by removing row i, row Kk,
column j, and column .

Then the Desnanot—Jacobi formula is

1n _ 1 !
detM - detMy = detMy - detM; — detMj - det M.
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Hirota-Miwa type equation

Definition
Let

i+ X j + i
s =g S ]
k

0<,i,j<n-1
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Hirota-Miwa type equation
Let
_ I+ X J+Y ) okeijx—y
A KA
Theorem (Hirota-Miwa type equation)

Then f, x y satisfies the following equation:

0<,i,j<n-1

fn,x,yfn—z,x+1,y+1 - fn—l,x,yfn—l,x+l,y+1 - fn—l,erl,yfn,x,erla

2 : X Y ) 2k—x-
0.xy ’ 1xy - (k _ X)(k _ y)T
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Hirota-Miwa type equation

Let

Rt A (e M ey

x( H__y )Tk_j_y
k-j-y

0<,i,j<n-1
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Hirota-Miwa type equation

Let

i + X
k—i—-x

Onoxy = det{zk: {(

“l

ity
_J_

I

e

i+ X
k —i—x-—

1)Tk_i_x_1}

0<,i,j<n-1

Theorem (Hirota-Miwa type equation)

Then gn xy Satisfies the following equation:

Onxy9n-2x+1y+1 = On-1.x,yIn-1.x+1,y+1 — On-1.x+1y9nx,y+1,

X

go,x,y =1, gl,x,y - Z {(k
k

k—x
X)T + (k

X
- X -

o,

)
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Hirota-Miwa type equation

Definition

k ; .
hnxy = det ZZ PEX N THY ) kepieicjoxy
o K k—i—-x\l-j-y

0<,i,j<n-1
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Hirota-Miwa type equation

Let
(i )ity
— k4l—i—j—x—y
S Nl oA S
Theorem (Hirota-Miwa type equation)

Then hy x y satisfies the following equation:

0<,i,j<n-1

hn,x,yhn—z,x+1,y+1 — hn—l,x,yhn—l,x+1,y+1 - hn—l,x-i—l,yhn,x,y-i-l,

K
X .
hoxy =1, hixy = Z Z (k 8 x)(l i/y)TkJrl x-y.
k 1=0
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Thank you!
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