Enumeration problems of plane partitions and Pfaffian (determinant) expressions

Masao Ishikawa ${ }^{\dagger}$
\dagger Department of Mathematics
Tottori University

Combinatorics and Representation Theory, Graduate School of Mathematics, Nagoya University September 1 -5, 2008.

Introduction

Abstract

Plane parition enumeration is a classical combinatorial problem studyed by MacMahon and have been studied by many people in relations with discrete mathematics, symmetric functions, representation theory and mathematical physics. In this talk we consider certain weighted enumeration problems of two classes of plane partitions, i.e., totally symmetric self-complementary plane partitions (TSSCPP) and cyclically symmetric transpose-complementary plane partions (tc-symmetic PP). We construct one bijection between a subset of TSSCPPs and a class of domino plane partitions and another bijection between tc-symmetic PPs and another class of domino plane partitions. The study of TSSCPPs was started by a paper by Mills, Robbins and Rumsey and they proposed several conjectures in relations with the enumeration problems of alternating sign matrices (ASM). By considering the weighted enumeration of those classes of domino plane partitions we find more mysterious similarities between TSSCPPs (tc-symmetic PPs) and ASMs. We will give Pfaffian (determinant) expressions for those weighted enumeration problems.

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions

Restricted column-strict plane partitions
4. Restricted column-strict domino plane partitions with all rows and columns of even lenth

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) Restricted column-strict domino plane partitions with all rows and columns of even lenth
(3) Render-Knuth tyne involution

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) Restricted column-strict domino plane partitions with all rows and columns of even lenth
(3) Bender-Knuth type involution
(6) Restricted column-strict domino plane partitions with all rows of even lenth

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) Restricted column-strict domino plane partitions with all rows and columns of even lenth
(5) Bender-Knuth type involution

Restricted column-strict domino plane partitions with all rows
of even lenth
(3) Restricted column-strict domino plane partitions with all columns of even lenth

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) Restricted column-strict domino plane partitions with all rows and columns of even lenth
(6) Bender-Knuth type involution
(6) Restricted column-strict domino plane partitions with all rows of even lenth

Restricted column-strict domino plane partitions with all
columns of even lenth

Plan of My Talk

(1) Plane partitions
(2) TSSCPP and tc-symmetric plane partitions
(3) Restricted column-strict plane partitions
(4) Restricted column-strict domino plane partitions with all rows and columns of even lenth
(6) Bender-Knuth type involution
(6) Restricted column-strict domino plane partitions with all rows of even lenth
(3) Restricted column-strict domino plane partitions with all columns of even lenth

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns.
then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i, j \geq 1} \pi_{i j}=n$, then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the weight n.

Plane partitions

Definition

A plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i, j \geq 1} \pi_{i j}=n$, then we write $|\pi|=n$ and say that π is a plane partition of n, or π has the weight n.

Example

A plane partition of 14

3	2	1	1	0	\ldots
2	2	1	0	\ldots	
1	1	0	0	\ldots	
0	0	0	\ddots		

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
 - The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i}
nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s

A plane partition of shape (432) with 3 rows and 4 columns:

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s columns if $s=\ell\left(\lambda^{\prime}\right)$.

Example A plane partition of shape (432) with 3 rows and 4 columns:

Shape

Definition

Let $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ be a plane partition.

- A part is a positive entry $\pi_{i j}>0$.
- The shape of π is the ordinary partition λ for which π has λ_{i} nonzero parts in the ith row.
- We say that π has r rows if $r=\ell(\lambda)$. Similarly, π has s columns if $s=\ell\left(\lambda^{\prime}\right)$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

3	2	1	1
2	2	1	
1	1		

Example of plane partitions

Example

－Plane partitions of 0：\emptyset
－Plane partitions of 1 ： 1
－Plane partitions of 2 ：

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of 1 : 1
- Plane partitions of 2 :
- Plane partitions of 3 :

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of 1 : 1
- Plane partitions of 2 :

$$
\begin{array}{|ll|l|}
\hline 2 & 1 & 1 \\
\hline & & \begin{array}{|l|}
\hline 1 \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Plane partitions of 3 :

Example of plane partitions

Example

- Plane partitions of 0: \emptyset
- Plane partitions of 1 : 1
- Plane partitions of 2 :

$$
\begin{array}{|l|l|l|}
\hline 2 & \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline & \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Plane partitions of 3 :

Generating Function

Theorem (MacMahon)

The generating function for plane partitions is

$$
\sum_{\pi} q^{|\pi|}=\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{-k}
$$

where the sum runs over all (unrestricted) plane partitions.

Generating Function

Theorem (MacMahon)

The generating function for plane partitions is

$$
\sum_{\pi} q^{|\pi|}=\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{-k}
$$

where the sum runs over all (unrestricted) plane partitions.

Example

$$
\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{-k}=1+q+3 q^{2}+6 q^{3}+13 q^{4}+24 q^{5}+48 q^{6}+\cdots
$$

Schur functions

Definition
 A plane partition is said to be column-strict if it is strictly decreasing in coulumns.

where π runs over all column-strict plane partitions of shape λ and

Schur functions

Definition

A plane partition is said to be column-strict if it is strictly decreasing in coulumns.

Schur functions

Let x_{1}, \ldots, x_{n} be n variables, and fix a shape λ. The Schur function $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ is defined to be

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\pi} x^{\pi}
$$

where π runs over all column-strict plane partitions of shape λ and $x^{\pi}=\prod_{i} x_{i}^{\# \text { of } i \text { in } \pi}$.

An Example of Schur functions

Example

If $\lambda=(22)$ and $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then the followings are column-strict plane partitions with all parts ≤ 3.

2	2
1	1

3	2
1	1

3	3
1	1

3	2
2	1

3	3
2	1

3	3
2	2

Hence we have

$$
s_{\left(2^{2}\right)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}
$$

Ferrers graph

Definition

The Ferrers graph $D(\pi)$ of π is the subset of \mathbb{P}^{3} defined by

$$
D(\pi)=\left\{(i, j, k): k \leq \pi_{i j}\right\}
$$

Ferrers graph

Definition

The Ferrers graph $D(\pi)$ of π is the subset of \mathbb{P}^{3} defined by

$$
D(\pi)=\left\{(i, j, k): k \leq \pi_{i j}\right\}
$$

Example

Ferrers graph

Symmetries of plane paritior

Example

Definition

If $\pi=\left(\pi_{i j}\right)$ is a plane partition, then the transpose π^{*} of π is defined by $\pi^{*}=\left(\pi_{j i}\right)$.

Symmetries of plane paritior

Example

Definition

If $\pi=\left(\pi_{i j}\right)$ is a plane partition, then the transpose π^{*} of π is defined by $\pi^{*}=\left(\pi_{j i}\right)$.

- π is symmetric if $\pi=\pi^{*}$.
whenever $(i, j, k) \in \pi$ then
- π is called it is cyclically symmetric and
symmetric.

Symmetries of plane paritior

Example

Definition

If $\pi=\left(\pi_{i j}\right)$ is a plane partition, then the transpose π^{*} of π is defined by $\pi^{*}=\left(\pi_{j i}\right)$.

- π is symmetric if $\pi=\pi^{*}$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called it is cyclically symmetric and symmetric.

Symmetries of plane paritior

Example

Definition

If $\pi=\left(\pi_{i j}\right)$ is a plane partition, then the transpose π^{*} of π is defined by $\pi^{*}=\left(\pi_{j i}\right)$.

- π is symmetric if $\pi=\pi^{*}$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called totally symmetric if it is cyclically symmetric and symmetric.

Complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, s, t)=[r] \times[s] \times[t]$.
Define the complement π^{C} of π by

Example

$B(2,3,3)$

Complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, s, t)=[r] \times[s] \times[t]$.
Define the complement π^{c} of π by
$\pi^{c}=\{(r+1-i, s+1-j, t+1-k):(i, j, k) \notin \pi\}$.

Example

complement

Complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, s, t)=[r] \times[s] \times[t]$.
Define the complement π^{c} of π by $\pi^{c}=\{(r+1-i, s+1-j, t+1-k):(i, j, k) \notin \pi\}$.

- π is said to be (r, s, t)-self-complementary if $\pi=\pi^{c}$. i.e.

$$
(i, j, k) \in \pi \Leftrightarrow(r+1-i, s+1-j, t+1-k) \notin \pi .
$$

Example

A ($2,3,3$)-self-complementary PP

Transpose-complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, r, t)$.
Define the
$\pi^{\text {tc }}=$

Example

Transpose-complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, r, t)$. Define the transpose-complement $\pi^{\text {tc }}$ of π by

$$
\pi^{t c}=\{(r+1-j, r+1-i, t+1-k):(i, j, k) \notin \pi\} .
$$

Example

Transpose-complement

Definition

Let $\pi=\left(\pi_{i j}\right)$ be a plane partition contained in the box $B(r, r, t)$. Define the transpose-complement $\pi^{t c}$ of π by

$$
\pi^{t c}=\{(r+1-j, r+1-i, t+1-k):(i, j, k) \notin \pi\} .
$$

- π is said to be complement=transpose if $\pi=\pi^{\text {tc }}$, i.e.

$$
(i, j, k) \in \pi \Leftrightarrow(r+1-j, r+1-i, t+1-k) \notin \pi .
$$

Example

Symmetry classes of plane partitions

Symmetry classes (Stanley)The transformation ${ }^{c}$ and the group S_{3} generate a group T of order12. The group T has ten conjugacy classes of subgroups, givingrise to ten enumeration problems.

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation ${ }^{c}$ and the group S_{3} generate a group T of order 12. The group T has ten conjugacy classes of subgroups, giving rise to ten enumeration problems.

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation ${ }^{c}$ and the group S_{3} generate a group T of order 12. The group T has ten conjugacy classes of subgroups, giving rise to ten enumeration problems.

Table (R. P. Stanley, "Symmetries of Plane Parititions", J. Combin. Theory Ser. A 43, 103-113 (1986))

1	$B(r, s, t)$	Any
2	$B(r, r, t)$	Symmetric
3	$B(r, r, r)$	Cyclically symmetric
4	$B(r, r, r)$	Totally symmetric
5	$B(r, s, t)$	Self-complementary
6	$B(r, r, t)$	Complement = transpose
7	$B(r, r, t)$	Symmetric and self-complementary
8	$B(r, r, r)$	Cyclically symmetric and complement = transpose
9	$B(r, r, r)$	Cyclically symmetric and self-complementary
10	$B(r, r, r)$	Totally symmetric and self-complementary

Totally symmetric self-complementary plane partitions

Definition

A plane partition contained in $B(2 n, 2 n, 2 n)$ is said to be totally symmetric self-complementary plane parition of size n if it is totally symmetric and ($2 n, 2 n, 2 n$)-self-complementary.

Totally symmetric self-complementary plane partitions

Definition

A plane partition contained in $B(2 n, 2 n, 2 n)$ is said to be totally symmetric self-complementary plane parition of size n if it is totally symmetric and ($2 n, 2 n, 2 n$)-self-complementary. We denote the set of all self-complementary totally symmetric plane partitions of size n by \mathscr{T}_{n}.

Totally symmetric self-complementary plane partitions

Definition

A plane partition contained in $B(2 n, 2 n, 2 n)$ is said to be totally symmetric self-complementary plane parition of size n if it is totally symmetric and ($2 n, 2 n, 2 n$)-self-complementary.
We denote the set of all self-complementary totally symmetric plane partitions of size n by \mathscr{T}_{n}.

Example

\mathscr{T}_{1} consists of the single partition

TSSCPPs of size 2

Example

\mathscr{T}_{2} consists of the following two partitions:

TSSCPPs of size 2

Example

\mathscr{T}_{2} consists of the following two partitions:

TSSCPPs of size 3

Example

\mathscr{T}_{3} consists of the following seven partitions:

TSSCPPs of size 3

Example

\mathscr{T}_{3} consists of the following seven partitions:

Example

\mathscr{T}_{3} consists of the following seven partitions:

TSSCPPs of size 3

Example

\mathscr{T}_{3} consists of the following seven partitions:

Tc-symmetric plane partitions

Definition

A plane partition in $B(2 n, 2 n, 2 n)$ is defined to be tc-symmetric of size n if it is cyclically symmetric and it is equal to its transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by

Tc-symmetric plane partitions

Definition

A plane partition in $B(2 n, 2 n, 2 n)$ is defined to be tc-symmetric of size n if it is cyclically symmetric and it is equal to its transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by \mathscr{C}_{n}.

Tc-symmetric plane partitions

Definition

A plane partition in $B(2 n, 2 n, 2 n)$ is defined to be tc-symmetric of size n if it is cyclically symmetric and it is equal to its transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by \mathscr{C}_{n}.

Example

\mathscr{C}_{1} consists of the single partition

Tc-symmetric PPs of size 2

Example

\mathscr{C}_{2} consists of the following two partitions:

Tc-symmetric PPs of size 2

Example

\mathscr{C}_{2} consists of the following two partitions:

Tc-symmetric PPs of size 3

Example

\mathscr{C}_{3} consists of the following eleven plane partitions:

n	1	2	3	4	5	6	\cdots
TSSCPP	1	2	7	42	429	7436	\cdots
tc-symmetric PP	1	2	11	170	7429	920460	\cdots

Definition

$$
\begin{aligned}
& A_{n}=\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!} \\
& T C_{n}=\prod_{i=0}^{n-1} \frac{(3 i+1)(6 i)!(2 i)!}{(4 i)!(4 i+1)!}
\end{aligned}
$$

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition.

Example

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{1} consists of the single PP \emptyset.

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{2} consists of the following 2 PPs:

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{2} consists of the following 2 PPs:
\emptyset

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{3} consists of the followng 7 PPs

Restricted column-strict plane partitions

Definition

Let \mathscr{P}_{n} denote the set of plane partitions $c=\left(c_{i j}\right)_{1 \leq i, j}$ subject to the constraints that
(C1) c is column-strict;
(C2) j th column is less than or equal to $n-j$.
We call an element of \mathscr{P}_{n} a restricted column-strict plane partition. A part $c_{i j}$ of c is said to be saturated if $c_{i j}=n-j$.

Example

\mathscr{P}_{3} consists of the followng 7 PPs

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{1} consists of the single pair (\emptyset, \emptyset).

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{2} consists of the following 2 pairs:

$$
(\emptyset, \emptyset) \quad(\boxed{1}, \boxed{1})
$$

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{2} consists of the following 2 pairs:

$$
(\emptyset, \emptyset) \quad(\boxed{1}, \boxed{1})
$$

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{3} consists of the followng 11 pairs

$$
\begin{aligned}
& (0, \emptyset) \quad(\boxed{1}, 1) \quad(2,1) \quad(\boxed{1}, 2) \quad(2,2)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
2 & 2 \\
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{llll}
2 & 1 & 2 & 1 \\
\hline 1 & , & 1 \\
\hline
\end{array}\right)
\end{aligned}
$$

Pairs of Restricted column-strict plane partitions

Definition

Let \mathscr{Q}_{n} denote the set of all pairs of plane partitions in \mathscr{P}_{n} of the same shape.

Example

\mathscr{P}_{3} consists of the followng 11 pairs

$$
\begin{aligned}
& (0,0) \quad(\boxed{1}, 1) \quad(2,1) \quad(\boxed{1}, 2) \quad(2,2) \\
& (\boxed{1|1, ~ 1| 1]}) \quad(\boxed{|\mid 1}, 2 \mid 1) \quad([2|1,|1| 1) \quad(\boxed{2 \mid 1}, 2 \mid 1) \\
& \left(\begin{array}{l|l}
2 & 2 \\
\hline 1 & 2 \\
1
\end{array}\right)\left(\begin{array}{llll}
\hline \frac{2}{2} & 1 & \frac{2}{2} & 1 \\
\hline 1 & , & 1 \\
\hline
\end{array}\right)
\end{aligned}
$$

Bjections

Theorem

Let n be a positive integer. Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

Bijections

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{C}_{n} to \mathscr{Q}_{n}.

Bijections

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{C}_{n} to \mathscr{Q}_{n}.
Example ($n=3$)
There is 1 RCSPP of shape \emptyset.

Bijections

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{C}_{n} to \mathscr{Q}_{n}.

Example ($n=3$)

There are 2 RCSPPs of shape \square :

Bijections

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{C}_{n} to \mathscr{Q}_{n}.

Example ($n=3$)

There are 2 RCSPPs of shape \square

Bijections

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{C}_{n} to \mathscr{Q}_{n}.
Example ($n=3$)
There is 1 RCSPP of shape \square :

Bijections

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{C}_{n} to \mathscr{Q}_{n}.

Example ($n=3$)

There is 1 RCSPP of shape

Bijections

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{T}_{n} to \mathscr{P}_{n}.

Theorem

Let n be a positive integer.
Then we can construct a bijection from \mathscr{C}_{n} to \mathscr{Q}_{n}.

Example ($n=3$)

This implies

$$
\begin{aligned}
& 1+2+2+1+1=7 \\
& 1^{2}+2^{2}+2^{2}+1^{2}+1^{2}=11
\end{aligned}
$$

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $U_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

5	5			2	2
4	4	3		1	
3	2				
2	1				
1					

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}$, Saturated parts

5	5	4			2
4	4				
3	2				
2	1				
1					

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=1, \bar{U}_{1}(c)=3$

5	5	4			2
4	4				
3	2				
2	1				
1					

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=2, \bar{U}_{2}(c)=5$

5	5	4			2
4	4				
3	2				
2	1				
1					

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=3, \bar{U}_{3}(c)=3$

5	5		2	2
4	4			
3	2			
2	1			
1				

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=4, \bar{U}_{4}(c)=4$

5	5		2	2
4	4			
3	2			
2	1			
1				

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=5, \bar{U}_{5}(c)=4$

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=6, \bar{U}_{6}(c)=3$

5	5		2	2
4	4		1	
3	2			
2	1			
1				

The statistics in words of RCSPP

Definition

Let $c=\left(c_{i j}\right)_{1 \leq i, j} \in \mathscr{P}_{n}$ and $k=1, \ldots, n$.
Let $\bar{U}_{k}(c)$ denote the number of parts equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of boxes in π.

Example

$n=7, c \in \mathscr{P}_{3}, k=7, \bar{U}_{7}(c)=3$

5	5	4			2
4	4				
3	2				
2	1				
1					

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that

```
    (0) each number in a domino crossing the 2j-1st column does
    not exceed n-j
    D. aach numbor in a comino crossing the 2jth column does not
for j=1,\ldots,n-1.
```


Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2jth column does not for $j=1, \ldots, n-1$. If a part in the $2 j-1$ th or $2 j$ th column is equal

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2jth column does not exceed $n-j$,
for $j=1, \ldots, n-1$.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the $2 j$ th column does not exceed $n-j$,
for $j=1, \ldots, n-1$. If a part in the $2 j-1$ th or $2 j$ th column is equal to $n-j$, then we call it a saturated part.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the $2 j$ th column does not exceed $n-j$,
for $j=1, \ldots, n-1$. If a part in the $2 j-1$ th or $2 j$ th column is equal to $n-j$, then we call it a saturated part. For a positive integer k and $\pi \in \mathscr{D}_{n}^{(e)}$, set $\bar{U}_{k}(\pi)$ denote the number of parts in c equal to k plus the number of saturated parts less than k.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(e)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the $2 j$ th column does not exceed $n-j$,
for $j=1, \ldots, n-1$. If a part in the $2 j-1$ th or $2 j$ th column is equal to $n-j$, then we call it a saturated part. For a positive integer k and $\pi \in \mathscr{D}_{n}^{(e)}$, set $\bar{U}_{k}(\pi)$ denote the number of parts in c equal to k plus the number of saturated parts less than k. Further let $N(\pi)$ denote the number of dominoes in π.

Example

Example

The following domino plane partition π is an element of $\mathscr{D}_{3}^{(e)}$

since the 1st and 2 nd columns ≤ 2, the 3 rd and 4 th columns ≤ 1. The red numbers stand for saturated parts. Hence we have $\bar{U}_{1}(\pi)=\bar{U}_{2}(\pi)=\bar{U}_{3}(\pi)=3$. Since π has 4 dominoes, we have $N(\pi)=4$.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(o)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2jth column does not exceed $n-j-1$
for $j=1, \ldots, n-1$.
and can be defined

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(o)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2 jth column does not exceed $n-j-1$,
for $j=1, \ldots, n-1$.

Domino plane partitions

Definition

Let $\mathscr{D}_{n}^{(o)}$ denote the set of column-strict domino plane partitions c subject to the constraints that
(1) each number in a domino crossing the $2 j-1$ st column does not exceed $n-j$,
(2) each number in a domino crossing the 2 jth column does not exceed $n-j-1$,
for $j=1, \ldots, n-1$. The statistics $\bar{U}_{k}(\pi)$ and can be defined similarly.

Example

Example

The following domino plane partition π is an element of $\mathscr{D}_{3}^{(o)}$

since the 1 st column ≤ 2, the 2 nd and 3rd columns ≤ 1. The red numbers stand for saturated parts. Hence we have
$\bar{U}_{1}(\pi)=\bar{U}_{2}(\pi)=\bar{U}_{3}(\pi)=3$. Since π has 4 dominoes, we have $N(\pi)=4$.

The Stanton-White Bijection

Theorem (Stanton-White)

There are bijections

$$
\pi \in \mathscr{D}_{n}^{(e)} \longleftrightarrow(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n},
$$

and

$$
\pi \in \mathscr{D}_{n}^{(o)} \longleftrightarrow(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n-1} .
$$

By this bijection, we have

The Stanton-White Bijection

Theorem (Stanton-White)

There are bijections

$$
\pi \in \mathscr{D}_{n}^{(e)} \longleftrightarrow(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n},
$$

and

$$
\pi \in \mathscr{D}_{n}^{(o)} \longleftrightarrow(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n-1} .
$$

By this bijection, we have

$$
\begin{aligned}
& \bar{U}_{k}(\pi)=\bar{U}_{k}(\sigma)+\bar{U}_{k}(\tau), \\
& N(\pi)=N(\sigma)+N(\tau)
\end{aligned}
$$

Tc-symmetric plane partitions and domino plane partitions

Corollary

There is a bijection between domino plane partitions $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\pi \in \mathscr{D}_{n}^{(0)}$) whose row and column lengths are all even and pairs $(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n}$ (resp. $\left.(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n-1}\right)$ such that σ and τ have the same shape.

Tc-symmetric plane partitions and domino plane partitions

Corollary

There is a bijection between domino plane partitions $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\pi \in \mathscr{D}_{n}^{(o)}$) whose row and column lengths are all even and pairs $(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n}$ (resp. $\left.(\sigma, \tau) \in \mathscr{P}_{n} \times \mathscr{P}_{n-1}\right)$ such that σ and τ have the same shape. Especially, there is a pijection between tc-symmetric plane partitions and domino plane partitions in $\mathscr{D}_{n}^{(e)}$ whose row and column lengths are all even.

(τ, t)-enumeration of tc-symmetric plane partitions

Definition

Let $\mathscr{D}_{n}^{(e, R C)}$ (resp. $\mathscr{D}_{n}^{(0, R C)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\left.\pi \in \mathscr{D}_{n}^{(o)}\right)$ whose row and column lengths are both all even.

(τ, t)-enumeration of tc-symmetric plane partitions

Definition

Let $\mathscr{D}_{n}^{(e, R C)}$ (resp. $\mathscr{D}_{n}^{(o, R C)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp. $\pi \in \mathscr{D}_{n}^{(o)}$) whose row and column lengths are both all even. We consider the generating functions

$$
T_{n}^{(e)}(\tau, t)=\sum_{\pi \in \mathscr{O}_{n}^{(e, R C)}} \tau^{N(\pi)} t^{\bar{U}_{k}(\pi)}
$$

and

$$
T_{n}^{(o)}(\tau, t)=\sum_{\pi \in \mathscr{O}_{n}^{(o, R C)}} \tau^{N(\pi)} t^{\bar{U}_{k}(\pi)} .
$$

We will see the generating functions does not depend on k later.

Example

$\mathscr{D}_{3}^{(e, R C)}$ is composed of the following 11 elements;

$$
\emptyset,
$$

2
1

Example

$$
T_{3}^{(e)}(\tau, t)=1+\left(1+2 t+t^{2}\right) \tau^{2}+\left(2 t^{2}+2 t^{3}+t^{4}\right) \tau^{4}+t^{4} \tau^{6}
$$

A determinant expression

Theorem

Let
$T_{i j}^{e}(\tau, t)= \begin{cases}\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\left(\begin{array}{c}\left.\binom{-1}{k-j}+t\binom{j-1}{k-j-1}\right\} \tau^{2 k-i-j} \\ \delta_{i j}\end{array} \text { if } i, j>0,\right.\right. \\ \text { otherwise },\end{cases}$
and

$$
T_{i j}^{o}(\tau, t)= \begin{cases}\left.\sum_{k=0}^{\infty}\left\{\begin{array}{c}
i-1 \\
k-i
\end{array}\right)+t\binom{i-1}{k-i-1}\right\}\left\{\binom{j-2}{k-j}+t\binom{j-2}{k-j-1}\right\} \tau^{2 k-i-j} & \text { if } i, j-1>0, \\
\delta_{i j} & \text { otherwise } .\end{cases}
$$

Then we have

$$
T_{n}^{(e)}(\tau, t)=\operatorname{det}\left(T_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1},
$$

and

$$
T_{n}^{(o)}(\tau, t)=\operatorname{det}\left(T_{i j}^{o}(\tau, t)\right)_{0 \leq, i, j \leq n-1}
$$

A refined enumeration of tc-symmetric plane partition!

Definition

We define the polynomials $t c_{n}(t)$ by

$$
t c_{n}(t)=T_{n}^{(e)}(1, t)
$$

A refined enumeration of tc-symmetric plane partitions

Definition

We define the polynomials $t c_{n}(t)$ by

$$
t c_{n}(t)=T_{n}^{(e)}(1, t) .
$$

Example

$$
\begin{aligned}
& t c_{1}(t)=1 \\
& t c_{2}(t)=1+t^{2} \\
& t c_{3}(t)=2+2 t+3 t^{2}+2 t^{3}+2 t^{4} \\
& t c_{4}(t)=11+22 t+34 t^{2}+36 t^{3}+34 t^{4}+22 t^{5}+11 t^{6} \\
& t c_{5}(t)=170+510 t+969 t^{2}+1326 t^{3}+1479 t^{4}+1326 t^{5} \\
& \\
& \quad+969 t^{6}+510 t^{7}+170 t^{8}
\end{aligned}
$$

A refined enumeration of tc-symmetric plane partition!

Definition

We define the polynomials $t c_{n}(t)$ by

$$
t c_{n}(t)=T_{n}^{(e)}(1, t)
$$

Observations

$$
\begin{aligned}
& t c_{n}(-1)=2^{n-1} \prod_{i=1}^{n-1} \frac{(6 i-6)!(3 i+1)!(2 i-1)!}{(4 i-3)!(4 i)!(3 i-3)!} \\
& t c_{n}(2)=\prod_{i=1}^{n-1} \frac{(6 i-1)!(3 i-2)!(2 i-1)!}{(4 i-2)!(4 i-1)!(3 i-1)!}
\end{aligned}
$$

Mills-Robbins-Rumsey Conjectures

Mills-Robbins-Rumsey bijection

Mills, Robbins and Rumsey have constructed a bijection between TSSCPPs and a certain set of shifted plane partitions:

$$
\mathscr{T}_{n} \longleftrightarrow \mathscr{B}_{n}=\{\text { shifted plane partitions }\}
$$

Mills-Robbins-Rumsey Conjectures

Mills-Robbins-Rumsey bijection

Mills, Robbins and Rumsey have constructed a bijection between TSSCPPs and a certain set of shifted plane partitions:

$$
\mathscr{T}_{n} \longleftrightarrow \mathscr{B}_{n}=\{\text { shifted plane partitions }\}
$$

Flips

They also define an involution π_{k} from this set of shifted plane partitions onto itself:

$$
\pi_{k}: \mathscr{B}_{n} \rightarrow \mathscr{B}_{n}
$$

for $k=1,2, \ldots, n$.

Mills-Robbins-Rumsey Conjectures

Definition

They define two important involutions on \mathscr{B}_{n}

$$
\begin{aligned}
& \rho=\pi_{2} \pi_{4} \pi_{6} \cdots, \\
& \gamma=\pi_{1} \pi_{3} \pi_{5} \cdots,
\end{aligned}
$$

and put \mathscr{B}_{n}^{ρ} (resp. \mathscr{B}_{n}^{γ}) the set of elements \mathscr{B}_{n} invariant under ρ (resp. γ).

Mills-Robbins-Rumsey Conjectures

Definition

They define two important involutions on \mathscr{B}_{n}

$$
\begin{aligned}
& \rho=\pi_{2} \pi_{4} \pi_{6} \cdots, \\
& \gamma=\pi_{1} \pi_{3} \pi_{5} \cdots,
\end{aligned}
$$

and put $\mathscr{B}_{n}^{\rho}\left(\right.$ resp. $\left.\mathscr{B}_{n}^{\gamma}\right)$ the set of elements \mathscr{B}_{n} invariant under ρ (resp. γ).

Conjecture 4 (Conjiecture 4 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions", J. Combin. Theory Ser. A 42, (1986).)
Let $n \geq 2$ and $r, 0 \leq r \leq n$ be integers. Then the number of elements c in \mathscr{B}_{n} with $\rho(c)=c$ and $U_{1}(c)=r$ would be the same as the number of n by n alternating sign matrices a invariant under the half turn in their own planes (that is $a_{i j}=a_{n+1-i, n+1-i}$ for $1 \leq i, j \leq n$) and satisfying $a_{1, r}=1$.

Mills-Robbins-Rumsey Conjectures

Definition

They define two important involutions on \mathscr{B}_{n}

$$
\begin{gathered}
\rho=\pi_{2} \pi_{4} \pi_{6} \cdots \\
\gamma=\pi_{1} \pi_{3} \pi_{5} \cdots
\end{gathered}
$$

and put $\mathscr{B}_{n}^{\rho}\left(\right.$ resp. $\left.\mathscr{B}_{n}^{\gamma}\right)$ the set of elements \mathscr{B}_{n} invariant under ρ (resp. γ).

Conjecture 6 (Conjiecture 6 of Mills, Robbins and Rumsey, "Seli-complementary totally symmetric plane partitions", J. Combin. Theory Ser. A 42, (1986).)
Let $n \geq 3$ an odd integer and $i, 0 \leq i \leq n-1$ be an integer. Then the number of c in \mathscr{B}_{n} with $\gamma(c)=c$ and $U_{2}(c)=i$ would be the same as the number of n by n alternating sign matrices with $a_{i 1}=1$ and which are invariant under the vertical flip (that is $a_{i j}=a_{i, n+1-j}$ for $\left.1 \leq i, j \leq n\right)$.

The Numbers of HTSASMs and VSASMs

Definition

$$
\begin{aligned}
& A_{2 n}^{\mathrm{HTS}}=\prod_{i=0}^{n-1} \frac{(3 i)!(3 i+2)!}{\{(n+i)!\}^{2}} \quad A_{2 n+1}^{\mathrm{HTS}}=\frac{n!(3 n)!}{\{(2 n)!\}^{2}} \cdot A_{2 n}^{\mathrm{HTS}}, \\
& A_{2 n+1}^{\mathrm{VS}}=\frac{1}{2^{n}} \prod_{k=1}^{n} \frac{(6 k-2)!(2 k-1)!}{(4 k-2)!(4 k-1)!} .
\end{aligned}
$$

The Numbers of HTSASMs and VSASMs

Definition

$$
\begin{aligned}
& A_{2 n}^{\mathrm{HTS}}=\prod_{i=0}^{n-1} \frac{(3 i)!(3 i+2)!}{\{(n+i)!\}^{2}} \quad A_{2 n+1}^{\mathrm{HTS}}=\frac{n!(3 n)!}{\{(2 n)!\}^{2}} \cdot A_{2 n}^{\mathrm{HTS}}, \\
& A_{2 n+1}^{\mathrm{VS}}=\frac{1}{2^{n}} \prod_{k=1}^{n} \frac{(6 k-2)!(2 k-1)!}{(4 k-2)!(4 k-1)!} .
\end{aligned}
$$

Example

n	1	2	3	4	5	6	7	8	9	\cdots
$A_{n}^{\text {HTS }}$	1	2	3	10	25	140	588	5544	39204	\cdots
$A_{n}^{\text {VS }}$	1		1		3		26		646	\cdots

Enumeration polynomials

Definition

$$
A_{2 n+1}^{\mathrm{vs}}(t)=\frac{A_{2 n-1}^{\mathrm{Vs}}}{(4 n-2)!} \sum_{r=1}^{2 n} t^{r-1} \sum_{k=1}^{r}(-1)^{r+k} \frac{(2 n+k-2)!(4 n-k-1)!}{(k-1)!(2 n-k)!}
$$

Enumeration polynomials

Definition

$$
A_{2 n+1}^{\mathrm{VS}}(t)=\frac{A_{2 n-1}^{\mathrm{VS}}}{(4 n-2)!} \sum_{r=1}^{2 n} t^{r-1} \sum_{k=1}^{r}(-1)^{r+k} \frac{(2 n+k-2)!(4 n-k-1)!}{(k-1)!(2 n-k)!}
$$

Example

$$
\begin{aligned}
& A_{3}^{\mathrm{VS}}(t)=1 \\
& A_{5}^{\mathrm{VS}}(t)=1+t+t^{2} \\
& A_{7}^{\mathrm{VS}}(t)=3+6 t+8 t^{2}+6 t^{3}+3 t^{4} \\
& A_{9}^{\mathrm{VS}}(t)=26+78 t+138 t^{2}+162 t^{3}+138 t^{4}+78 t^{5}+26 t^{6}
\end{aligned}
$$

Enumeration polynomials

Definition

$$
\begin{aligned}
& A_{n}(t)=\frac{A_{n}}{\binom{3 n-2}{n-1}} \sum_{r=1}^{n}\binom{n+r-2}{n-1}\binom{2 n-1-r}{n-1} t^{r-1} \\
& \frac{\widetilde{A}_{2 n}^{\mathrm{HTS}}(t)}{\widetilde{A}_{2 n}^{\mathrm{HTS}}}=\frac{(3 n-2)(2 n-1)!}{(n-1)!(3 n-1)!} \\
& \times \sum_{r=0}^{n} \frac{\left\{n(n-1)-n r+r^{2}\right\}(n+r-2)!(2 n-r-2)!}{r!(n-r)!} t^{r} \\
& A_{2 n}^{\mathrm{HTS}}(t)=\widetilde{A}_{2 n}^{\mathrm{HTS}}(t) A_{n}(t) \\
& A_{2 n+1}^{\mathrm{HTS}}(t)=\frac{1}{3}\left\{A_{n+1}(t) \widetilde{A}_{2 n}^{\mathrm{HTS}}(t)+A_{n}(t) \widetilde{A}_{2 n+2}^{\mathrm{HTS}}(t)\right\}
\end{aligned}
$$

where $\widetilde{A}_{2 n}^{\mathrm{HTS}}=\prod_{i=0}^{n-1} \frac{(3 i)!(3 i+2)!}{(3 i+1)!(n+i)!}$.

Example

Example

$$
\begin{aligned}
& A_{1}^{\mathrm{HTS}}(t)=1 \\
& A_{2}^{\mathrm{HTS}}(t)=1+t \\
& A_{3}^{\mathrm{HTS}}(t)=1+t+t^{2} \\
& A_{4}^{\mathrm{HTS}}(t)=2+3 t+3 t^{2}+2 t^{3} \\
& A_{5}^{\text {HTS }}(t)=3+6 t+7 t^{2}+6 t^{3}+3 t^{4}
\end{aligned}
$$

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1$)'s, for each k.

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$.

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$. If both of k and $k-1$ appear in the same column, we say k and $k-1$ paired.
acts on the following column-strict plane partitions:

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$. If both of k and $k-1$ appear in the same column, we say k and $k-1$ paired. The other unpaired k 's and $k-1$'s are swaped in each row.
acts on the following column-strict plane partitions:

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$. If both of k and $k-1$ appear in the same column, we say k and $k-1$ paired. The other unpaired k 's and $k-1$'s are swaped in each row.

Example

f_{2} acts on the following column-strict plane partitions:

The Bender-Knuth involution

The Bender-Knuth involution

A classical method to prove that a Schur function is symmetric is to define involutions f_{k} on column-strict plane partitions c which swaps the number of k 's and $(k-1)$'s, for each k. Consider the parts of c equal to k or $k-1$. If both of k and $k-1$ appear in the same column, we say k and $k-1$ paired. The other unpaired k 's and $k-1$'s are swaped in each row.

Example

f_{2} acts on the following column-strict plane partitions:

The Bender-Knuth involution

Remark

f_{2} gives a proof of

$$
s_{\lambda}\left(x_{2}, x_{1}, x_{3}, \ldots, x_{n}\right)=s_{\lambda}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

Hence $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a symmetric function.

A Bender-Knuth Type involution

Definition

If $k \geq 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_{k}$ on \mathscr{P}_{n} which swaps k 's and $(k-1)$'s where we ignore saturated $(k-1)$ when we perform a swap.

A Bender-Knuth Type involution

Definition

If $k \geq 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_{k}$ on \mathscr{P}_{n} which swaps k 's and $(k-1)$'s where we ignore saturated $(k-1)$ when we perform a swap.

Example

$n=7 \quad$ Apply $\widetilde{\pi}_{3}$ to the following $c \in \mathscr{P}_{3}$.

5	5	4	2	2
4	4	3		
3	2	2		
2	1			
1				

A Bender-Knuth Type involution

Definition

If $k \geq 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_{k}$ on \mathscr{P}_{n} which swaps k 's and $(k-1)$'s where we ignore saturated $(k-1)$ when we perform a swap.

Example

$n=7 \quad$ Apply $\widetilde{\pi}_{3}$ to the following $c \in \mathscr{P}_{3}$.

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

A Bender-Knuth Type involution

Definition

If $k \geq 2$, we define a Bender-Knuth-type involution $\tilde{\pi}_{k}$ on \mathscr{P}_{n} which swaps k 's and $(k-1)$'s where we ignore saturated $(k-1)$ when we perform a swap.

Example

$n=7 \quad$ Then we obtain the following $\widetilde{\pi}_{3}(c) \in \mathscr{P}_{3}$.

5	5	4	3	2
4	4	3		
3	3	2		
2	1			
1				

A Bender-Knuth Type involution

Definition

We define an involution $\tilde{\pi}_{1}$ on \mathscr{P}_{n} similarly assuming the outside of the shape is filled with 0 .

A Bender-Knuth Type involution

Definition

We define an involution $\tilde{\pi}_{1}$ on \mathscr{P}_{n} similarly assuming the outside of the shape is filled with 0 .

Example

$n=7$ Apply $\widetilde{\pi}_{1}$ to the following $c \in \mathscr{P}_{3}$.

5	5	4	3	2
4	4	3	2	1
3	1			
1				

A Bender-Knuth Type involution

Definition

We define an involution $\tilde{\pi}_{1}$ on \mathscr{P}_{n} similarly assuming the outside of the shape is filled with 0 .

Example

$n=7$ Apply $\widetilde{\pi}_{1}$ to the following $c \in \mathscr{P}_{3}$.

5	5	4	3	2	1
4	4	3	2		
3	1	1			

Flips in words of RCSPP

Proposition

If $\sigma \in \mathscr{P}_{n}$ and $k \geq 2$, then

$$
\begin{aligned}
& \bar{U}_{k-1}\left(\pi_{k}(\sigma)\right)=\bar{U}_{k}(\sigma) \\
& N\left(\pi_{k}(\sigma)\right)=N(\sigma)
\end{aligned}
$$

Definition
We define involutions on
and we put $\mathscr{P}_{n}^{\rho}\left(\right.$ resp. $\left.\mathscr{P}_{n}^{\gamma}\right)$ the set of elements \mathscr{P}_{n} invariant under

Flips in words of RCSPP

Proposition

If $\sigma \in \mathscr{P}_{n}$ and $k \geq 2$, then

$$
\begin{aligned}
& \bar{U}_{k-1}\left(\pi_{k}(\sigma)\right)=\bar{U}_{k}(\sigma) \\
& N\left(\pi_{k}(\sigma)\right)=N(\sigma)
\end{aligned}
$$

Definition

We define involutions on \mathscr{P}_{n}

$$
\begin{aligned}
& \widetilde{\rho}=\widetilde{\pi}_{2} \widetilde{\pi}_{4} \widetilde{\pi}_{6} \cdots, \\
& \widetilde{\gamma}=\widetilde{\pi}_{1} \widetilde{\pi}_{3} \widetilde{\pi}_{5} \cdots,
\end{aligned}
$$

and we put $\mathscr{P}_{n}^{\widetilde{\rho}}$ (resp. $\left.\mathscr{P}_{n}^{\widetilde{\gamma}}\right)$ the set of elements \mathscr{P}_{n} invariant under $\widetilde{\rho}($ resp. $\widetilde{\gamma})$.

Invariants under $\widetilde{\rho}$

Example
 $\mathscr{P}_{1}^{\tilde{\rho}}=\{\emptyset\}$

Invariants under $\widetilde{\rho}$

Example

$\mathscr{P}_{2}^{\widetilde{\rho}}=\{\emptyset, \square\}$

Invariants under $\widetilde{\rho}$

Example

$\mathscr{P}_{3}^{\tilde{\rho}}$ is composed of the following 3 RCSPPs:

Invariants under $\widetilde{\rho}$

Example

$\mathscr{P}_{4}^{\widetilde{\rho}}$ is composed of the following 10 elements:

Invariants under $\widetilde{\rho}$

Example

$\mathscr{P}_{5}^{\widetilde{\rho}}$ has 25 elements, and $\mathscr{P}_{6}^{\widetilde{\rho}}$ has 140 elements.

Invariants under $\widetilde{\gamma}$

Proposition

If $c \in \mathscr{P}_{n}$ is invariant under $\widetilde{\gamma}$, then n must be an odd integer.

[^0]
Invariants under $\widetilde{\gamma}$

Proposition

If $c \in \mathscr{P}_{n}$ is invariant under $\widetilde{\gamma}$, then n must be an odd integer.

Example

Thus we have $\mathscr{P}_{3}^{\tilde{\gamma}}=\{\boxed{1}\}$,
$\mathscr{P}_{5}^{\bar{\gamma}}$ is composed of the following 3 RCSPPs:

and $\mathscr{P}_{5}^{\bar{\gamma}}$ has 26 elements.

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

The following $c \in \mathscr{P}_{11}$ is invariant under $\tilde{\gamma}$:

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Remove all 1's from $c \in \mathscr{P}_{11}^{\tilde{\gamma}}$.

7	7	6	6	3	2	1	1	1
5	5	4	3	1				
4	3	2	2					
1	1							

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Then we obtain a PP in which each row has even length.

7	7	6	6	3	2
5	5	4	3		
4	3	2	2		

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Identify 3 with 2,5 with 4 , and 7 with 6.

7	7	6	6	3	2
5	5	4	3		
4	3	2	2		

Invariants under $\widetilde{\gamma}$

Theorem

If $c \in \mathscr{P}_{2 n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Repace 3 and 2 by dominos containing 1,5 and 4 by dominos containing 2,7 and 6 by dominos containing 3 .

Column-strict domino plane partitions of even rows

Definition

Let $\mathscr{D}_{n}^{(e, R)}$ (resp. $\mathscr{D}_{n}^{(0, R)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp.
$\pi \in \mathscr{D}_{n}^{(o)}$) whose row lengths are all even.

Column-strict domino plane partitions of even rows

Definition

Let $\mathscr{D}_{n}^{(e, R)}$ (resp. $\mathscr{D}_{n}^{(o, R)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp.
$\pi \in \mathscr{D}_{n}^{(o)}$) whose row lengths are all even.

Theorem

Let n be a positive integer. Let $\tau_{2 n+1}$ denote our bijection of $\mathscr{P}_{2 n+1}^{\bar{\gamma}}$ onto $\mathscr{D}_{n}^{(e, R)}$. Further we have $\bar{U}_{1}\left(\tau_{2 n+1}(c)\right)=\bar{U}_{2}(c)$.

Example

Example

$\mathscr{D}_{1}^{(e, R)}=\{\emptyset\}$ is the set of column-strict domino plane partitions with all columns ≤ 0.

Example

Example

$\mathscr{D}_{2}^{(e, R)}$ is composed of the following 3 elements:

$$
\emptyset,
$$

This is the set of column-strict domino plane partitions with the first and second columns ≤ 1, other columns ≤ 0 and each row of even length.

Example

Example

$\mathscr{D}_{3}^{(e, R)}$ is the set of column-strict domino plane partitions with the 1 st and 2 nd columns ≤ 2, the 3rd and 4 th columns ≤ 1, other columns ≤ 0 and each row of even length (26 elements):

Example

Example

2	2
1	1

$\mathscr{D}_{4}^{(e, R)}$ is the set of column-strict domino plane partitions with the 1 st and 2 nd columns ≤ 3, the 3 rd and 4 th columns ≤ 2, the 5 rd and 6 th columns ≤ 1, other columns ≤ 0 and each row of even length (646 elements).

(τ, t)-enumeration

Definition

We consider the generating functions

$$
V_{n}^{(e)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(e, R)}} \tau^{N(\pi)} t \bar{U}_{k}(\pi),
$$

and

$$
V_{n}^{(o)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(o, R)}} \tau^{N(\pi)} t \bar{U}_{k}(\pi)
$$

(τ, t)-enumeration

Definition

We consider the generating functions

$$
V_{n}^{(e)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(e, R)}} \tau^{N(\pi)} t^{U_{k}(\pi)}
$$

and

$$
V_{n}^{(o)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(o, R)}} \tau^{N(\pi)} t \bar{U}_{k}(\pi)
$$

Example

$$
\begin{gathered}
V_{3}^{(e)}(\tau, t)=1+(1+t) \tau+\left(1+3 t+2 t^{2}\right) \tau^{2}+\left(2 t+3 t^{2}+t^{3}\right) \tau^{3} \\
+\left(3 t^{2}+3 t^{3}+t^{4}\right) \tau^{4}+\left(2 t^{3}+t^{4}\right) \tau^{5}+t^{4} \tau^{6}
\end{gathered}
$$

Example

Theorem (Stanton-White, Carré-Leclerc)

We can define a map which associate a pair in $\mathscr{P}_{n} \times \mathscr{P}_{n}$ (resp. $\mathscr{P}_{n} \times \mathscr{P}_{n-1}$) with a domino plane partition in $\mathscr{D}_{n}^{(e)}\left(\right.$ resp. $\left.\mathscr{D}_{n}^{(0)}\right)$.

column-strict plane partitions with a column-strict domino plane

 partition d.

Color 0

Color 0

Color 1

Color 1

Example

Theorem (Stanton-White, Carré-Leclerc)

We can define a map which associate a pair in $\mathscr{P}_{n} \times \mathscr{P}_{n}$ (resp. $\mathscr{P}_{n} \times \mathscr{P}_{n-1}$) with a domino plane partition in $\mathscr{D}_{n}^{(e)}\left(\right.$ resp. $\left.\mathscr{D}_{n}^{(o)}\right)$. Let Φ denote the map which associate the pair $\left(c_{0}, c_{1}\right)$ of column-strict plane partitions with a column-strict domino plane partition d.

Color 0

Color 0

Color 1

Color 1

Domino plane partition

Example

For example, we associate the column-strict domino plane partition

the pair

$$
c_{0}=\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline
\end{array} \quad c_{1}=\begin{array}{|l|l|l|}
\hline 3 & 3 & 1 \\
\hline 2 & 2 & \\
\hline
\end{array}
$$

of plane partitions.

Conditions on shape

Theorem

Let d be a column-strict domino plane partition, and let $\left(c_{0}, c_{1}\right)=\Phi(d)$. Then

Conditions on shape

Theorem

Let d be a column-strict domino plane partition, and let $\left(c_{0}, c_{1}\right)=\Phi(d)$. Then
(i) All columns of d have even length if, and only if, $\operatorname{sh} c_{1} \subseteq \operatorname{sh} c_{0}$ and $\operatorname{sh} c_{0} \backslash \operatorname{sh} c_{1}$ is a vertical strip.

Conditions on shape

Theorem

Let d be a column-strict domino plane partition, and let $\left(c_{0}, c_{1}\right)=\Phi(d)$. Then
(i) All columns of d have even length if, and only if, $\operatorname{sh} c_{1} \subseteq \operatorname{sh} c_{0}$ and $\operatorname{sh} c_{0} \backslash \operatorname{sh} c_{1}$ is a vertical strip.
(ii) All rows of d have even length if, and only if, sh $c_{0} \subseteq \operatorname{sh} c_{1}$ and $\operatorname{sh} c_{1} \backslash \operatorname{sh} c_{0}$ is a horizontal strip.

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
Let $u_{j}=(n-j, n-j)$ and $v_{j}=\left(\lambda_{j}+n-j, 0\right)$ for $j=1, \ldots, n$, and let u

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
of shape λ^{\prime} can be identified with n-tuples of nonintersecting

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
Let $u_{j}=(n-j, n-j)$ and $v_{j}=\left(\lambda_{j}+n-j, 0\right)$ for $j=1, \ldots, n$, and let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$.

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
Let $u_{j}=(n-j, n-j)$ and $v_{j}=\left(\lambda_{j}+n-j, 0\right)$ for $j=1, \ldots, n$, and let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$. We claim that the $c \in \mathscr{P}_{n}$ of shape λ^{\prime} can be identified with n-tuples of nonintersecting D-paths in $\mathscr{P}(\boldsymbol{u}, \boldsymbol{v})$.

From RCSPPs to lattce paths

Theorem

Let $V=\left\{(x, y) \in \mathbb{N}^{2}: 0 \leq y \leq x\right\}$ be the vertex set, and direct an edge from u to v whenever $v-u=(1,-1)$ or $(0,-1)$.
Let $u_{j}=(n-j, n-j)$ and $v_{j}=\left(\lambda_{j}+n-j, 0\right)$ for $j=1, \ldots, n$, and let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$. We claim that the $c \in \mathscr{P}_{n}$ of shape λ^{\prime} can be identified with n-tuples of nonintersecting D-paths in $\mathscr{P}(\boldsymbol{u}, \boldsymbol{v})$.

Example of lattice paths

Example

$n=7, c \in \mathscr{P}_{7}:$ RCSPP

5	5	4		2
4	4	3		
3	2	2		
2	1			
1				

Example of lattice paths

Example

Lattice paths

A determinant expression

Theorem

Let

$$
V_{i j}^{e}(\tau, t)=\left\{\begin{array}{c}
\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\binom{j-1}{k-j}+t\binom{j-1}{k-j-1}\right\} \tau^{2 k-i-j} \\
+\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i-1}+t\binom{i-1}{k-i-2}\right\}\left\{\binom{j-1}{k-j}+t\binom{j-1}{k-j-1}\right\} \tau^{2 k-i-j-1} \\
\text { if } i, j>0,
\end{array}\right.
$$

$$
\delta_{i j}
$$

otherwise,
and

$$
V_{i j}^{O}(\tau, t)=\left\{\begin{array}{l}
\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\left(\begin{array}{c}
\left.\binom{i-2}{k-j}+t\binom{j-2}{k-j-1}\right\} \tau^{2 k-i-j} \\
+\sum_{k=0}^{\infty}\left\{\binom{i-1}{k-i-1}+t\binom{i-1}{k-2-2}\right\}\left\{\binom{j-2}{k-j}+t\binom{j-j}{k-j-1}\right\} \tau^{2 k-i-j-1} \\
\text { if } i, j-1>0,
\end{array}\right.\right. \\
\delta_{i j} \quad
\end{array}\right.
$$

otherwise.

A determinant expression

Theorem

Then we have

$$
V_{n}^{(e)}(\tau, t)=\operatorname{det}\left(V_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1},
$$

and

$$
V_{n}^{(o)}(\tau, t)=\operatorname{det}\left(V_{i j}^{o}(\tau, t)\right)_{0 \leq, i, j \leq n-1} .
$$

A determinant expression

Theorem

Then we have

$$
V_{n}^{(e)}(\tau, t)=\operatorname{det}\left(V_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1},
$$

and

$$
V_{n}^{(o)}(\tau, t)=\operatorname{det}\left(V_{i j}^{o}(\tau, t)\right)_{0 \leq, i, j \leq n-1} .
$$

Conjecture

$$
V_{n}^{(e)}(1, t)=A_{2 n+1}^{\mathrm{Vs}}(t)
$$

Observations

Observations

We would have

$$
V_{n}^{(e)}(-1, t)= \begin{cases}\left(A_{2 m-1}^{\mathrm{VS}}\right)^{2} t c_{m}(t)^{2} & \text { if } n=2 m-1 \\ \left(T C_{m}\right)^{2}\left(1-t+t^{2}\right) A_{2 m+1}^{\mathrm{Vs}}(t)^{2} & \text { if } n=2 m\end{cases}
$$

and

$$
V_{n}^{(o)}(-1, t)= \begin{cases}A_{2 m-1}^{\mathrm{VS}} T C_{m-1} A_{2 m-1}^{\mathrm{VS}}(t) t c_{m}(t) & \text { if } n=2 m-1 \\ A_{2 m-1}^{\mathrm{VS}} T C_{m} A_{2 m+1}^{\mathrm{VS}}(t) t c_{m}(t) & \text { if } n=2 m,\end{cases}
$$

Generalized domino plane partitions

Generalized domino plane partitions

A domino is a special kind of skew shape consists of two squares. A 1×2 domino is called a horizontal domino while a 2×1 domino is called a vertical domino.

Generalized domino plane partitions

Generalized domino plane partitions

A domino is a special kind of skew shape consists of two squares.
A 1×2 domino is called a horizontal domino while a 2×1 domino is called a vertical domino. A generalized domino plane partition of shape λ consists of a tiling of the shape λ by means of ordinary 1×1 squares or dominoes, and a filling of each square or domino with a positive integer so that the integers are weakly decreasing along either rows or columns.

Generalized domino plane partitions

Generalized domino plane partitions

A domino is a special kind of skew shape consists of two squares.
A 1×2 domino is called a horizontal domino while a 2×1 domino is called a vertical domino. A generalized domino plane partition of shape λ consists of a tiling of the shape λ by means of ordinary 1×1 squares or dominoes, and a filling of each square or domino with a positive integer so that the integers are weakly decreasing along either rows or columns. Further we call it a domino plane partition if the shape λ is tiled with only dominoes.

Generalized domino plane partitions

Example

The left-below is a column-strict generalized domino plane partition of shape $(4,3,2,1)$, and the right-below is a column-strict domino plane partition of shape $(4,4,2)$.

Twisted domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n}^{\mathrm{HTS}}$ denote the set of column-strict generalized domino plane partitions c subject to the constraints that
(E1) c has at most n columns;

for any j such that $n-j$ is odd.

We call an element in $\mathscr{P}_{n}^{\mathrm{HTS}}$ a twisted domino plane partition.

Twisted domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n}^{\mathrm{HTS}}$ denote the set of column-strict generalized domino plane partitions c subject to the constraints that
(E1) c has at most n columns;
(E2) each part in the jth column does not exceed $\Gamma(n-j) / 2\rceil$;
\square
for any j such that $n-j$ is odd.
4) A single box can annear onlv when it contains $[(n-j) / 2]$ and

We call an element in $\mathscr{P}_{n}^{\text {HTS }}$ a twisted domino plane partition.

Twisted domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n}^{\mathrm{HTS}}$ denote the set of column-strict generalized domino plane partitions c subject to the constraints that
(E1) c has at most n columns;
(E2) each part in the jth column does not exceed $\Gamma(n-j) / 2\rceil$;
(E3) A domino containing $\lceil(n-j) / 2\rceil$ must not cross the j th column for any j such that $n-j$ is odd.

We call an element in $\mathscr{P}_{n}^{\mathrm{HTS}}$ a twisted domino plane partition.

Twisted domino plane partitions

Definition

Let m and $n \geq 1$ be nonnegative integers. Let $\mathscr{P}_{n}^{\mathrm{HTS}}$ denote the set of column-strict generalized domino plane partitions c subject to the constraints that
(E1) c has at most n columns;
(E2) each part in the jth column does not exceed $\Gamma(n-j) / 2\rceil$;
(E3) A domino containing $\lceil(n-j) / 2\rceil$ must not cross the j th column for any j such that $n-j$ is odd.
(E4) A single box can appear only when it contains $\lceil(n-j) / 2\rceil$ and it is in the j th column such that $n-j$ is odd.
We call an element in $\mathscr{P}_{n}^{\text {HTS }}$ a twisted domino plane partition.

Twisted domino plane partitions

Example
$\mathscr{P}_{1}^{\mathrm{HTS}}=\{\emptyset\}$
$\mathscr{P}_{2}^{\mathrm{HTS}}=\{\emptyset, \mathbf{1}\}$
$\mathscr{P}_{3}^{\mathrm{HTS}}$ is composed of the following 3 elements:
\emptyset

Twisted domino plane partitions

Example

$\mathscr{P}_{4}^{\mathrm{HTS}}$ is composed of the following 10 elements:

$\mathscr{P}_{5}^{\mathrm{HTS}}$ has 25 elements and $\mathscr{P}_{6}^{\mathrm{HTS}}$ has 140 elements.

Twisted domino PPs and RCSDPPs with all columns even length

Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and $\mathscr{D}_{n}^{(e, C)}$ or $\mathscr{D}_{n}^{(0, C)}$ (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;

Twisted domino PPs and RCSDPPs with all columns even length

Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and $\mathscr{D}_{n}^{(e, C)}$ or $\mathscr{D}_{n}^{(0, C)}$ (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;
(1) the numeber of 1 's is kept invariant;

Twisted domino PPs and RCSDPPs with all columns even length

Conjecture

For a positive integer n, there would be a bijection between $\mathscr{P}_{n}^{\mathrm{HTS}}$ (the set of twisted domono PPs) and $\mathscr{D}_{n}^{(e, C)}$ or $\mathscr{D}_{n}^{(0, C)}$ (the set of restricted column-strict domino PPs with all columns of even length) which has the following property;
(1) the numeber of 1 's is kept invariant;
(2) the number of columns is kept invariant.

RCSDPPs with all columns of even length

Example

$\mathscr{D}_{1}^{(e, C)}=\{\emptyset\}$
$\mathscr{D}_{1}^{(0, C)}=\{\emptyset, \boxed{1}\}$
$\mathscr{D}_{2}^{(e, C)}$ has the following 3 elements:

RCSDPPs with all columns of even length

Example

$\mathscr{D}_{3}^{(0, C)}$ has the following 10 elements:

$\mathscr{D}_{3}^{(e, C)}$ has 25 elements, $\mathscr{D}_{4}^{(e, C)}$ has 140 elements, and $\mathscr{D}_{4}^{(e, C)}$ has 588 elements.

(τ, t)-enumeration

Definition

Let $\mathscr{D}_{n}^{(e, C)}$ (resp. $\mathscr{D}_{n}^{(0, C)}$) denote the set of $\pi \in \mathscr{D}_{n}^{(e)}$ (resp.
$\left.\pi \in \mathscr{D}_{n}^{(e)}\right)$ whose column lengths are all even. We consider the generating functions

$$
H_{n}^{(e)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(e, C)}} \tau^{N(\pi)} t^{\bar{U}_{k}(\pi)},
$$

and

$$
H_{n}^{(o)}(\tau, t)=\sum_{\pi \in \mathscr{D}_{n}^{(o, C)}} \tau^{N(\pi)} \bar{U}_{k}(\pi)
$$

Example

Example

$\mathscr{D}_{3}^{(0, C)}$ consists of the following 10 elements:

Thus we have

$$
H_{3}^{(o)}(\tau, t)=1+(1+t) \tau+\left(2 t+t^{2}\right) \tau^{2}+\left(2 t^{2}+t^{3}\right) \tau^{3}+t^{3} \tau^{4} .
$$

A determinant expression

Theorem

Let

$$
H_{i j}^{e}(\tau, t)=\left\{\begin{array}{l}
\sum_{k=0}^{\infty} \sum_{l=0}^{k}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\binom{j-1}{l-j}+t\binom{j-1}{l-j-1}\right\} \tau^{k+l-i-j} \\
\text { if } i, j>0, \\
(1+t \tau)(1+\tau)^{i-1} \quad \text { if } i>0 \text { and } j=0, \\
\delta_{0, j} \quad \text { if } i=0,
\end{array}\right.
$$

and

$$
H_{i j}^{o}(\tau, t)=\left\{\begin{array}{l}
\sum_{k=0}^{\infty} \sum_{l=0}^{k}\left\{\binom{i-1}{k-i}+t\binom{i-1}{k-i-1}\right\}\left\{\binom{j-2}{1-j}+t\binom{j-2}{l-j-1}\right\} \tau^{k+l-i-j} \\
\text { if } i, j-1>0, \\
(1+t \tau)(1+\tau)^{i-1} \quad \text { if } i>0 \text { and } j=0,1, \\
\delta_{i j} \quad \text { if } i=0 .
\end{array}\right.
$$

A determinant expression

Theorem

Then we have

$$
H_{n}^{(e)}(\tau, t)=\operatorname{det}\left(H_{i j}^{e}(\tau, t)\right)_{0 \leq, i, j \leq n-1},
$$

and

$$
H_{n}^{(o)}(\tau, t)=\operatorname{det}\left(H_{i j}^{\circ}(\tau, t)\right)_{0 \leq, i, j \leq n-1} .
$$

Conjecture

$$
\begin{aligned}
& H_{n}^{(e)}(1, t)=A_{2 n-1}^{\mathrm{HTS}}(t), \\
& H_{n}^{(o)}(1, t)=A_{2 n}^{\mathrm{HTS}}(t),
\end{aligned}
$$

A determinant expression

Observation

We would have

$$
H_{n}^{(e)}(-1, t)=\left(1-t+t^{2}\right) A_{2 n-1}^{\mathrm{VS}}(t),
$$

and

$$
H_{n}^{(o)}(-1, t)=t(1-t) V_{n-2}^{(o)}(1, t) \quad \text { for } n \geq 3
$$

Thank you!

[^0]: and \mathscr{P}_{5}^{γ} has 26 elements.

