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Partitions

A partition is any (finite or infinite) sequence

)\:()\1,)\2,...,)\7.,...)

of non-negative integers in weakly decreasing order:

A S>A > >N > ...

and containing only finitely many non-zero terms. The
non-zero terms \; are called the parts of A. The number of
parts is the length of A, denoted by £(\); and the sum of
the parts is the weight of X, denoted by |\|.




Let P denote the set of positive integers. Consider the
elements of P?, regarded as the lattice points of R? in the
positive quadrant. The (Ferrers) diagram of a partition \
may be formally defined as the set of lattice points such that

1 < g < A\;. Itis convenient to replace the points by
squares. The conjuate of a partition \ is the partition \’

whose diagram is the transpose of the diagram of .




Example

A = (5441) is a partition with length 4 and weight 14.

Its conjugate is A = (43331) and its Ferrers diagram is as follow:




The Schur functions

For X = (x1,...,x;) and a partition X\ such that
L(A) < mn,

Aj+n—j
det(x;" " ) i<ij<n

S)\(X) — :
det(z, ) 1<i j<n




Tableaux

Given a partition A\, A tableaux T of shape A is a filling of the diagram with numbers
whereas the numbers must strictly increase down each column and weakly from left to
right along each row.

Schur functions

The Schur function sy (x) is

sa(X) =) X7,

1sin T _#2sin T
where the sum runs over all tableaux of shape \. Here X1 = ;p‘i >N wg st ..




Example

A Tableau T of shape (5441).

4,.3.,.2,,.2

The weight of T is xSx5x3xlx?.




Example

When A = (2,2) and X = (z1, €2, T3, T4),

2 2 2 2 2 2 2 2 2 2 2 2
sx(X) = zix; + i3 + xix] + 523 + 252 + 3T, + 212234

2 2 2 2 2 2
+ T]T2T3 + T]T2XT4 + T]T3XT4 + TLT1X3 + T5L1T4 + TLL3T4

2 2 2 2 2 2
+ x3T1T2 + TZL1X4 + TZ3X2XT4 + THX1T2 + THX1T3 + T, T2T3




Power Sum Symmetric Functions

Let » denote a positive integer.

pr(X)=2x] +a5,+ -+ x,

Is called the rth power sum symmetric functions.

pi(X)=z1+x2+ -+,
p2(X) =al+xi+ - +
pa(X) = a? +al+ - 4a
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The ring of symmetric functions

The ring A of symmetric functions in countably many variables x;, 3, ... is defined
by the inverse limit. (See the detains in Macdonald’s book I, 2.)

Here we use the convention that f(x) stands for a symmetric function in countably
many variables * = (x1,x2,...), whereas f(X) stands for a symmetric function in
finitely many variables X = (x1,...,2,).
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Stanley’s weight

Given a partition )\, define w(\) by

w(X) = a2=i>1A2i—1/21p> >0 [A2i—1/2] 50551 [A2: /2] D051 [A2i/2] ’

where a, b, ¢ and d are indeterminates, and [x ] (resp. |« |) stands for the smallest
(resp. largest) integer greater (resp. less) than or equal to x for a given real number
x. For example, if A = (5,4,4,1) then w(A\) is the product of the entries in the
following diagram for \, which is equal to a®b*c3d?.




Stanley’s open problem

In FPSAC’'03 R.P. Stanley gave the following problem in the open problem session:

Theorem

Let

z = Z w(A)Sx,

A
where the sum runs over all partitions \.

Then we have

1 1

log z — E —a™(b"™ — " — g —a™b"c"d"p?

g on ( )pZn An 2579
n>1 n>1

c Q[[p19p39p59 ° e ]]
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A simple version

Let

Yy = Z sx(x).

A
X,/ even

Here the sum runs over all partitions X\ such that A and )\’
are even partitions (i.e. with all parts even).

Then we have

1
logy — Z —pgn = Q[[p17p39p59 c oo ]]

4
n>1 n

14



Strategy of the proof

1. Stepl. Express w(A) and z by a Pfaffian.

Use our minor summation formula of Pfaffians.

2. Step?. Express z by a determinant.

A Homogenious version of Okada’s gereralization of Schur’s Pfaffian.

3. Step3. Show that

1 1

log z — —a"(b™ — c" — —am™b"cd™p?

g Z on ( )p2n Z An pzn
n>1 n>1

& Q[[p19p39 D5y .. ]]

Use Stembridge’s criterion.

15



The goal of the proof

Put

1 1
. . npn __ .n . nin_ n gn, 2
w = log z g _2na (b c")P2n E _4na b"c"d"p3,,
n>1 n>1

and use the following Stembridge’s criterion to w.

Proposition (Stembridge)

Let f(x1,x2,...) be a symmetric function with infinite variables. Then

f € Q[px : all parts X\; > 0 are odd]

if and only if

f(t, —t,iEl,CUz, .. .) == f(iEl, Lo ).
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Pfaffians

Assume we are given a 211 by 2n skew-symmetric matrix
A = (a;5)1<i,j<2n

(i.e. aj; = —a;;), whose entries a;; are in a commutative ring.

The Pfaffian of A is, by definition,

Pf(A) = - Z €(01,02y. 4. 902n—1,021n)010, +++ Qoo 100, -

where the summation is over all partitions {{o1,02}<,...,{02n_1,02,}<} Of
[2n] into 2-elements blocks, and where €(oy,02,...,02,_1,02,) denotes the
sign of the permutation

17



Example

When n = 2,

( 0 a2

—Aa9i 0

—a31 —Aas2

K—a41 — Q42

— Q12034 — Q13024 + A14023.

18



The aim of Stepl

Can we express z by a Pfaffian?
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Theorem A

Let n» be a positive integer. Let

Zn — Z w(A)sa(X2n)

LN <2n

be the sum restricted to 2n variables. Then we have
1

Zn 3 (abcd)_(g)Pf (Pij)i<ici<an

H1§i<j§2n(33i — &Ly

where p;; is defined by

z; +ax? 1—a(b+ c)x; — abex?

x; + a:cgz. 1—a(b+c)x; — abcm;’

(1 — abx?)(1 — abw?)(l — abcdw?w? .




The key to the proof of this theorem

Can we express the weight w(\) by a Pfaffian?

21
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Notation

Let m, n and r be integers such that » < m,n. Let A be an m by n matrix. For
any index sets

I ={i1,...,0.}< C [m],
J = {jla v o 7jr}< C [’I’L],
let AL(A) denote the submatrix obtained by selecting the rows indexed by I and the

columns indexed by J. If r = m and I = [m], we simply write A ;(A) for
AL (A). Similarly, if - = n and J = [n], we write AT(A) for Al (A). For any

finite set S and a non-negative integer r, let (f ) denote the set of all r-element
subsets of S.




Notation

Let » be a non-negative integer.

Let A = (A1,...,A2,) be a partition such that £()\) < 2n.

Put
l:(ll,...,lzn):()\1—|—2’n—1,...,A2n):)\—|-52n.

where d2,, = (2n — 1,2n — 2,...,0).

Let
I(A) — {ll, oo o0 lZn}-

We regard this set as a set of row/column indices.

23



Example

If n =3 and A\ = (5,4,4,1,0,0), then

|l =X+ s = (10,8,7,3,1,0),

I\ = {0,1,3,7,8,10}.

24



Theorem

Define a skew-symmetric array A = (a;5)0<i,5 by
;= ol G—1)/21pl(G—-1)/2] L[i/2] gli/2]
for 2 < 3.

Then we have
I(A n
Pf | A;0)| = (abed) Bw(n).

Lemma

Let x; and y; be indeterminates, and let 7 is a non-negative integer.

Then

Pf[wiyj]1§i<j§2n — H L2;—1 H Y2i.

25



Example

A= (aij)ogi,ji

a’b
a’bc
a’bed
a’bc?d
0

—a?b?c?d?

a?b?

a’b?
a’b?cd
a’b?c3d
a’b?c?d?

0

&

26



Example

If n = 3. and A = (5,4,4,1,0,0), then

I(N).
AI(A).

I\) = {0,1,3,7,8,10}.

ab
abc
0
—a3b3c?d
—a?b3c?d

—a’b*c?d

a3b3

a3b3
a3b3c?d
0
—a?b3ctd3

—a’b%ctd3

&

a*b3

atb3

atb3c3d

atb3ctds
0

—a’b%ctd?

C

Pf (Afgig) — aBb78d® = (abed)3w(N)

27



Schur functions

LetX:(azl,...

Then we have

_ (i1 :
y, Tan) and let T = (x; " )1<i<2n,j>1, i-€

2 3
1 x; T3 Ty

2 3
1 x5 x5 x5

ian

)lgi,jSZn

det(a:'g_l)lg,,;,jggn

28



Example

If n = 3. and A = (5,4,4,1,0,0), then

I\ = {0,1,3,7,8,10},

SA(X) =

29



Theorem (Minor summation formula)

Let n» and IN be non-negative integers such that 2n < IN. Let
T = (ti5)1<i<2n,1<j<n~ be a 2n by N rectangular matrix, and let
A = (a;5)1<i,j<n be a skew-symmetric matrix of size IN. Then

> Pf(A(A))det (A[(T)) =Pf (TA'T).
re(LY]

If we put Q@ = (Qij)1<; j<2, = TA'T, then its entries are given by

Qi = Z ar; det (A;’gl (T)) .

1<k<I<N

(1 < 4,5 < 2n). Here we write A% (T") for

i ti tu
AEkﬁ (T) = y

tjk, tjl




The idea of the proof of Theorem A

e The Schur function s)(X5,) is a quotient of
determinants. (The denominator is the Vandermonde
determinant.)

e The weight w(\) is a Pfaffian.

e Take the product of the Pfaffian and the determinant,
and take the sum over all columns.
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The aim of Step2

Can we express the Pfaffian by a determinant?

32
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Generalized Vandermonde determinants

Let X = (x1,+++ ,x,) and A = (a1, -+ ,a,) be two vectors of variables of
length . For nonnegative integers p and q with p + g = n, we define a generalized

Vandermonde matrix VP9(X; A) to be the n X n matrix with ¢th row
—1 —2 —1 _q—2
(aiwi aaﬂiw? 7"'7aiawg 75’32 7"'71)'

We introduce another generalized Vandermonde matrix W™ (X; A) asthe n X n
matrix with zth row

n—1 n—2 n—1
1+aix, ,z;i+ax, - ,x;, ~ +a;).

and the determinant

If p = 0, then VO (X: A :( "f‘—j)
P o (X5 4) = (2 1<i,j<n

det VO™ (X35 A) = [[1<;cj<n(®:i — ;) is the ordinary Vandermonde
determinant.




Example

Whenp =4and g = 3, V43(X;A) is

3
alwl

azTs

asrs

CL4£BZ

a5$§

aery

arxs

2
CLlCUl

a2x3

asr3

CL4CIZZ

a5:13§

aer:

arxs

airi
aA2X 2
asirrs
A4T4
a5 s
aeLe

arI7

34



A homogeneous version

Let X = (1, yxn), Y = (Y15°°* yYn), A = (ay,+-+ ,ay,) and

B = (by,--- ,b,) be four vectors of variables of length . For nonnegative integers
p and g with p + g = n, Define a generalized Vandermonde matrix

UP1(X,Y; A, B) by the n X n matrix with zth row

—1 P— qg—1

2 p—1 qg—1 p—2
(aixy “ya:T; “Yiyeor a5y, S bixy T, by Tyi, e biyp 7).

(4 1

If we substitute B =Y = 1, we have
UP9(X,1; A,1) = VPI(X; A),

where1 = (1,1,...,1).

35



Example

When p = q = 1,

UM (X,Y;A,B) =

U?*?(X,Y;A,B) =

36



When p = q = 3, U%3(X,Y; A, B) is

2
a1y

az2x3

asrs

asxs

a5w§

aers

ai1Ti1Yi
A2T2Y2
azr3ys
Aq4T4Y4
as5Ts5Ys

aeTeYe

2
ai1yq

2
a2y,

2
asys

2
aay,
2
asyYs

2
ae6Yeg

b133%
b2$§
bgmg
b4$i
b5213§

2
b6$6

37



The aim of Step?2 is to prove the following theorem:

Theorem B

Let X = (x1,...,x2,) be a 2n-tuple of variables. Then

2n(X2n) = (-1)(3)

y det U™ (X?%,1 + abcdX*; X +aX?,1—a(b+ c)X? — abcX?3)
9

2
[[:Z,(1 — abz?) H1§i<j§2n(w’i —x;)(1 — abcdw?w?

where X2 = (z2,...,23 ), 1+ abedX* = (1 + abedzx?,...,1+ abedzy,),
X 4+aX?=(r1+ax?,...,z2, +ax3 )and1l —a(b+ c)X? — abcX?® =
(1 —a(b+ c)xf — abczxs,...,1 —a(b+ c)x3 — abcxs ).

38
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Cauchy’s determinant

1 AL (X)ALY)

det {

T; + yj} 1<i,j<n ngz’,jgn(wi =+ yj)

Schur’s Pfaffian

%} 1<4,j<2n H1§i<j§2n(37z’

Here A, (X) = H1§i<jgn(5'3i — Zj).




Generalizations of Cauchy’s determinant and Schur’s Pfaffian

First, Soichi Okada presented the following identities at the workshop on
“Aspects of Combinatorial Representation Theory” (Octorber, 2003) and “2nd

East Asian Conference on Algebra and Combinatorics” (November, 2003). At

the point they are conjectures.

40
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Theorem

(a) Let n be a positive integer and let p and g be nonnegative integers. For six vectors
of variables

X: (w]_,"' ,wn)y Y: (y17... 7yn)7 A: (a’]-?... 7a’n)7
B = (bla"' 7bn)7 Z = (Zla"' azp+q)a C = (Cle'“ acp+q)a

we have

det (det Vp+1’q+1(2137;, Yjs Z; a;, bj, C)>
1<i,i<n

Yj — Lq

(_1)'n,(n—1)/2
= — det VP4(Z;C)™ !
Hi,j:l(yj — ;)

X det VTPt X,Y, Z; A, B,C).




42

(b) Let n be a positive integer and let p, g, , s be nonnegative integers. For seven
vectors of variables

X = (21, y%2n), A= (a1, ,02n), B = (b1, ,b2n),

Z = (Zla"' 9ZP-I-CI)9 C = (Cla"' acp+q)9
W = (’wl,--- ,wr+s), D = (dla"' 7d7°-|—8)9

we have

P (det Vp+1’q+1($z', ZLj, Z; a;,a;, C) det Vr+1’8+1(113i, Ljoy W; bz', bj,

Lj — Ly

_ 1
H1§z’<j§2n(wj — ;)

X det VTP 19X, Z; A, C)det V*T™"15(X, W; B, D).

det VP9(Z;C)" 'det V™*(W; D)™ 1




(c) Let n be a positive integer and let p be a nonnegative integer. For six vectors of
variables

X = (mla"' 7wn)a Y = (y19'°° ayn)a A= (a’la"' ,an),
B = (b19°°° 7bn)9 Z = (Zla"' 7ZP)7 C = (019"' ’CP)’

we have

det det Wp-l-Z(mi, yj, Z; a;, bj, C)
(y; — =) (1 — z:y;) I<ii<n
1
= — det WP(Z;C)" !
1l j=1(y; — 2:) (1 — ziy;)

x det W?*"tP(X,Y, Z; A, B,C).

43
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(d) Let n be a positive integer and let p and g be nonnegative integers. For seven
vectors of variables

X = (T1,"* yT2n), A= (a1, ,a2y,), B = (b1, ,b2n),
Z = (z1,"",2p), C=(c1,---,¢p),
W = (w1, - ,wq), D= (d1,-- ,dg),

we have

p det Wp+2(213,,;, Lj, Z; Ai,Aj, C) det Wq+2(il§i, Ljo, W; bi, bj, D)
(z; —x:) (1 — wizy) <

1
H1§i<j§2n(wj — ;) (1 — z;x;)

x det W?"tP (X, Z; A,C) det W?"T4(X,W; B, D).

det WP(Z;C)" ' det W9(W; D)™~ 1




The background of Okada’s conjecture

The background of these formulae is in

S. Okada, “Enumeration of symmetry classes of alternating sign matrices and
characters of classical groups”, arXiv:math.C0/0308234.

His work is based on

G. Kuperberg, “Symmetry classes of alternating-sign matrices under one
roof”, Ann. of Math. (2) 156 (2002), 835-866.
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The idea of the proof

The proof is given in

M. Ishikawa, S. Okada, H. Tagawa and J. Zeng Generalizations of Cauchy's
determinant and Schur’s Pfaffian”, arXiv:math.C0/0411280.

We not only proved his conjecture but also gathered more generalizations of Cauchy’s
determinant and Schur’s Pfaffian and their applications.

Theorem (The Desnanot—Jacobi formulae)

(1) If A is a square matrix, then we have
det A] - det AZ — det A} - det A = det A - det A}:g

(2) If A is a skew-symmetric matrix, then we have

PfAyS - PFAY —PfATS-PEATL+PFAY-PFADS = PFA-PFATZSS.
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Theorem (A homogeneous version, a special case)

For six vectors of variables

X = (21, ,%2m), ¥ = (Y1, 1 Y2n), A= (a1, ,a24),
B = (b1,-++ ,b2n), C = (c1,*+ ,¢2n), D =(dy,-+- ,d2n),

we have

Pf b3 | di||  detU™(X,Y;A,B)detU™(X,Y;C,D)

1<i<j<2n

H Li Y

1<i<j<2n |Ti Yj
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Corollary

For three vectors of variables
Xon = (15 3%2n)y Aop = (a15...,02,), Bap = (b1,...,ba,)

we have

Pf [Clu,,bg — agbz] _ (_1)(2)1:(121) det Un(in, 1 —I- thzn; Agn, an)

1 — tazia:j

9
1<i<j<2n

1gz'<;j§2n(1 — tz;x;)

where X2 = (z?,...,23 )and 1 + tXo, = (1 +2%,...,1 + 22 ).




The aim of Step3

Prove Stanley’s open problem by evaluating the

determinant obtained in Theorem B (Use

Stembridge’s criterion).

49
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Proposition (Stembridge)

Let f(x1, x2,...) be a symmetric function with infinite
variables. Then

f c @[p19p39p59 ° ]
if and only if

f(t, —t, L1egL2geos ) — f(ill'l, L2 oo ).

See Stanley’s book “Enumerative Combinatorics II”, p.p.
450, Exercise 7.7, or Stembridge’s paper “Enriched
P-partitions”, Trans. Amer. Math. Soc. 349 (1997),
763—788.




Sketch of the proof

Put

Our goal is to show

'wn+1(t9 —t, XZn) — w'n(X2n)

51



Method

Let X = X5,, = (®1,...,T2,) be a 2n-tuple of variables. Put
frn(X2n) = U™(X?3,1 4 abedX*; X +aX?,1 —a(b+ c)X? — abcX?).
Then f,,(X2,,) satisfies

Frr1(t,—t, Xop) = (—=1)"2t X (1 — abt?)(1 — act?)

2n 2n
X I—I(t2 — x2) H(l — abedt®*z?) - fn(Xan).
=1 =1

The end of the proof

52



Corollaries and conjectures
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Let Sx(x;t) = det(gx,—i+; (x;t)) denote the big Schur function corresponding to
the partition .

Corollary

Let

Z(z;t) = ) w(X)Sa(zst),

by
Here the sum runs over all partitions .

Then we have

1
log Z(x;t) — Z —a™(b™ — ™) (1 — t*™)pan

1 2n

1
. Z _anbncndn(l . t2n)2p§n c @[[pl,p3,p5, .o ]]
n>1 an

54



Definition

Define T (x; g, t) by

det (Q(Ai—’i-l-j) (5 q, t))lgi,jSE(A) ’

where Q) (x; g, t) stands for the Macdonald polynomial corresponding to the partition
A, and Q) (x; q, t) is the one corresponding to the one row partition () (See
Macdonald’s book, IV, sec.4).
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Corollary

Let

Z(z3q,t) = ) w(N)Ta(w;q,t),

Here the sum runs over all partitions .

Then we have

2

al C e o o [ ]
nE>1 An (1 an)2P2n P1,P35 P55
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The Hall-Littlewood polynomials

Let X = (x1,...,x,) be variables, and let X\ be a partition such that £(\) < n.

The Hall-Littlewood polynomial with respect to A is, by definition,

1 xr; —tx;
Py(x1y...,xpn3t) = Z w mi‘laji‘bnn - 2.

va(t) wES,, icj Ti T Lj

(1 —t)(1 —t2) ... (1 —t™N)
(1 —t)mi(»)

va(t) =[]

i>0

where m; () is the number of A; equal to 2.
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The Hall-Littlewood polynomials

Q)\(w; t) = b)\ (t)P)\(QB; t)

b)\(t) = H Pmi(N) (t)

i>1
Here m; () denotes the number of times ¢ occurs as a part of A, and
pr(t) = (1 —t)(1 —1%)--- (1 —t").

It is well-known that

Qx(x; —1) € Q[p1,pP3, P55 -]
See Macdonald’s book, Ill, 8. Schur’s Q-functions.
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Conjecture

Let
w(z;t) = Y w(A)Pa(w;t),
A
where Py (x;t) denote the Hall-Littlewood function corresponding to the partition A,
and the sum runs over all partitions A. Then

1
logw(x; —1) + Z %ancnpzn

n>1 odd

n7n N

1 n mn n n n . n
+ Y S-azcz(aze? —2b2d?)pa, € Qllp1, ps, ps, - - 1l

n>2 even

would hold.
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The Macdonald polynomials

Py (x; q,t): Macdonald's P-function corresponding to the partition A
Qx(x; q,t): Macdonald’'s Q-function corresponding to the partition A
See Macdonald’s book V.
Relation:

Qx(x;q,t) = ba(q,t) Pa(z;q,1),

where
1 — qa(s)tl(s)—l—l

1 — qa(s)-l—ltl(s) )

b)\(qv t) — H

SEA

Is it known that
Q}\(CB; q., —1) - @(q)[p17p37p57 oo ]?
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Conjecture

Let

w(x;q,t) = Z W(AN)Px(x3q,t).
A

where Py (x; q,t) denote the Macdonald polynomial corresponding to the partition A,

and the sum runs over all partitions A. Then

1
logw(z;q, —1) + ) _ S-a"c"Pan

n>1 odd

]_ n n n n n n
+ Y  —a%c?(a*c? —2b>d?)pa, € Q(q)[[p1, D3, P55 - - - ]
2n

n>2 even

would hold.
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Theorem (Boulet)

= (1 4+ ajbj_lcj_ldj_l)(l + ajbjcjdj_l)

2 wm=1]] 1 albici—1di—1

p distict partitions 71=1

Here the sum runs over all distinct partitions .

62



References

[1] C.E. Boulet, “A four-parameter partition identity”, Formal Power Series
and Algebraic Combinatorics (Vancouver 2004), extended abstract.

[2] M. Ishikawa, H. Kawamuko and S. Okada, “A Pfaffian-Hafnian analogue
of Borchardt's identity”, preprint.

[3] M. Ishikawa, “Minor summation formula and a proof of Stanley’'s open
problem”, arXiv:math.C0/0408204.

[4] M. Ishikawa and M. Wakayama, “Minor summation formula of Pfaffians”,
Linear and Multilinear Alg. 39 (1995), 285-305.

[6] M. Ishikawa and M. Wakayama, “Applications of minor summation
formula 1ll, Pliicker relations, lattice paths and Pfaffian identities”,
arXiv:math.C0/0312358.

[6] D. Knuth, “Overlapping pfaffians”, Electronic J. of Combi. 3, 151-163.

[7] A. Lascoux and P. Pragacs, “Bezoutiants, Euclidean division, and orthog-
onal polynomials”, preprint.



[8] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd Edition,
Oxford University Press, (1995).

[9] S. Okada, “Enumeration of symmetry classes of alternating sign matrices
and characters of classical groups”, preprint.

[10] S. Okada, “Determinant and Pfaffian formulae of Cauchy type and their
applications”, EACAC2 (The Second East Asian Conference on Algebra
and Combinatorics).

[11] R. P. Stanley, Enumerative combinatorics, Volume Il, Cambridge University
Press, (1999).

[12] R. P. Stanley, “Open problem”, International Conference on Formal Power
Series and Algebraic Combinatorics (Vadstena 2003), June 23 - 27, 2003,
available from http://www-math.mit.edu/ rstan/trans.html.

[13] J. Stembridge, “Nonintersecting paths, Pfaffians and plane partitions”,
Adv. Math. 83 (1990), 96-131.

[14] J. Stembridge, “Enriched P-partitions”, Trans. Amer. Math. Soc. 349
(1997), 763-788.



[15] T. Sundquist “Two variable Pfaffian identities and symmetric functions” J.
Alg. Combin. 5 (1996), 135-148.



