The refinements of TSSCPP enumerateion

Masao Ishikawa*

^{*} Tottori University, ishikawa@fed.tottori-u.ac.jp

Contents of this talk

- 1. Certain numbers
- 2. Preliminaries
 - (a) Monotone triangles
 - (b) Plane partitions
 - (c) Matrices
- 3. The conjectures by Mills, Robbins and Rumsey and progresses

1

- 4. Plane partitions and symmetries
- 5. Our methods
- 6. Generating functions
- 7. Problems

References

- Mills-Robbins-Rumsey, "Self-complementary totally symmetric plane partitions" J. Combin. Theory Ser. A, 42 (1986), 277 292.
- Masao Ishikawa, "On refined enumerations of totally symmetric self-complementary plane partitions", in preparation.

Certain Numbers

- 1. A_n : ASM numbers
- 2. A_n^r , $A_n(t)$: the refined ASM numbers.
- 3. $A_n^{k,l} A_n(t, u)$: the doubly refined ASM numbers.
- 4. A_n^{HTS} , $A_n^{\text{HTS}}(t)$: the number of half-turn symmetric ASMs and its refinments.
- 5. A_n^{VS} , $A_n^{VS}(t)$: the number of ASMs invariant under the vertical flip and its refinments.

$\underline{A_n}$

Let A_n denote the number defined by

$$m{A}_n = \prod_{i=0}^{n-1} rac{(3i+1)!}{(n+i)!}.$$

This number is famous for the number of alternating sign matrices.

$\underline{A_n^r}$

Let n be a positive number and let $1 \leq r \leq n$. Set A_n^r to be the number

$$A_n^r = rac{{\binom{n+r-2}{n-1}}{\binom{2n-r-1}{n-1}}}{{\binom{2n-2}{n-1}}}A_{n-1} = rac{{\binom{n+r-2}{n-1}}{\binom{2n-1-r}{n-1}}}{{\binom{3n-2}{n-1}}}A_n.$$

Then the number A_n^r satisfies the recurrence $A_n^1 = A_{n-1}$ and

$$rac{A_n^{r+1}}{A_n^r} = rac{(n-r)(n+r-1)}{k(2n-r-1)}.$$

We also define the polynomial $A_n(t) = \sum_{r=1}^n A_n^r t^{r-1}$. For instance, the first few terms are $A_1(t) = 1$, $A_2(t) = 1 + t$, $A_3(t) = 2 + 3t + 2t^2$, $A_4(t) = 7 + 14t + 14t^2 + 7t^3$.

$A_n^{k,l}$

Let n be a positive integer and let $A_n^{k,l}$, $1 \le k, l \le n$, denote the number which satisfies the initial condition

6

$$A_n^{k,1} = A_n^{1,k} = egin{cases} 0 & ext{if } k = 1 \ A_{n-1}^{n-k} & ext{if } 2 \leq k \leq n \end{cases}$$

and the recurrence equation

$$A_n^{k+1,l+1} - A_n^{k,l} = \frac{A_{n-1}^k (A_n^{l+1} - A_n^l) + A_{n-1}^l (A_n^{k+1} - A_n^k)}{A_n^1}$$

for $1 \leq k, l \leq n-1$.

Example

This recurrence equation satisfied by $A_n^{k,l}$ has been introduced by Stroganov to describe the double distribution of the positions of the 1's in the top row and the bottom row of an alternating sign matrix.

$$(A_4^{k,l})_{1\leq k,l\leq 4}=egin{pmatrix} 0&2&3&2\ 2&4&5&3\ 3&5&4&2\ 2&3&2&0 \end{pmatrix}$$

$A_n(t,u)$

Let $A_n(t, u)$ denote the polynomial defined by $A_n(t, u) = \sum_{k,l=1}^n A_n^{k,l} t^{k-1} u^{n-l}$. Let $\omega = e^{2i\pi/3}$. Francesco and Zinn-Justin showed that $A_n(t, u)$ can be expressed by the Schur function as 8

$$egin{aligned} A_n(t,u) &= rac{\{\omega^2(\omega+t)(\omega+u)\}^{n-1}}{3^{n(n-1)/2}} \ & imes s_{\delta(n-1,n-1)}^{(2n)}\left(rac{1+\omega t}{\omega+t},rac{1+\omega u}{\omega+u},1,\ldots,1
ight) \end{aligned}$$

where $s_{\lambda}^{(n)}(x_1, \ldots, x_n)$ stands for the Schur function in the n variables x_1, \ldots, x_n , corresponding to the partition λ , and $\delta(n-1, n-1) = (n-1, n-1, n-2, n-2, \ldots, 1, 1)$

 A_n^{HTS}

Let A_n^{HTS} be the number defined by

$$A_{2n}^{ ext{HTS}} = \prod_{i=0}^{n-1} rac{(3i)!(3i+2)!}{\left\{(n+i)!
ight\}^2}$$

and

$$A_{2n+1}^{ ext{HTS}} = rac{n!(3n)!}{\left\{(2n)!
ight\}^2} \cdot A_{2n}^{ ext{HTS}}.$$

The first few terms are 1, 2, 3, 10, 25, 140, 588. This is the number of half-turn symmetric alternating sign matrices.

$\widetilde{A}_n^{ extsf{HTS}}(t)$

We also define the polynomial $\widetilde{A}_n^{\mathsf{HTS}}(t)$ by

$$\begin{split} \frac{\widetilde{A}_{2n}^{\text{HTS}}(t)}{\widetilde{A}_{2n}^{\text{HTS}}} &= \frac{(3n-2)(2n-1)!}{(n-1)!(3n-1)!} \\ & \sum_{r=0}^{n} \frac{\{n(n-1)-nr+r^2\}(n+r-2)!(2n-r-2)!}{r!(n-r)!}t^r \end{split}$$

where $\widetilde{A}_{2n}^{\text{HTS}} = \prod_{i=0}^{n-1} \frac{(3i)!(3i+2)!}{(3i+1)!(n+i)!}$. For instance, the first few terms are $\widetilde{A}_{2}^{\text{HTS}}(t) = 1 + t$, $\widetilde{A}_{4}^{\text{HTS}}(t) = 2 + t + 2t^2$, $\widetilde{A}_{6}^{\text{HTS}}(t) = 5 + 5t + 5t^2 + 5t^3$ and $\widetilde{A}_{8}^{\text{HTS}}(t) = 20 + 30t + 32t^2 + 30t^3 + 20t^4$.

$A_{2n}^{\rm HTS}(t)$

Let

$$A_{2n}^{ extsf{HTS}}(t) = \widetilde{A}_{2n}^{ extsf{HTS}}(t)A_n(t),$$

11

and

$$A_{2n+1}^{ extsf{HTS}}(t) = rac{1}{3} \left\{ A_{n+1}(t) \widetilde{A}_{2n}^{ extsf{HTS}}(t) + A_n(t) \widetilde{A}_{2n+2}^{ extsf{HTS}}(t)
ight\}.$$

The first few terms are $A_2^{\text{HTS}}(t) = 1 + t$, $A_3^{\text{HTS}}(t) = 1 + t + t^2$, $A_4^{\text{HTS}}(t) = 2 + 3t + 3t^2 + 2t^3$, $A_5^{\text{HTS}}(t) = 3 + 6t + 7t^2 + 6t^3 + 3t^4$. Let $A_{n,r}^{\text{HTS}}$ denote the coefficient of t^r in $A_n^{\text{HTS}}(t)$. A^{VS}_{2n+1}

Let A_{2n+1}^{VS} be the number defined by

$$A_{2n+1}^{\text{VS}} = \frac{1}{2^n} \prod_{k=1}^n \frac{(6k-2)!(2k-1)!}{(4k-1)!(4k-2)!}$$

and let $A_{2n+1,r}^{VS}$ be the number given by

$$A_{2n+1,r}^{\text{VS}} = \frac{A_{2n-1}^{\text{VS}}}{(4n-2)!} \sum_{k=1}^{r} (-1)^{r+k} \frac{(2n+k-2)!(4n-k-1)!}{(k-1)!(2n-k)!}$$

This number A_{2n+1}^{VS} is equal to the number of vertically symmetric alternating sign matrices of size 2n + 1. For example, the first few terms of A_{2n+1}^{VS} is 1, 3, 26, 646 and 45885.

$$A_{2n+1}^{
m VS}(t)$$

We also define the polynomial $A_{2n+1}^{VS}(t)$ by

$$A_{2n+1}^{ extsf{VS}}(t) = \sum_{r=1}^{2n} A_{2n+1,r}^{ extsf{VS}} t^{r-1}.$$

For instance, the first few terms are $A_3^{VS}(t) = 1$, $A_5^{VS}(t) = 1 + t + t^2$, $A_7^{VS}(t) = 3 + 6t + 8t^2 + 6t^3 + 3t^4$ and $A_9^{VS}(t) = 26 + 78t + 138t^2 + 162t^3 + 138t^4 + 78t^5 + 26t^6$.

Monotone triangles

A monotone triangle of size n is, by definition, a triangular array of positive integers

 $m_{n,n}$ $m_{n-1,n-1}$ $m_{n-1,n}$ \cdots \vdots \vdots $m_{1,1}$ \cdots $m_{1,n-1}$ $m_{1,n}$

subject to the constraints that

(M1) $m_{ij} < m_{i,j+1}$ whenever both sides are defined,

(M2) $m_{ij} \ge m_{i+1,j}$ whenever both sides are defined,

(M3) $m_{ij} \leq m_{i+1,j+1}$ whenever both sides are defined,

(M4) the bottom row $(m_{1,1}, m_{1,2}, \ldots, m_{1,n})$ is $(1, 2, \ldots, n)$.

Let \mathcal{M}_n denote the set of monotone triangles of size n.

Example

\mathcal{M}_3 consists of the following seven elements.

		-	1			2	2]	L			2
	1		2		1	۲ ۲	2		1	e e	3		1	3
1	2		3	1	2		3	1	2	و	3	1	2	3
				3				2				3		
			1	3			2	3			2	3		
		1	2	3	-	1	2	3		1	2	3		

Matrices

Let n be a positive integer.

- Let $\hat{S}_n = (\hat{s}_{ij})_{1 \leq i,j \leq n}$ be the skew-symmetric matrix of size n whose (i,j)entry \hat{s}_{ij} is equal to $(-1)^{j-i-1}$ for $1 \leq i < j \leq n$.
- Let O_n denote the n imes n zero matrix.
- Let $J_n = (\delta_{i,n+1-j})_{1 \le i,j \le n}$ denote the anti-diagonal matrix where $\delta_{i,j}$ stands for the Kronecker delta function.

Examples

$$\hat{S}_6 = egin{pmatrix} 0 & 1 & -1 & 1 & -1 & 1 \ -1 & 0 & 1 & -1 & 1 & -1 \ 1 & -1 & 0 & 1 & -1 & 1 \ -1 & 1 & -1 & 0 & 1 & -1 \ 1 & -1 & 1 & -1 & 0 & 1 \ -1 & 1 & -1 & 0 & 1 \ -1 & 1 & -1 & 1 & -1 & 0 \end{pmatrix} \qquad J_3 = egin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix}$$

Conjectures and Progresses

Mills-Robbins-Rumsey, "Self-complementary totally symmetric plane partitions" J. Combin. Theory Ser. A, 42 (1986), 277 – 292.

The conjectures by Mills-Robbins-Rumsey

- 1. Conjecture 2 : the refined TSSPP conjecture.
- 2. Conjecture 3 : the doubly refined TSSCPP conjecture.
- 3. Conjecture 4 : refined HTS TSSCPP conjecture.
- 4. Conjecture 6 : refined VS TSSCPP conjecture.
- 5. Conjecture 7, 7': (refined) MT-TSSCPP conjecture.

Triangular shifted plane partitions

Mills, Robbins and Rumsey introduced a class \mathcal{B}_n of triangular shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is $(n-1, n-2, \ldots, 1)$;

(B2)
$$n-i \leq b_{ij} \leq n$$
 for $1 \leq i \leq j \leq n-1$,

and they constructed a bijection between \mathcal{T}_n and \mathcal{B}_n . In this paper we call an element of \mathcal{B}_n a triangular shifted plane partition (abbreviated as TSPP) of size n.

Example

 \mathcal{B}_1 consists of the following 1 PPs: Ø \mathcal{B}_2 consists of the following 2 PPs:

 \mathcal{B}_3 consists of the followng 7 elements:

Cardinality

Theorem (Andrews)

The number of the elements of \mathcal{B}_n is equal to A_n .

A statistics

In this talk, for $b = (b_{ij})_{1 \le i \le j \le n-1} \in \mathcal{B}_n$, we set $b_{i,n} = n - i$ for all i and $b_{0,j} = n$ for all j by convention.

Definition (Mills, Robbins and Rumsey)

For a $b = (b_{ij})_{1 \le i \le j \le n-1}$ in \mathcal{B}_n and integers $r = 1, \ldots, n$, let

$$U_r(b) = \sum_{t=1}^{n-r} (b_{t,t+r-1} - b_{t,t+r}) + \sum_{t=n-r+1}^{n-1} \{b_{t,n-1} > n-t\}.$$

Here $\{\ldots\}$ has value 1 when the statement "..." is true and 0 otherwise. for $1 \le k \le n$,

 $egin{aligned} U_1(b) &= 3, & U_2(b) = 1, & U_3(b) = 3, & U_4(b) = 2, & U_5(b) = 2, \ U_6(b) &= 3, & U_7(b) = 3. \end{aligned}$

Example

 \mathcal{B}_3 consists of the followng 7 elements:

$igcup_1(b)$	2	1	0	2	1	1	0
$U_2(b)$	2	2	1	1	0	1	0
$egin{array}{c} U_3(b) \end{array}$	2	2	1	1	0	1	0

Refined TSSCPP conjecture

Conjecture

Let n be a positive integer. Let $1 \le k \le n$ and $1 \le r \le n$. Then the number of elements b of \mathcal{B}_n such that $U_r(b) = k - 1$ would be A_n^k . Namely,

$$\sum_{b\in \mathcal{B}_n} t^{U_r(b)} = A_n(t)$$

would hold.

Theorem

Let n and N be positive integers, and let $B_n^N(t) = (b_{ij}(t))_{0 \le i \le n-1, 0 \le j \le n+N-1}$ be the $n \times (n+N)$ matrix whose (i, j)th entry is

$$b_{ij}(t) = egin{cases} \delta_{0,j} & ext{if } i=0,\ inom{(i-1)}{j-i} + inom{(i-1)}{j-i-1}t & ext{otherwise}. \end{cases}$$

<u>Theorem</u>

Let n be a positive integer and let N be an even integer such that $N \ge n-1$. Then

$$\sum_{b\in \mathcal{B}_n} t^{U_r(b)} = \mathrm{Pf} egin{pmatrix} O_n & J_n B_n^N(t) \ -^t\!B_n^N(t) J_n & \hat{S}_{n+N} \end{pmatrix},$$

Example

For example, if n = 3 and N = 2 then the above Pfaffian looks like as follows.

Doubly refined TSSCPP conjecture

Conjecture

Let $n \ge 2$ and $1 \le k, l \le n$ be integers. Then the number of elements b of \mathcal{B}_n such that $U_1(b) = k - 1$ and $U_2(b) = n - l$ would be $A_n^{k,l}$, i.e.

$$\sum_{b\in \mathcal{B}_n}t^{U_1(b)}u^{U_2(b)}=A_n(t,u).$$

Let n and N be positive integers. Let $B_n^N(t,u) = (b_{ij}(t,u))_{0 \le i \le n-1, 0 \le j \le n+N-1}$ be the $n \times (n+N)$ matrix whose (i,j)th entry is

Theorem

$$b_{ij}(t,u) = egin{cases} \delta_{0,j} & ext{if } i = 0, \ \delta_{0,j-i} + \delta_{0,j-i-1} t u & ext{if } i = 1, \ (rac{i-2}{j-i}) + (rac{i-2}{j-i-1})(t+u) + (rac{i-2}{j-i-2})t u & ext{otherwise.} \end{cases}$$

Theorem

Let n be a positive integer and let N be an even integer such that $N \ge n-1$. If r is an integer such that $2 \le r \le n$, then we have

$$\sum_{b\in \mathcal{B}_n} t^{U_1(b)} u^{U_r(b)} = \operatorname{Pf} egin{pmatrix} O_n & J_n B_n^N(t,u) \ -{}^t\!B_n^N(t,u) J_n & \hat{S}_{n+N} \end{pmatrix}$$

Flips

Mills Robbins and Rumsey have defined an involution $\pi_r : \mathcal{B}_n \to \mathcal{B}_n$. Let

$$ho=\pi_2\pi_4\cdots$$
 .

They conjectured that the invariants of ρ in \mathcal{B}_n correspond to the half-turn symmetric alternating sign matrices.

Refined HTS TSSCPP conjecture

Conjecture

Let $n \geq 2$ and r, $0 \leq r < n$ be integers. Then

$$\sum_{{b\in {\mathcal B}_n}\atop
ho(b)=b}t^{U_1(b)}=A_n^{{\sf HTS}}(t)$$

would hold.

Result

There is a bijection between the invariants of \mathcal{B}_n under ρ and a certain class of column-strict "almost domino plane partitions".

Refined VS TSSCPP conjecture

Let

$$\gamma=\pi_1\pi_3\cdots$$
 .

They also proposed a conjecture that the invariants of γ correspond to the vertically symmetric alternating sign matrices.

Conjecture

Let $n \geq 1$ be an integer and r, $1 \leq r \leq 2n-1$ be an integer. Then

$$\sum_{b\in \mathcal{B}_{2n+1}top \gamma(b)=b}t^{U_2(b)}=A_{2n+1}^{\mathsf{VS}}(t)$$

would hold.

Theorem

Let $D_n(t) = (d_{ij}(t))_{1 \leq i,j \leq n}$ be the n imes n matrix where

$$egin{aligned} d_{ij}(t) &= egin{pmatrix} i+j-1\ 2j-i \end{pmatrix} \ &+ \left\{ egin{pmatrix} i+j-1\ 2j-i+1 \end{pmatrix} + egin{pmatrix} i+j-1\ 2j-i-1 \end{pmatrix}
ight\} t + egin{pmatrix} i+j-1\ 2j-i \end{pmatrix} t^2 \end{aligned}$$

Theorem

Let $n \geq 2$ be a positive integer. Then

$$\sum_{b\in {\mathcal B}_{2n+1}top \gamma(b)=b} t^{U_2(b)} = \det D_n(t)$$

Example

Especially, when t = 1, this determinant becomes $det \left(\binom{i+j-1}{2j-i+1} \right)_{1 \le i,j \le n}$, and we obtain the result that the number of elements $b \in \mathcal{B}_{2n+1}$ invariant under γ is equal to A_{2n+1}^{VS} from Andrews' result (G.E. Andrews, "Pfaff's method (I): the Mills-Robbins-Rumsey determinant", Discrete Math. 193 (1998), 43–60.).

$$D_3(t) = \left(egin{array}{cccc} 1+t+t^2 & t & 0 \ 1+2\,t+t^2 & 3+4\,t+3\,t^2 & 1+4\,t+t^2 \ t & 4+7\,t+4\,t^2 & 10+15\,t+10\,t^2 \end{array}
ight)$$

MT-TSSCPP conjecture

For $k = 0, 1, \ldots, n - 1$, let \mathcal{M}_n^k denote the set of monotone triangles with all entries m_{ij} in the first n - k columns equal to their minimum values j - i + 1. For $k = 0, 1, \ldots, n - 1$, let \mathcal{B}_n^k be the subset of those b in \mathcal{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximal values n.

Conjecture

For $n \geq 2$ and $k = 0, 1, \ldots, n-1$, the cardinality of \mathcal{B}_n^k is equal to the cardinality of \mathcal{M}_n^k .

Let n be a positive integer and let $k = 0, 1, \ldots, n - 1$. Let N be an even integer such that $N \ge k$. Let

 $B_n^{(k),N} = \left(b_{ij}^k
ight)_{0 \leq i \leq n-1, \ 0 \leq j \leq n+N-1}$ be the n imes (n+K) rectangular matrix whose (i,j) the entry is
Theorem

$$b_{ij}^k = egin{cases} {i \ j-i} & ext{if } 0 \leq j \leq n+k-1, \ 0 & ext{if } j \geq n+k. \end{cases}$$

Theorem

Let n be a positive integer and let $k = 0, 1, \ldots, n - 1$. Let N be an even integer such that $N \ge k$. The cardinality of \mathcal{B}_n^k is equal to

$$\operatorname{Pf}egin{pmatrix} O_n & J_n B_n^{(k),N} \ -{}^t\!B_n^{(k),N}J_n & \hat{S}_{n+N} \end{pmatrix}$$

Plane Partitions

- 1. Plane parttions
- 2. Shifted plane partitions
- 3. Domino plane partitions

Plane Partitions

A plane partition is an array $\pi = (\pi_{ij})_{i,j\geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i,j\geq 1} \pi_{ij} = n$, then we write $|\pi| = n$ and say that π is a plane partition of n, or π has the weight n.

A part of a plane partition $\pi = (\pi_{ij})_{i,j\geq 1}$ is a positive entry $\pi_{ij} > 0$. The shape of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row. The shape of π is denoted by $\operatorname{sh}(\pi)$. We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

The following is a plane aprtition of shape (9, 8, 4, 1), 4 rows, 9 columns, weight 49.

5	5	4	3	3	2	2	2	1
4	4	2	2	1	1	1	1	
2	1	1	1					
1								

Example

Plane partition of 0: \emptyset

Plane partition of 1: $\boxed{1}$

Plane partition of 2:

Plane partition of 3:

Column-strict plane partitions

A plane partition is said to be column-strict if it is weakly decreasing in rows and strictly decreasing in coulumns. Example

5	5	4	3	3	3	1
4	4	2	2	1	1	
3	2	1	1			
1	1			•		

is a column-stric plane partition.

Ferrers graph

The Ferrers graph $F(\pi)$ of π is the set of all lattice points $(i, j, k) \in \mathbb{P}^3$ such that $k \leq \pi_{ij}$.

Example

The Ferrers graph of

3	2	2
2	1	

is as follows:

Shifted plane partitions

We can define a shifted plane partition similarly. A shifted plane partition is an array $\tau = (\tau_{ij})_{1 \le i \le j}$ of nonnegative integers such that τ has finite support and is weakly decreasing in rows and columns. The shifted shape of τ is the distinct partition μ for which τ has μ_i nonzero parts in the *i*th row.

Example

4	4	3	3	2	1	1
	4	3	2	1	1	
		2	2	1	1	
			1			•

Domino plane partitions

Let λ be a partition. A domino plane partition of shape λ is a tiling of this shape by means of dominoes (2 × 1 or 1 × 2 rectangles), where each domino is numbered by a positive integer and those intergers are weakly decreasing in rows and columns. The integers in the dominoes are called parts. A domino plane partition is said to be column-strict if it is strictly decreasing in columns.

Example

Symmetries

- 1. Self-complementary plane parttions
- 2. Totally symmetric plane parttions

Self-complementary plane partitions

A plane partition $\pi = (\pi_{ij})_{i,j\geq 1}$ is said to be (r, c, t)-self-complementary if $\pi_{ij} = t - \pi_{r+1-i,c+1-j}$ for all $1 \leq i \leq r$ and $1 \leq j \leq c$.

is a (3, 2, 3)-self-complementary plane partition and its Ferrers graph is as follows:

Totally symmetric plane partitions

Let P denote the set of positive integers. Consider the elements of \mathbb{P}^3 , regarded as the lattice points of \mathbb{R}^3 in the positive orthant. The symmetric group S_3 is acting on \mathbb{P}^3 as permutations of the coordinate axies. A plane partition is said to be totally symmetric if its Ferrors graph is mapped to itself under all 6 permutations in S_3 .

Example

is a totally symmetric plane partition and its Ferrers graph is as follows:

Our Methods

- 1. Generalizations and bijections
- 2. Description of the statistics
- 3. The flips and a deformed Bender-Knuth involution
- 4. Generating functions
 - (a) Lattice paths and minor summation formulas
 - (b) Invariants and domino plane partitions

Generalizations and bijections

- 1. Totally symmetric self-complementary plane parttions
- 2. Triangular shifted plane partitions
- 3. Restricted column-stricted plane partitions

Restricted Column-Strict Plane Partitions

Definition

Let m and $n \ge 1$ be nonnegative integers. Let $\mathcal{P}_{n,m}$ denote the set of (ordinary) plane partitions $c = (c_{ij})_{1 \le i,j}$ subject to the constraints that

- (C1) c has at most n columns;
- (C2) c is column-strict and each part in the jth column does not exceed n + m j.

We call an element of $\mathcal{P}_{n,m}$ a restricted column-stricted plane partition (abbreviated to RCSPP). When m = 0, we write \mathcal{P}_n for $\mathcal{P}_{n,0}$.

$\mathcal{P}_{n,m}$

Example

 \mathcal{P}_1 consists of the following 1 PPs: \emptyset

 \mathcal{P}_2 consists of the following 2 PPs:

Ø <u>1</u>

 \mathcal{P}_3 consists of the following 7 PPs:

1

 $\frac{2}{1}$

$\mathcal{P}_{n,m}^{\mathsf{R}}$ and $\mathcal{P}_{n,m}^{\mathsf{C}}$

Definition

Let $\mathcal{P}_{n,m}^{\mathsf{R}}$ denote the set of plane partitions c in $\mathcal{P}_{n,m}$ where each row has even length. and let $\mathcal{P}_{n,m}^{\mathsf{C}}$ denote the set of plane partitions c in $\mathcal{P}_{n,m}$ with each column of even length. We also write $\mathcal{P}_{n}^{\mathsf{R}}$ (resp. $\mathcal{P}_{n}^{\mathsf{C}}$) for $\mathcal{P}_{n,0}^{\mathsf{R}}$ (resp. $\mathcal{P}_{n,0}^{\mathsf{C}}$).

Example

 $\mathcal{P}_3^{\mathsf{R}}$ consists of the following 3 PPs:

$\mathcal{P}_3^{\mathsf{C}}$ consists of the following 2 PPs:

Ø

Triangular shifted plane partitions

Definition

Let m and $n \ge 1$ be nonnegative integers. Let $\mathcal{B}_{n,m}$ denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is $(n+m-1, n+m-2, \dots, 2, 1);$ (B2) $\max\{n-i, 0\} \leq b_{ij} \leq n$ for $1 \leq i \leq j \leq n+m-1.$ When m = 0, we write \mathcal{B}_n for $\mathcal{B}_{n,0}$. In this paper we call an element of $\mathcal{B}_{n,m}$ a triangular shifted plane partition (abbreviated to TSPP).

$\mathcal{B}_{1,2}$

Example

When n = 1 and m = 2, $\mathcal{B}_{1,2}$ consists of the following 4 elements:

Totally symmetric self-complementary plane partitions

Let \mathcal{T}_n denote the set of all plane partitions which is contained in the box $X_n = [2n] \times [2n] \times [2n]$, (2n, 2n, 2n)-self-complementary and totally symmetric. An element of \mathcal{T}_n is called a totally symmetric self-complementary plane partition (abbreviated as TSSCPP) of size n.

Example

 \mathcal{T}_1

\mathcal{T}_3

6	6	6	3	3	3
6	6	6	3	3	3
6	6	6	3	3	3
3	3	3			
3	3	3			
3	3	3			

6	6	6	4	3	3
6	6	6	3	3	3
6	6	5	3	3	2
4	3	3	1		
3	3	3			
3	3	2			

6	6	6	4	3	3
6	6	6	4	3	3
6	6	4	3	2	2
4	4	3	2		
3	3	2			
3	3	2			

6	6	6	5	4	3
6	6	5	3	3	2
6	5	5	3	3	1
5	3	3	1	1	
4	3	3	1		
3	2	1			

6	6	6	5	4	3
6	6	5	4	3	2
6	5	4	3	2	1
5	4	3	2	1	
4	3	2	1		
3	2	1			

6	6	6	5	5	3
6	5	15	3	3	1
6	5	5	3	3	1
5	3	3	1	1	
5	3	3	1	1	
3	1	1			

6	6	6	5	5	3
6	5	5	4	3	1
6	5	4	3	2	1
5	4	3	2	1	
5	3	2	1	1	
3	1	1			

Terminology

Let $X_n = [n]^3$ denote the $n \times n \times n$ box. Assume n is even. We divide this box into the eight regions X_n^{+++} , X_n^{++-} , X_n^{+-+} , X_n^{+--} , X_n^{-++} , X_n^{-+-} , X_n^{--+} and X_n^{---} depending on each of x - n/2, y - n/2 and z - n/2 is plus (> 0) or minus (< 0). For example $X_{-}^{-+-} = [1, n/2] \times [n/2 + 1, n] \times [1, n/2]$. Further we use the notation $X_n^+ = X_n^{+++} \uplus X_n^{++-} \uplus X_n^{+-+} \uplus X_n^{-++}$ and $X_n^- = X_n^{+--} \uplus X_n^{-+-} \uplus X_n^{--+} \uplus X_n^{---}$. More generally we write $X_n(a) = [a - n/2 + 1, a + n/2] \times [a - n/2 + 1, a + n/2] \times$ [a - n/2 + 1, a + n/2] for the $n \times n \times n$ box centered at (a, a, a).

A subclass of TSSCPPs

We also use the notation $X_n^{\pm\pm\pm}(a)$ as the same meaning as above where each stands for one of the eight regions of $X_n(a)$. For example $X_n^{+-+}(a) = [a+1, a+n/2] \times [a-n/2+1, a] \times [a+1, a+n/2]$. The symbols $X_n^{\pm}(a)$ should be defined similarly.

Definition

For nonnegative integers m and $n \ge 1$, let $\mathcal{T}_{n,m}$ denote the set of TSSCPPs $\pi \in \mathcal{T}_{n+m}$ of size (n+m) which satisfy

(T) each $p \in \pi \cap X_{2m}(n)$ must be contained in $X^{-}_{2(n+m)}$.

Bijections

Theorem

There are bijections between these 3 sets of plane partitions.

$$\mathcal{P}_{n,m} \leftrightarrow \mathcal{T}_{n,m} \leftrightarrow \mathcal{B}_{n,m}$$

Cardinality

Theorem (Krattenthaler)

Let $m \ge 0$ and $n \ge 1$ be non-negative integers.

$$\sharp \mathcal{P}_{n,m} = \prod_{k=0}^{n-1} \frac{(3k+3m+1)! \prod_{i=0}^{m} (k+2i)!}{(2k+m)! (2k+3m+1)! \prod_{i=1}^{m} (k+2i-1)!}$$

(C. Krattenthaler, "Determinant identities and a generalization of the number of totally symmetric self-complementary plane partitions", Electron. J. Combin. 4(1) (1997), #R27.)

<u>Theorem</u>

Let $m \ge 0$ and $n \ge 1$ be non-negative integers.

$$\sharp \mathcal{P}_{n,m}=\sharp \mathcal{P}_{n,m+1}^{\mathsf{C}}.$$

Conjecture

Let $n \geq 1$, r = 0, 1 and m be nonnegative integers. Let f(n, m) denote

$$\begin{split} &\frac{\left(6n+6\left\lfloor\frac{m}{2}\right\rfloor+4\right)!\left(6n+6\left\lceil\frac{m}{2}\right\rceil+4\right)!(2n+1)!\left(2n+2\left\lceil\frac{m}{2}\right\rceil\right)!}{(4n+m+1)!(4n+m+3)!(4n+3m+2)!(4n+3m+4)!} \\ &\times \frac{\left(2n+2m+1\right)!\left(n+\left\lfloor\frac{m}{2}+1\right\rfloor\right)!}{\left(n+\left\lfloor\frac{m}{2}\right\rfloor\right)!\left(2n+2\left\lceil\frac{m}{2}\right\rceil+1\right)!}. \end{split}$$

Then the number of elements c in $\mathcal{P}^{\mathsf{R}}_{2n+r,m}$ would be

$$2^{-n}rac{g(n,m+r)}{g(0,m+r)}\prod_{k=0}^{n-1}f(k,m+r)$$

where

$$g(n,m) = egin{cases} h_m(n) & ext{if } \operatorname{rem}(m,4) = 0 ext{ or } 1, \ (4n+2m+1)h_m(n) & ext{if } \operatorname{rem}(m,4) = 2 ext{ or } 3, \end{cases}$$

and $h_m(n)$ is a polynomial of degree $2\left\lfloor rac{m}{4}
ight
floor$ in the variable n.

The polynomial $h_m(n)$

For small m, $h_0(n) = h_1(n) = h_2(n) = h_3(n) = 1$, $h_4(n) = 26n^2 + 117n + 132$, $h_5(n) = 94n^2 + 517n + 715$, $h_6(n) = 526n^2 + 3419n + 5610$, $h_7(n) = 2062n^2 + 15465n + 29393$, $h_8(n) =$ $18788n^4 + 319396n^3 + 2042275n^2 + 5821157n + 6240360$, $h_9(n) =$ $8564n^4 + 162716n^3 + 1163679n^2 + 3712391n + 4457400$, and so on.

Example

For example, if m = 6 and r = 1, then the number of c in $\mathcal{P}^{\mathsf{R}}_{2n+1,6}$ would be equal to

$$2^{-n} \prod_{k=0}^{n-1} \frac{(6k+22)!(6k+28)!(2k+1)!(2k+8)!(2k+15)!}{(4k+8)!(4k+10)!(4k+23)!(4k+25)!(2k+9)!} \\ \times \frac{(k+4)!}{(k+3)!} \\ \times \frac{(4n+15)(2062n^2+15465n+29393)}{15 \cdot 29393}$$

and the first few terms are $\sharp \mathcal{P}_{3,6}^{R} = 3432$, $\sharp \mathcal{P}_{5,6}^{R} = 65934024$ and $\sharp \mathcal{P}_{7,6}^{R} = 9034911255456$.

Description of the statistics

- 1. The statistics for $\mathcal{B}_{n,m}$
- 2. Saturated parts
- 3. The corresponding statistics for $\mathcal{P}_{n,m}$

The statistics U_r for $\mathcal{B}_{n,m}$

Definition

For a $b = (b_{ij})_{1 \le i \le j \le n+m-1}$ in $\mathcal{B}_{n,m}$ and integers $r = 1, \ldots, n$, let $U_r(b) = \sum_{t=1}^{n+m-r} (b_{t,t+r-1} - b_{t,t+r}) + \sum_{t=n+m-r+1}^{n+m-1} \{b_{t,n+m-1} > n-t\}.$

This $U_r(b)$ agrees with the former definition. when m = 0. It is easy to check that each of these functions U_r can vary between 0 and n + m - 1 as b varies over $\mathcal{B}_{n,m}$. We put $\overline{U}_r(b) = n + m - 1 - U_r(b)$.
Saturated parts

Let $\pi \in \mathcal{P}_{n,m}$. A part π_{ij} of π is said to be saturated if $\pi_{ij} = n + m - j$. A saturated part, if it exists, appears only in the first row.

Example

$$n=7,\,m=0.$$

5	5	4	2	2
4	4	3	1	
3	2	2		-
2	1			
1		•		

A statistics

Definition

For $\pi \in \mathcal{P}_{n,m}$ let

$$\overline{U}_{k}(\pi) = \sharp\{(i,j) | \pi_{ij} = k\} + \sharp\{1 \leq i < k | \pi_{1,n-i} = i\}$$

for $1 \le k \le n$, i.e. $\overline{U}_k(\pi)$ is the number of parts equal to k plus the number of saturated parts less than k.

Especially,

- $\overline{U}_1(\pi)$: the number of 1s in π ,
- $\overline{U}_n(\pi)$: the number of saturated parts in π .

$$n = 7$$
.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

 $egin{array}{ll} \overline{U}_1(\pi)=3, & \overline{U}_2(\pi)=5, & \overline{U}_3(\pi)=3, & \overline{U}_4(\pi)=4, \ \overline{U}_5(\pi)=4, & \overline{U}_6(\pi)=3, & \overline{U}_7(\pi)=3. \end{array}$

Two new statistics $V^{\mathsf{R}}(c)$ and $V^{\mathsf{C}}(c)$

Definition

Let $c \in \mathcal{P}_{n,m}$.

- (i) Let $V^{\mathsf{R}}(c)$ denote the number of rows of c of odd length.
- (ii) Let $V^{\mathsf{C}}(c)$ denote the number of columns of c of odd length.

For example, \mathcal{P}_3 consists of the following 7 elements:

$\overline{U}_1(c)$	0	1	2	0	1	1	2
$\overline{U}_2(c)$	0	0	1	2	1	1	2
$\overline{U}_3(c)$	0	0	1	2	1	1	2
$V^{R}(c)$	0	1	0	1	0	2	1
$V^{\sf C}(c)$	0	1	2	1	2	0	1

Table 1: The distribution statistics table in \mathcal{P}_3

Theorem

Let $m \ge 0$ and $n \ge 1$ be non-negative integers.

(i) If $1 \leq r, s \leq n$, then we have

$$\sum_{c\in \mathcal{P}_{n,m}}t^{\overline{U}_r(c)}=\sum_{c\in \mathcal{P}_{n,m+1}^{\mathsf{C}}}t^{\overline{U}_s(c)}.$$

(ii) If $m \geq 1$ and $2 \leq r,s \leq n$, then we have

$$\sum_{c\in \mathcal{P}_{n,m}} t^{\overline{U}_1(c)} u^{\overline{U}_r(c)} = \sum_{c\in \mathcal{P}_{n,m+1}^{\mathsf{C}}} t^{\overline{U}_1(c)} u^{\overline{U}_s(c)}.$$

A new conjecture

Conjecture

Let $n \geq 1$ be a positive integer, and let $1 \leq r \leq n$. Then

$$\sum_{c\in \mathcal{P}_n^{\mathsf{R}}} t^{\overline{U}_r(c)} = egin{cases} A_{2m+1}^{\mathsf{VS}} \cdot A_{2m+1}^{\mathsf{VS}}(t) & ext{if } n=2m, \ A_{2m+1}^{\mathsf{VS}} \cdot A_{2m+3}^{\mathsf{VS}}(t) & ext{if } n=2m+1. \end{cases}$$

would hold. Especially, if we put t = 1, the number of c in $\mathcal{P}_n^{\mathsf{R}}$ is even would be

$$egin{cases} \left(A^{ extsf{VS}}_{2m+1}
ight)^2 & extsf{if}\ n=2m, \ A^{ extsf{VS}}_{2m+1}\cdot A^{ extsf{VS}}_{2m+3} & extsf{if}\ n=2m+1. \end{cases}$$

The flips and a deformed Bender-Knuth involution

- 1. Flips on $\mathcal{B}_{n,m}$
- 2. Deformed Bender-Knuth involution on $\mathcal{P}_{n,m}$
- 3. Involutions corresponding the half-turn and the vertical flip

Flip

Let $b = (b_{ij})_{1 \le i \le j \le n+m-1}$ be an element of $\mathcal{B}_{n,m}$ and let $1 \le i < j \le n+m-1$ so that b_{ij} is a part of b off the main diagonal. Then the flip of the part b_{ij} is the operation of replacing b_{ij} by b'_{ij} where

$$b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$$

When the part is in the main diagonal, the flip of a part b_{ii} is the operation replacing b_{ii} by b'_{ii} where

$$b_{ii}' + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

Involution

Let $1 \leq r \leq n + m$ and $b = (b_{ij})_{1 \leq i \leq j \leq n+m-1} \in \mathcal{B}_{n,m}$. Define an opration $\pi_r : \mathcal{B}_{n,m} \to \mathcal{B}_{n,m}$ $b \mapsto \pi_r(b)$

where $\pi_r(b)$ is the result of flipping all the $b_{i,i+r-1}$, $1 \leq i \leq n+m-r$. Since none of these parts of b are neighbors, the result is indpendent of the order in which the flips are applied, and this operation π_r is evidently an involution, i.e. $\pi_r^2 = id$.

The seven elements of \mathcal{B}_3

is mapped to

by π_1 , respectively.

A deformed Bender-Knuth involution

Now we define a Bender-Knuth type involution $\widetilde{\pi}_r : \mathcal{P}_{n,m} \to \mathcal{P}_{n,m}$. Let $1 \leq r \leq n + m$ and $c \in \mathcal{P}_n$.

 $\tilde{\pi}_r$ swaps r and r-1 in c as the ordinary Bender-Knuth involution with one exception:

(*) We don't count the r-1 which is saturated.

Involution $\widetilde{\pi}_r$

Define an operation $\widetilde{\pi}_r : \mathcal{P}_n \to \mathcal{P}_n$ by $c \mapsto \widetilde{\pi}_r(c)$ where $\widetilde{\pi}_r(c)$ is the result of swapping r's and r - 1's in row i of c by this deformed rule for $1 \leq i \leq n - r$. We call the involution $\widetilde{\pi}_r$, $1 \leq r \leq n$, the deformed Bender-Knuth involution (abbreviated to the DBK involution).

Proposition

Let $n \ge 1$ be non-negative integers. Let $2 \le r \le n$ and let c in \mathcal{P}_n . Then

$$\overline{U}_{r}\left(\widetilde{\pi}_{r}(c)
ight)=\overline{U}_{r-1}\left(c
ight)$$

and

$$\overline{U}_{r}\left(c
ight) =\overline{U}_{r-1}\left(\widetilde{\pi}_{r}(c)
ight)$$
 .

An involution corresponding to the half-turn

Define an involution $\widetilde{\gamma}: \mathcal{P}_n \to \mathcal{P}_n$ by

$$\widetilde{
ho}=\widetilde{\pi}_2\widetilde{\pi}_4\widetilde{\pi}_6\cdots$$

where the product is over all $\widetilde{\pi}_i$ with i even and $\leq n$.

Let $\mathcal{P}_n^{\widetilde{\rho}}$ denote the set of elements of \mathcal{P}_n which is invariant under $\widetilde{\rho}$.

There are 1 elements of \mathcal{P}_1 that is invariant under $\tilde{\rho}$.

Ø

There are 2 elements of \mathcal{P}_2 that is invariant under $\tilde{\rho}$.

There are 3 elements of \mathcal{P}_3 that is invariant under $\tilde{\rho}$.

Ø

There are 10 elements of \mathcal{P}_4 that is invariant under $\tilde{\rho}$. There are 25 elements of \mathcal{P}_5 that is invariant under $\tilde{\rho}$.

An involution corresponding to the vertical flip

Define an involution $\widetilde{\gamma}: \mathcal{P}_n \to \mathcal{P}_n$ by

$$\widetilde{\gamma}=\widetilde{\pi}_1\widetilde{\pi}_3\widetilde{\pi}_5\cdots$$

where the product is over all $\widetilde{\pi}_i$ with i odd and $\leq n$.

Let $\mathcal{P}_n^{\widetilde{\gamma}}$ denote the set of elements of \mathcal{P}_n which is invariant under $\widetilde{\gamma}$.

 $\mathcal{P}_n^{\widetilde{\gamma}}$ is empty unless n is odd.

There are 1 element of \mathcal{P}_3 which is invariant under $\widetilde{\gamma}$.

There are 3 element of \mathcal{P}_5 which is invariant under $\widetilde{\gamma}$.

1

There are 26 element of \mathcal{P}_7

Startegy

1. There is a bijection

$$\mathcal{P}_n^{\widetilde{
ho}} \leftrightarrow \{$$
certain almost domino PPs $\}$

2. There is a bijection

$$\mathcal{P}_n^{\widetilde{\gamma}} \leftrightarrow \{ \text{certain domino PPs} \}$$

Restricted column-stricted domino plane partitions

- Let \mathcal{P}_{2n+1}^{VS} be the set of domino plane partitions c which satisfies
 - (F1) the shape of c is even;
 - (F2) *c* is column-strict;
 - (F3) each part in the jth column does not exceed

 $\lfloor (2n+2-j)/2 \rfloor.$

We call an element of \mathcal{P}_{2n+1}^{VS} a restricted column-strict domino plane partition (abbreviated to RCSDPP). The condition (F3) can be restated as follows; if $c \in \mathcal{P}_{2n+1}^{VS}$, then all the parts in the 1st and 2nd row of care $\leq n-1$, all the parts in the 3rd and 4th row of c are $\leq n-2$, and so on.

For example, if n=5, then \mathcal{P}_5^{VS} is composed of the following three elements.

We also let $\overline{U}_1(c)$ denote the number of 1's in c for $c \in \mathcal{P}_{2n+1}^{VS}$. From the above example, we have $\sum_{c \in \mathcal{P}_5^{VS}} t^{\overline{U}_1(c)} = 1 + t + t^2$. The reader can easily check that there are 26 elements in \mathcal{P}_7^{VS} and $\sum_{c \in \mathcal{P}_7^{VS}} t^{\overline{U}_1(c)} = 3 + 6t + 8t^2 + 6t^3 + 3t^4$.

A bijection

Theorem

There is a bijection between RCSPPs \mathcal{P}_{2n+1} invariant under $\widetilde{\gamma}$ and RCSDPPs \mathcal{P}_{2n+1}^{VS} . By this bijection \overline{U}_2 of \mathcal{P}_{2n+1} corresponds to \overline{U}_1 of \mathcal{P}_{2n+1}^{VS} .

Generating functions

- 1. The generating functions for $\mathcal{P}_{n,m}$
- 2. Stanton-White bijection between restricted column-strict domino plane partitions and pairs of $\mathcal{P}_{n,m}$

The lattice paths for $\mathcal{P}_{n,m}$

 $c \in \mathcal{P}_{n,m}$ can be interpreted by lattice paths.

Let
$$t = (t_1, \ldots, t_n)$$
 and $x = (x_1, \ldots, x_{n-1})$ be sets of variables.
Let $\overline{U}(\pi) = (\overline{U}_1(\pi), \ldots, \overline{U}_n(\pi))$ and we set
 $t^{\overline{U}(\pi)} = \prod_{k=1}^n t_k^{\overline{U}_k(\pi)}$. Similarly we write x^{π} for $\prod_{ij} x_{\pi_{ij}}$.

The generating functions for $\mathcal{P}_{n,m}$

Theorem

$$\sum_{\substack{\pi\in \mathcal{P}_n\ \mathrm{sh}(\pi)=\lambda'}}t^{\overline{U}(\pi)}x^{\pi} = \det\left(e^{(n-i)}_{\lambda_j-j+i}\left(t_1x_1,\ldots,t_{n-i-1}x_{n-i-1},\prod_{r=1}^nt_rx_{n-i}
ight)
ight)_{1\leq i,j\leq n}$$

where $e_r^{(m)}(x)$ denote the *r*th elementary symmetric function in the viariables (x_1, \ldots, x_m) , i.e.

$$\sum_r e_r^{(m)}(x) z^r = \prod_{i=1}^m (1+x_i z)$$

98

Corollary

$$\sum_{\pi\in \mathcal{P}_n} t^{\overline{U}(\pi)} x^{\pi}$$

is the sum of the all minors of the rectangular matrix

$$\left[e_{j-i}^{(i)}\left(t_{1}x_{1},\ldots,t_{n-i-1}x_{n-i-1},\prod_{r=1}^{n}t_{r}x_{n-i}\right)\right]_{\substack{0\leq i\leq n-1\\0\leq j\leq 2n-2}}$$

of size n.

Example.

When n = 3, the sum of all minors of

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & t_1 t_2 t_3 x_1 & 0 & 0 \\ 0 & 0 & 1 & t_1 x_1 + t_2 t_3 x_2 & t_1 t_2 t_3 x_1 x_2 \end{bmatrix}$$

is $1 + t_1x_1 + t_2t_3x_2 + t_1t_2t_3x_1x_2 + t_1^2t_2t_3x_1^2 + t_1t_2^2t_3^2x_1x_2 + t_1^2t_2^2t_3^2x_1x_2$.

Each term corresponds to the following PPs:

L

$$\emptyset \quad \overline{U}_1(\pi) = 0 \quad \overline{U}_2(\pi) = 0 \quad \overline{U}_3(\pi) = 0 \quad 1$$

$$\underline{1}$$
 $\overline{U}_1(\pi) = 1$ $\overline{U}_2(\pi) = 0$ $\overline{U}_3(\pi) = 0$ t_1x_1

2
$$\overline{U}_1(\pi) = 0$$
 $\overline{U}_2(\pi) = 1$ $\overline{U}_3(\pi) = 1$ $t_2 t_3 x_2$

$$\begin{array}{|c|c|c|c|c|} \hline \mathbf{2} & 1 \\ \hline \mathbf{U}_1(\pi) = 1 \\ \hline \overline{U}_2(\pi) = 2 \\ \hline \overline{U}_3(\pi) = 2 \\ \hline \mathbf{U}_1 t_2^2 t_3^2 x_1 x_2 \\ \hline \mathbf{U}_2(\pi) = 2 \\ \hline \mathbf{U$$

$$ig] \quad \overline{U}_1(\pi)=1 \quad \ \overline{U}_2(\pi)=1 \quad \ \overline{U}_3(\pi)=1 \quad \ t_1t_2t_3x_1x_2$$

$$\overline{U}_1(\pi) = 2$$
 $\overline{U}_2(\pi) = 2$ $\overline{U}_3(\pi) = 2$ $t_1^2 t_2^2 t_3^2 x_1^2 x_2$

Stanton-White bijection

Stanton-White defined a bijection between a domino plane partition T and a pair of plane partitions (T^0, T^1) .

D. Stanton and D. White, "A Schensted algorithm for rim hook tableaux", J. Combin. Theory Ser. A 40 (1985), 211 – 247.

Proposition

By this bijection,

- 1. the shape of T is even if and only if the shape T^0 is obtained by removing a vertical strip from the shape of T^1 ;
- 2. the conjugate of the shape of T is even if and only if the shape T^1 is obtained by removing a horizontal strip from the shape of T^0 ,

(See also C. Carré and B. Leclerc, "Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts", J. Algebraic Combin. 4 (1995), 201 – 231.)

The domino plane partition

correspond to the following pair of plane partitions:

Paired restriced column-stricted plane partitions

- Let \mathcal{Q}_n^{VS} be the set of pairs (c^0, c^1) of plane partitions which satisfies (G1) $c^0, c^2 \in \mathcal{P}_n$;
- (G2) The shape of c^0 is obtained by removing a vertical strip from the shape of c^1 .

We call an element of Q_n^{VS} a paired restricted column-strict plane partition (abbreviated to PRCSPP).

<u>Theorem</u>

There is a bijection between RCSPPs \mathcal{P}_n invariant under $\tilde{\gamma}$ and PRCSPPs \mathcal{Q}_n^{VS} .

The generating function for
$$\mathcal{P}_n^{\widetilde{\gamma}}$$

Let $D_n(t) = (d_{ij}(t))_{1 \le i,j \le n}$ be the $n \times n$ matrix where
 $d_{ij}(t) = {i+j-1 \choose 2j-i}$
 $+ \left\{ {i+j-1 \choose 2j-i-1} + {i+j-1 \choose 2j-i-1} \right\} t + {i+j-1 \choose 2j-i} t^2$

Use Binet-Cauchy theorem to obtain

Theorem

Let $n \geq 2$ be a positive integer. Then

$$\sum_{b\in {\mathcal B}_{2n+1}top \gamma(b)=b}t^{U_2(b)}=\det D_n(t)$$

Problems

- (i) Evaluation of the Pfaffians and determinants
- (ii) How to enumerate "almost domino plane partitions"?
- (iii) Is there a relation between the jeu de taquin and the involutions $\tilde{\rho}$, $\tilde{\gamma}$?
- (iv) Many misterious symmetries (There appear A_n , A_n^{HT} , A_n^{VS} in various ways. What's the reason?)

Thank you!