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Certain Numbers

. A, ASM numbers
. AT, A, (t) : the refined ASM numbers.

. AFt A, (t,u) : the doubly refined ASM numbers.

AT ARTS (1) ¢ the number of half-turn
symmetric ASMs and its refinments.

. AY5, AY>(t) : the number of ASMs invariant under
the vertical flip and its refinments.




i+ 1)!

1)!
This number is famous for the number of alternating sign
matrices.




A’I"

Let 2 be a positive number and let 1 < r < n. Set A to be the
number

i) I Gy e 1 Gt
| = A,.

(o) " (o)

Then the number AT satisfies the recurrence A,}l = A,,_1 and

Artt (n=r)(n+r—-1)
A k(2n—r—1)

We also define the polynomial A,,(t) = > "_, A"t"~'. For instance,
the first few terms are A;(t) = 1, Ax(t) = 1 + ¢,
Asz(t) = 2 4+ 3t + 2t%, Au(t) = 7 + 14t + 142 + Tt5.




k,l
A

Let n be a positive integer and let A*', 1 < k,l < n, denote the
number which satisfies the initial condition

0 ifk =1
AR if2<k<n

Ak,l — Al,kz — {

and the recurrence equation
Ay (AT —A)) + A, (AT — AY)
Al

k+1,0+1 Akl _
An An T

for1 < k,l <n—1.




Example

This recurrence equation satisfied by A?";’l has been introduced by
Stroganov to describe the double distribution of the positions of the 1's
in the top row and the bottom row of an alternating sign matrix.

k.l

)1§k,l§4 o




A, (t, u)

Let A,,(t,u) denote the polynomial defined by

An(t,u) = >0, AR Tyl Let w = €*™/3. Francesco and
Zinn-Justin showed that A,, (%, u) can be expressed by the Schur
function as

{w(w+t)(w+u)}""
3n(n—1)/2

1+ wt 1+ wu
x s + , + 1,...,1
d(n—1,mn—1) wtt wtu

An (ta ’LL) —

where sg\")(ml, .« «y X, ) stands for the Schur function in the n
variables x4, ..., x,,, corresponding to the partition A, and
in—1,n—1)=m—-1,n—1,n—2,n—2,...,1,1)




HTS
An

Let A"'™> be the number defined by

n—1 . .
32)!'(3 2)!
ASILSZH(Z)(Z_I_)

i—o t(n+ 7:)!}2

: HTS
- A, C.

The first few terms are 1, 2, 3, 10, 25, 140, 588. This is the number
of half-turn symmetric alternating sign matrices.




ngS(t)

We also define the polynomial ﬁgTs(t) by

ANTS(¢) - (3n—2)(2n — 1)!
AHTS - (n—1)!(3n —1)!

zn: {n(n-1) —nr4+r}(n+r-2)!2n—r-2)! ,

— rl(n —r)!

THTS _ ryn—1 (38)!(3i+2)! : .
where A7 > = |[., Bt I(ngai- For instance, the first few terms

are ANTS(8) =1 4+t, ANTS(t) = 2 + t + 2t2,
ANTS(t) = 5 + 5t + 5t + 5t3 and
ANTS(t) = 20 + 30t + 32t + 30¢3 + 20t
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AT (1) = AR (1) An(2),

1 ~ -
AL (1) = < { Awn AR (0) + An(0) AST (1) |

The first few terms are AJ>(¢) =1+ ¢, AT (t) =1+t + ¢2,
AT (t) = 2 + 3t + 3t* + 2¢3,

Al (t) = 3 + 6t + Tt* 4 6t 4 3t*. Let A]'> denote the
coefficient of ¢ in A7T>(¢).

11



12

be the number defined by

(6k — 2)!(2k — 1)!

VS

2n+1 — on
2 b (4k — 1)!(4k — 2)!

and let AY°

omi1. D€ the number given by

Vs Agg L & o 20+ Ek—2)!(4n — k —1)!
2n+1,r 2)! Z(_ )
— ) (k—1)!(2n — k)!

This number A‘z’S 1

alternating sign matrices of size 2n + 1. For example, the first few

terms of Ay>  is 1, 3, 26, 646 and 45885.

Is equal to the number of vertically symmetric




Az (B)

We also define the polynomial A2 le(t) by

2n

VS VS r—
A n—+1 (t) T Z A2n—|—1 'rt 1'

r=1

For instance, the first few terms are AY°(t) = 1,
AP(t) =1+t +t? AP(t) = 3 + 6t + 8t + 6t + 3t* and

A (t) = 26 + 78t + 138t% + 162t3 4 138t* 4 78t> + 26t°.

13



Monotone triangles

A monotone triangle of size n is, by definition, a triangular array of positive integers

subject to the constraints that

(M1) m;; < m; ji+1 whenever both sides are defined,

)
(M2) m;; > m;41,; whenever both sides are defined,
)

(M3) m;; < m;41,4+1 whenever both sides are defined,

(M4) the bottom row (ml,l, M1,2900-, ml,n) is (]_, 2,..., 'n,)

Let M, denote the set of monotone triangles of size n.

14



Example

M3 consists of the following seven elements.

1 2 1 2
1 2 1 2 1 3 1 3
1 2 3 1 2 3 1 2 3 1 2 3

3 2 3
1 3 2 3 2 3
1 2 3 1 2 3 1 2 3

15



Matrices

Let n be a positive integer.

o Let S,, = (8;;)1<i.j<n be the skew-symmetric

matrix of size n whose (2, j)entry §;; is equal to
(—1) " 1for1 <i<j<n.

e Let O,, denote the n X n zero matrix.

o Let J, = (di,nt1—5)1<i,j<n denote the
anti-diagonal matrix where 9; ; stands for the
Kronecker delta function.

16



Examples
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Conjectures and Progresses

Mills-Robbins-Rumsey, “Self-complementary totally symmetric plane
partitions” J. Combin. Theory Ser. A, 42 (1986), 277 - 292.

The conjectures by Mills-Robbins-Rumsey

. Conjecture 2 : the refined TSSPP conjecture.

. Conjecture 3 : the doubly refined TSSCPP conjecture.
. Conjecture 4 : refined HTS TSSCPP conjecture.

. Conjecture 6 : refined VS TSSCPP conjecture.

. Conjecture 7, 7' : (refined) MT-TSSCPP conjecture.

18



19

Triangular shifted plane partitions

Mills, Robbins and Rumsey introduced a class B,, of triangular shifted
plane partitions b = (b;;)1<i<; subject to the constraints that

(B1) the shifted shape of bis (n — 1,n — 2,...,1);
B2)n—-—t1<b;; <nfor1 <:<j3<n—-1,

and they constructed a bijection between Z,, and B,,. In this paper we

call an element of B,, a triangular shifted plane partition (abbreviated as
TSPP) of size n.




Example

BB, consists of the following 1 PPs:
B4 consists of the following 2 PPs:

2 1

B3 consists of the followng 7 elements:

3 3 33| [3 3
1

20



Cardinality

Theorem (Andrews)

The number of the elements of B,, is equal to A,,.

21
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A statistics

In this talk, for b = (b;;)1<i<j<n—1 € Bn, weset b; , = n — ¢ for
all z and by ; = m for all 3 by convention.

Definition (Mills, Robbins and Rumsey)

Fora b = (b;j)1<i<j<n—1 in B,, and integers » = 1,...,n, let

n—r n—1
U,(b) = Z(bt,t—l—r—l — b eyr) + Z {btn_1 > n — t}.

t=1 t=n—r+1

Here {... } has value 1 when the statement “..." is true and O
otherwise. for 1 < k < n,




Example n==".

Ui(b) =3, Ux(b) =1, Us(b) =3, Usb) =2 Usb) =2
Us(b) = 3, Ux(b) = 3.

23



Example

B3 consists of the followng 7 elements:

3 313 1313] 3 3
1

2

24



Refined TSSCPP conjecture

Conjecture

Let n» be a positive integer. Let 1 < k< mnand 1 < r < n. Then
the number of elements b of B,, such that U,.(b) = k — 1 would be
AF . Namely,

Z $U(b) — A, (t)

would hold.

25



Theorem

Let n and N be positive integers, and let

B (t) = (bi;(t))o<i<n—1, 0<j<n+N-1 be the n X (n + N)
matrix whose (%, 7)th entry is

do,;
bij (t) = {(z—Jl i1

if 2 = 0,
j_z.) + (j_i_l)t otherwise.

Theorem

Let n be a positive integer and let /N be an even integer such that
N > n — 1. Then

N

beB., _th(t)Jn Sn—I—N

26



Example

For example, if n = 3 and N = 2 then the above Pfaffian looks like as

follows.

14t

27



Doubly refined TSSCPP conjecture

Conjecture

Let n > 2and 1 < k,l < n be integers. Then the number of
elements b of B,, such that U;(b) = k — 1 and Us(b) = n — 1
would be A¥! j.e.

Yt U0 = 4, (t,u).
beB,

Let n and N be positive integers. Let
B,r]:f(t, ’LL) = (bz.7 (t, ’U,))()Sisn_l, 0<j<n+N-1 be the n X (TL —+ N)
matrix whose (z, 7)th entry is

28
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Theorem

r(sovj if’l — O,
bij(t,u) = « 90,j—i + 00,j—i—1tu ifi =1,
\ (i_z) + o )(t + u) + (J:Ez)tu otherwise.

j—i j—i—1

Theorem

Let n be a positive integer and let /N be an even integer such that
N > n — 1. If r is an integer such that 2 < r» < n, then we have

N
Z tUl(b)uUr(b) — Pf On J'n,-BAn (t? ’LL)
—jfﬁy(th)J% ;Sn+p]

beB,




Flips
Mills Robbins and Rumsey have defined an involution =, : B,, — B,,.

Let

p:’r"27"'4ooo.

They conjectured that the invariants of p in B,, correspond to the
half-turn symmetric alternating sign matrices.

30



Refined HTS TSSCPP conjecture

Conjecture

Let n > 2 and r, 0 < r < n be integers. Then

Z tUl(b) _ AHTS(t)

bEBR
p(b)=b

would hold.
Result

There is a bijection between the invariants of B,, under p and a certain
class of column-strict “almost domino plane partitions”.

31



Refined VS TSSCPP conjecture
Let

¥ = TW17Wg > .

They also proposed a conjecture that the invariants of ~ correspond to
the vertically symmetric alternating sign matrices.

Conjecture

Let n > 1 beanintegerand , 1 < r < 2n — 1 be an integer. Then

Z t72() = A\2/fz—|—1(t)

bEB2n 41
~(b)=b

would hold.

32



Theorem

Let Dn(t) — (d’bJ (t))lgz,ggn be the n X n matrix where

i+j—1>
2§ — i

di;(t) = (

1+7—1 1+7—1
G0+ 6
27 —1+1 27 —1—1

Theorem

Let n > 2 be a positive integer. Then

YtV = det D, (t)

bEBo, 41
'y(b):b

33



Example

Especially, when ¢ = 1, this determinant becomes

det (ifrj - 1) . and we obtain the result that the number of
231 ) 1<i,i<n

elements b € By, 11 invariant under ~ is equal to AY> 44 from
Andrews’ result (G.E. Andrews, “Pfaff’'s method (1): the
Mills-Robbins-Rumsey determinant”, Discrete Math. 193 (1998),

43-60.).

/ 14+ t4+t2 t 0

1+2t+t*> 3+4t+ 3¢2 1+4t 4+ ¢t?

¢ 4 L7t 4¢2 10+15t+10t2)

34



MT-TSSCPP conjecture

For k =0,1,...,n — 1, let M?¥ denote the set of monotone
triangles with all entries m;; in the first n — k columns equal to their
minimum values j — ¢ + 1. For k = 0,1,...,n — 1, let B¥ be the
subset of those b in 13,, such that all b;; in the first n — 1 — k columns
are equal to their maximal values n.

Conjecture

Forn > 2and k =0,1,...,n — 1, the cardinality of B is equal to
the cardinality of M¥ .

Let n be a positive integer and let Kk = 0,1,...,n — 1. Let IN be an

even integer such that vV > k. Let
B(k),N — ( )

" /) 0<i<n—1, 0<j<n+N-1
rectangular matrix whose (z, 7)the entry is

be the n X (n + K)

35



Theorem

bk —

;) f0<j<m+k-—1,
if j > n + k.

Theorem

Let n be a positive integer and let kK = 0,1,...,n — 1. Let IN be an
even integer such that N > k. The cardinality of B is equal to

A

O, J BN
Pf "
—'BENJT,  Spin

36



Plane Partitions

1. Plane parttions

2. Shifted plane partitions

3. Domino plane partitions

37



Plane Partitions

A plane partition is an array m = (7r;;); ;>1 of nonnegative integers
such that 7 has finite support (i.e., finitely many nonzero entries) and is

weakly decreasing in rows and columns. If }_; .-, m;; = n, then we
W

write |7r| = m and say that 7 is a plane partition of n, or 7 has the
weight n.

A part of a plane partition m = (7;;); ;>1 is a positive entry m;; > 0.
The shape of 7 is the ordinary partition A for which 7t has \; nonzero
parts in the zth row. The shape of 7 is denoted by sh (7). We say that
7 has r rows if » = £(\). Similarly, 7v has s columns if s = £(\’).

38



Example

The following is a plane aprtition of shape (9,8,4,1), 4

rows, 9 columns, weight 49.

5(4]3
4122
111(1

39



Example

Plane partition of 0: ()

Plane partition of 1:

Plane partition of 2:

Plane partition of 3:

3

1

1

1

1

40



Column-strict plane partitions

A plane partition is said to be column-strict if it is weakly

decreasing in rows and strictly decreasing in coulumns.

Example

IS @ column-stric plane partition.

41



Ferrers graph

The Ferrers graph F'(7) of 7 is the set of all lattice points

(4,7, k) € P3 such that k < ;.

42



Example

The Ferrers graph of

is as follows:

43
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Shifted plane partitions

We can define a shifted plane partition similarly. A shifted plane
partition is an array T = (7;;)1<i<; Of nonnegative integers such that
7 has finite support and is weakly decreasing in rows and columns. The
shifted shape of 7 is the distinct partition © for which 7 has p; nonzero
parts in the zth row.

Example
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Domino plane partitions

Let A\ be a partition. A domino plane partition of shape A\ is a tiling of
this shape by means of dominoes (2 X 1 or 1 X 2 rectangles), where
each domino is numbered by a positive integer and those intergers are
weakly decreasing in rows and columns. The integers in the dominoes
are called parts. A domino plane partition is said to be column-strict if it
Is strictly decreasing in columns.

Example




Symmetries

1. Self-complementary plane parttions

2. Totally symmetric plane parttions

46



Self-complementary plane partitions

A plane partition w = (7;;); j>1 is said to be

(7, c, t)-self-complementary if m;; =t — 71 1-_j c41—; for
all <2< randl1 <y <ec.

47



is a (3, 2, 3)-self-complementary plane partition and its Ferrers graph is

as follows:

48
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Totally symmetric plane partitions

Let P denote the set of positive integers. Consider the

elements of P3, regarded as the lattice points of R? in the

positive orthant. The symmetric group S5 is acting on P° as
permutations of the coordinate axies. A plane partition is
said to be totally symmetric if its Ferrors graph is mapped to
itself under all 6 permutations in Ss.




Example

is a totally symmetric plane partition and its Ferrers graph is as follows:

50



Our Methods

1. Generalizations and bijections
2. Description of the statistics
3. The flips and a deformed Bender-Knuth involution

4. Generating functions

(a) Lattice paths and minor summation formulas

(b) Invariants and domino plane partitions

51



Generalizations and bijections

1. Totally symmetric self-complementary plane

parttions
2. Triangular shifted plane partitions

3. Restricted column-stricted plane partitions

52
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Restricted Column-Strict Plane Partitions

Definition

Let 2 and n > 1 be nonnegative integers. Let P, ,,, denote the set of
(ordinary) plane partitions ¢ = (c;;)1<i,; subject to the constraints that

(C1) c has at most n columns;
(C2) c is column-strict and each part in the jth column does not

exceed n + m — 3.

We call an element of P, ,,, a restricted column-stricted plane partition
(abbreviated to RCSPP). When m = 0, we write P,, for P,, 0.




54

Pn,m

Example

P; consists of the following 1 PPs:

P> consists of the following 2 PPs:

0 1

Ps consists of the following 7 PPs:

1] 1 1/1 2




R C
Pnmand Po

Definition

Let PS _denote the set of plane partitions c in P, ,,, where each row
has even length. and let P,,E _ denote the set of plane partitions c in
Pp.,m With each column of even length. We also write P} (resp. P¢)

for Py, , (resp. Py, o).

Example

PR consists of the following 3 PPs:

0 1]1




P¢ consists of the following 2 PPs:

0

56
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Triangular shifted plane partitions

Definition

Let 2 and n > 1 be nonnegative integers. Let 13, ,,, denote the set of
shifted plane partitions b = (b;;)1<i<; subject to the constraints that

(B1) the shifted shape of b is
n+m—1,n+m—2,...,2,1);

(B2) max{n —¢,0} <b,; <nforl1 <:1<j<n+m-—1.

When m = 0, we write 13,, for B,, o. In this paper we call an element
of B,, .. a triangular shifted plane partition (abbreviated to TSPP).




B,

9

Example

When n = 1 and m = 2, B; » consists of the followng 4 elements:

1 1 1 0

1
1

1
0

58



Totally symmetric self-complementary plane partitions

Let 7,, denote the set of all plane partitions which is contained in the
box X,, = [2n] X [2n] X [2n], (2n, 2n, 2n)-self-complementary
and totally symmetric. An element of 7, is called a totally symmetric
self-complementary plane partition (abbreviated as TSSCPP) of size n.

Example

T

59



60



61

6/6/6|5(4|3

6/6|5|3[3]|2

6/5|5|3(3]|1

6/6(6[5|5|3

6/5|5|4(3]|1

6(5(4|3(2]|1

6/6(6|4(3|3
6/6/6[(4|3|3
6(6(4]|3|2]|2

6/6(6[(5|5|3

6/5|5|3(3]|1

6/5|5|3(3]|1

6/6/6|4(3|3
6/6/6[(3|3|3

6/6|5|3[3]|2

6/6/6[(5(4]|3

665|432
6(5(4]|3|2]|1

6/6/6[(3[3|3
6/6/6[(3[3|3
6/6/6[(3|3|3




Terminology

Let X,, = [n]® denote the n X n X n box. Assume n is even. We
divide this box into the eight regions X *++, X *+— X*+-+ X+-—,
X-*t+, X1, X~ and X~ depending on each of x — n/2,
y —n/2and z — n/2is plus (> 0) or minus (< 0). For example

Xt =[1,n/2] X [n/2 4+ 1,n] X [1,n/2]. Further we use the
notation X T = X T+t W X+t~ w X -+ w X1+ and
X-=XIT""wX T-wX-~Tw X ~". More generally we write
X,(a)=la—n/24+1,a+n/2] X [a—n/24+1,a +n/2] X
la—n/24+1,a+ n/2] for the n X n X n box centered at (a, a, a).
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A subclass of TSSCPPs

We also use the notation X T+ (a) as the same meaning as above
where each stands for one of the eight regions of X, (a). For example
X+t %(a) =[la+1l,a+n/2]X[a—n/24+1,a] X [a+1,a+n/2].
The symbols X = (a) should be defined similarly.

Definition

For nonnegative integers m and n > 1, let 7, ,,, denote the set of
TSSCPPs w € 7T, ,, of size (n + m) which satisfy

(T) each p € m N X3,,(n) must be contained in X, . ..




Bijections

Theorem

There are bijections between these 3 sets of plane partitions.

P'n,,m — ’Z'-n,,m — Bn,m

64
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Cardinality
Theorem (Krattenthaler)

Let m > 0 and n > 1 be non-negative integers.

0P = "i:[l (8k 4+ 3m + 1)! [, (k + 24)!
mre AL 2k +m)1(2k + 3m 4+ D), (k28 — 1)!

k=0

(C. Krattenthaler, “Determinant identities and a generalization of

the number of totally symmetric self-complementary plane
partitions”, Electron. J. Combin. 4(1) (1997), #R27.)

Theorem

Let m > 0 and n > 1 be non-negative integers.

0 Pn,m = ]qus,,m—l—l'




Conjecture

Let n > 1, » = 0,1 and m be nonnegative integers. Let f(n,m)
denote

(6n +6|%2] +4)! (6n+6[2] +4)2n + 1! (2n + 2[ %))

(4n +m + 1)!(4n + m + 3)!(4n 4+ 3m + 2)!(4n 4+ 3m + 4)!
2n+2m+1)! (n+ [Z +1])!
(n+ 3t En+2[3]+1)0

Then the number of elements ¢ in Pgn trm would be

_.g(n, m + 1)
g(0,m +r) .-

wam+w

66



where

ho(n) if rem(m,4) =0or1,
(4n + 2m + 1)h,,(n) ifrem(m,4) = 2 or 3,

g(n,m) = {

and h,,(n) is a polynomial of degree 2 | 2| in the variable n.

67



The polynomial h,,(n)

For small m, ho(n) = hi(n) = he(n) = hz(n) =1,
hy(n) = 26n? + 117n + 132, hs(n) = 94n? + 517n + 715,
he(n) = 526n2 + 34191 + 5610,

hr(n) = 2062n* + 15465n + 29393, hg(n) =

18788n* 4 319396n° 4 2042275n? 4+ 5821157n + 6240360,
hg(’n) =

8564n* 4+ 162716n° 4+ 116367912 4+ 3712391n + 4457400, and
SO on.

68



Example

R

For example, if m = 6 and r» = 1, then the number of cin Py, ¢

would be equal to

"1 (6k + 22)!(6k + 28)!(2k + 1)!(2k + 8)!(2k + 15)!

2 ,EO (4k + 8)!(4k + 10)!(4k + 23)!(4k + 25)!(2k + 9)!
(k + 4)!

X
(k + 3)!
 (4n +15)(2062n° + 15465n + 29393)
15 - 29393

and the first few terms are ]j”P?'f,G — 3432, ]jfpg,ﬁ — 65934024 and
1Pr ¢ = 9034911255456,

69



Description of the statistics

1. The statistics for B, ,

2. Saturated parts

3. The corresponding statistics for P,, .,

70



71

The statistics U, for B,, ,,

Definition

Fora b = (b;j)1<i<j<ntm—1 in B, ,, and integers » = 1,...,n, let

n+m-—r n+m—1

Ur(b) — Z (bt t+r— 1_bt t—l—r)_l_ Z {bt,'n—l—m—l > ’I’L-t}.

t=n+m—r—+1

This U,.(b) agrees with the former definition. when m = 0. It is easy
to check that each of these functions U,. can vary between O and
n + m — 1 as b varies over BB,, ,,,. We put

U,(b)=n+m—1—U,(b).




Saturated parts

Let m € P,.m. A part m;; of 7w is said to be saturated if

m;; = n + m — J. A saturated part, if it exists, appears only in the
first row.

Example

n=7 m=2~0.
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A statistics

Definition

For m € P, .m let

U(m) = (6, 4) msj = k} + #{1 < i < k|myns = i)

for 1 < k < n,ie. Upg(m) is the number of parts equal to k plus the
number of saturated parts less than k.

Especially,
U, () : the number of 1s in T,

U,.(m) : the number of saturated parts in 7.

73



Us(m) =3, Ugy(w) =4,
ﬁ7(71') = 3.
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Two new statistics VR(c) and V¢(c)

Definition

Let ¢ € Pp m.-

(i) Let V®(c) denote the number of rows of ¢ of odd length.

(ii) Let V¢(c) denote the number of columns of ¢ of odd length.

75



Example

For example, P3 consists of the following 7 elements:

0 1 1 1 2 2 1

U,(c)

Us(c)
Us(c)
V¥ (c)
V&(c)

Table 1: The distribution statistics table in Ps
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Theorem

Let 72 > 0 and n > 1 be non-negative integers.

(i) If 1 < r,s < n, then we have

Z tﬁr () — Z tﬁs (e) ]

cEPn,m cE'PEL,m+1

(i) f m > 1and 2 < r, s < n, then we have

Z tﬁl (c) ’U,ﬁr (c) — Z tﬁl (c) ’U,ﬁs (c) .

CEPn,m CE’PEL,m—Fl

i



A new conjecture

Conjecture

Let 7 > 1 be a positive integer, and let 1 < » < n. Then

VS
Z tﬁr(c) — A2m—|—1
AVS

) A\2/§n+1 (t)

) A\2/§n—|-3 (t)

if n = 2m,

ifn =2m + 1.

would hold. Especially, if we put ¢ = 1, the number of ¢ in P~ is even
would be
if n = 2m,

if n =2m + 1.
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The flips and a deformed Bender-Knuth involution

1. Flips on B,, ,,

2. Deformed Bender-Knuth involution on P,, .,

3. Involutions corresponding the half-turn and the
vertical flip
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Flip
Let b = (b;;)1<i<j<n+m—1 be an element of B,, ,,, and let

1 <1< 37 < n+m-—1sothatb;; is a part of b off the main
diagonal. Then the flip of the part b;; is the operation of replacing b;;
by b;j where

b;; + bi; = min(b;_1,5,b; ;1) + max(b; i1, biy15)-

When the part is in the main diagonal, the flip of a part b;; is the
operation replacing b;; by b’. where

b, + bii = bi_1,; + biit1.




Involution

Llet 1 < rr < n+ m and
b= (bij)i<i<j<n+m—1 € Bn,m- Define an opration
Tt Bpum — Bum
b +— ,(b)
where 7r,.(b) is the result of flipping all the b; ;,_1,
1 <1 < n+ m — r. Since none of these parts of b are

neighbors, the result is indpendent of the order in which the
flips are applied, and this operation 7, is evidently an

involution, i.e. 71'3 — 1d.
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Example

The seven elements of By

313 33| I3
3 2

IS mapped to

3|3 3
1 2

by 71, respectively.




A deformed Bender-Knuth involution

Now we define a Bender-Knuth type involution 7, : Py, 1, — Pp.m.

9

let 1 <r<n+4+mandcé€P,.

7, swaps  and » — 1 in ¢ as the ordinary Bender-Knuth involution
with one exception:

(*) We don’t count the » — 1 which is saturated.
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Involution 7,

Define an operation =, : P,, — P,, by ¢ — m,.(c) where 7,.(c) is
the result of swapping 's and » — 1’s in row 2 of ¢ by this deformed
rule for 1 < 7 < n — . We call the involution 7., 1 < r < n, the
deformed Bender-Knuth involution (abbreviated to the DBK involution).

1 — 1

1

1+ 1




Example

n=6,m=0and r = 2
5 3 1 1 1

c= 3 2
2 1
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Proposition

Let n > 1 be non-negative integers. Let 2 < r» < n and
let ¢ in P,,. Then

U, (7:(c)) = Ur_1 ()

86



An involution corresponding to the half-turn

Define an involution ~ : P,, — P,, by
P = FoTtuTe

where the product is over all 7r; with 2 even and < n.

Let P? denote the set of elements of P,, which is invariant under p.
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Example

There are 1 elements of P; that is invariant under p.

0

There are 2 elements of Py that is invariant under p.

0 1

There are 3 elements of Pj3 that is invariant under p.

0 2 211
1 1

There are 10 elements of P, that is invariant under p.

There are 25 elements of Ps that is invariant under p.
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An involution corresponding to the vertical flip

Define an involution ~ : P,, — P,, by

~

F = Ty
where the product is over all 7v; with 2 odd and < n.

Let P denote the set of elements of P,, which is invariant
under .

”PZ is empty unless n is odd.
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Example

There are 1 element of P3 which is invariant under ~.

1

There are 3 element of Ps which is invariant under ~.

1

0 [3]2]1
1

3
2
1

There are 26 element of P~




Startegy

1. There is a bijection

PP « {certain almost domino PPs}

2. There is a bijection

P «— {certain domino PPs}
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Restricted column-stricted domino plane partitions

Let PVS

2n+1

be the set of domino plane partitions ¢ which satisfies

(F1) the shape of c is even;
(F2) c is column-strict;

(F3) each part in the jth column does not exceed

[(2n +2 —73)/2].

We call an element of P;’,,SL 41 a restricted column-strict domino plane
partition (abbreviated to RCSDPP). The condition (F3) can be restated
as follows; if ¢ € P;’ELH, then all the parts in the 1st and 2nd row of c
are < n — 1, all the parts in the 3rd and 4th row of c are < n — 2,

and so on.
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Example

For example, if n=5, then P;’S is composed of the following three
elements.

0

We also let U, (c) denote the number of 1's in ¢ for ¢ € P¥§+1- From
the above example, we have } v tU1(e) = 1 4 ¢ 4 t2. The reader

can easily check that there are 26 elements in 7?;’5 and
> eepys V1) = 3 + 6t + 8t + 61° + 3t




A bijection

Theorem

There is a bijection between RCSPPs P,,, ;1 invariant under
4 and RCSDPPs P,> . . By this bijection U of P41

corresponds to U; of P> .
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Generating functions

1. The generating functions for P,, ,,

2. Stanton-White bijection between restricted
column-strict domino plane partitions and pairs of

Pn,m

95



The lattice paths for P, ,,

c € Pn,m can be interpreted by lattice paths.

Let t = (t1,...,t,) and x = (x1,...,x,_1) be sets of variables.
Let U(w) = (U1(w),...,U,(7)) and we set

tﬁ(ﬂ') — HZ:l t

Uy ()
k

- .o
. Similarly we write =™ for [ [, @x,..
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The generating functions for P,, ,,

Theorem

Z tﬁ(ﬂ') T

TEPn
sh(w)=X\/

n
_ (n—1)
= det <e>\j—j+’i (tlwla coestpn_i1Tp_i_1, H trmn—i>>
r=1 1<z,5<n

where (™ (x) denote the rth elementary symmetric function in the
viariables (z1,...,x,,), i.e.

m

Z el™ (z)z" = H(l + x;2)

=1
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Corollary

Z tﬁ(‘n’)wﬂ'

TwEPn
is the sum of the all minors of the rectangular matrix

n
[65’27’ (tlmla ceisln_ i 1Tpn_i_1, H [ 2% PO

r=1

of size n.
Example.

When n = 3, the sum of all minors of

1 0 0 0 0
01 t1t2t3w1 0 0
_0 0 1 t1331 —|— t2t3$2 tltztgmlmz_

is 1 —|— tlwl -|— t2t3:132 -|— t1t2t3331£82 —I- t%tgtgw% —|— tltgtgwlwg -|— tft%t%w%wg.
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Each term corresponds to the following PPs:

O Ui(mr)=0 Usz(xr)=0 Usz(w)=0

ﬁl(ﬂ') =1 ﬁz(ﬂ') =0 ﬁg(ﬂ') =0 tla:l

ﬁl (71') = 2 ﬁz(ﬂ') =1 ﬁg(ﬂ') =1 t%tgtga}i

ﬁl(ﬂ') =0 ﬁz(ﬂ') =1 Ug(ﬂ') =1 t2t3CL‘2

ﬁl(ﬂ') =1 ﬁz(ﬂ') = 2 ﬁ3(ﬂ') = 2 tltgtgwlwz

ﬁl(ﬂ') =1 ﬁz(ﬂ') =1 ﬁg(ﬂ') =1 t1t2t3€B1€B2

Ui(n)=2 Uz(m)=2 Usz(w)=2 titot2xi Ty
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Stanton-White bijection

Stanton-White defined a bijection between a domino plane partition 7' and a pair of
plane partitions (T°,T*).

D. Stanton and D. White, “A Schensted algorithm for rim hook tableaux”, J.
Combin. Theory Ser. A 40 (1985), 211 - 247.

Proposition

By this bijection,

1. the shape of T is even if and only if the shape T° is obtained by removing a
vertical strip from the shape of T'!;

2. the conjugate of the shape of T is even if and only if the shape T'! is obtained by
removing a horizontal strip from the shape of T°,

(See also C. Carré and B. Leclerc, “Splitting the Square of a Schur Function
into its Symmetric and Antisymmetric Parts”, J. Algebraic Combin. 4 (1995),
201 - 231.)
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Color rule

Color 0:




Example

The domino plane partition

correspond to the following pair of plane partitions:

111 2

102



Paired restriced column-stricted plane partitions

Let ©> be the set of pairs (c°, ¢') of plane partitions which satisfies

(G]') CO? c2 E P'n,v

(G2) The shape of c° is obtained by removing a vertical strip from
the shape of c'.

We call an element of Q)’LS a paired restricted column-strict plane
partition (abbreviated to PRCSPP).

Theorem

There is a bijection between RCSPPs P,, invariant under ~ and
PRCSPPs QY.
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Example

PY> is composed of the following three elements

0

9

which corresponds to

(0,0), (@,

respectively.
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The generating function for PZ

Let D,,(t) = (di;(t))1<ij<n be the m X m matrix where

d;;(t) = (Z T 1)

2§ — i

t t
+{<2j—z’+1>+(2j—i—1>} +< 2 — i )

Use Binet-Cauchy theorem to obtain

Theorem

Let n > 2 be a positive integer. Then
Y tU20) = det D, (t)

bEBap 41
~(b)=b
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Problems

(i) Evaluation of the Pfaffians and determinants
(i) How to enumerate “almost domino plane partitions”?

(iii) Is there a relation between the jeu de taquin and the
involutions p, ~?

(iv) Many misterious symmetries (There appear A,,, AT, AV> in

various ways. What's the reason?)
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Thank youl!




