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Plane parition enumeration is a classical combinatorial problem studyed
by MacMahon and have been studied by many people in relations with
discrete mathematics, symmetric functions, representation theory and
mathematical physics. In this talk we consider certain weighted
enumeration problems of two classes of plane partitions, i.e., totally
symmetric self-complementary plane partitions (TSSCPP) and cyclically
symmetric transpose-complementary plane partions (tc-symmetic PP).
We construct one bijection between a subset of TSSCPPs and a class of
domino plane partitions and another bijection between tc-symmetic PPs
and another class of domino plane partitions. The study of TSSCPPs
was started by a paper by Mills, Robbins and Rumsey and they proposed
several conjectures in relations with the enumeration problems of
alternating sign matrices (ASM). By considering the weighted
enumeration of those classes of domino plane partitions we find more
mysterious similarities between TSSCPPs (tc-symmetic PPs) and ASMs.
We will give Pfaffian (determinant) expressions for those weighted
enumeration problems.
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A plane partition is an array π = (πij)i,j≥1 of nonnegative integers
such that π has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns. If

∑
i,j≥1 πij = n,

then we write |π| = n and say that π is a plane partition of n, or π
has the weight n.

.

Example

.

.

.

. ..

.

.

A plane partition of 14

3 2 1 1 0 . . .

2 2 1 0 . . .

1 1 0 0 . . .

0 0 0
. . .
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Let π = (πij)i,j≥1 be a plane partition.

A part is a positive entry πij > 0.

The shape of π is the ordinary partition λ for which π has λi

nonzero parts in the ith row.

We say that π has r rows if r = `(λ). Similarly, π has s
columns if s = `(λ′).

.

Example

.

.

.

. ..

.

.

A plane partition of shape (432) with 3 rows and 4 columns:

3 2 1 1
2 2 1
1 1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Shape

.

Definition

.

.

.

. ..

.

.

Let π = (πij)i,j≥1 be a plane partition.

A part is a positive entry πij > 0.

The shape of π is the ordinary partition λ for which π has λi

nonzero parts in the ith row.

We say that π has r rows if r = `(λ). Similarly, π has s
columns if s = `(λ′).

.

Example

.

.

.

. ..

.

.

A plane partition of shape (432) with 3 rows and 4 columns:

3 2 1 1
2 2 1
1 1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Shape

.

Definition

.

.

.

. ..

.

.

Let π = (πij)i,j≥1 be a plane partition.

A part is a positive entry πij > 0.

The shape of π is the ordinary partition λ for which π has λi

nonzero parts in the ith row.

We say that π has r rows if r = `(λ). Similarly, π has s
columns if s = `(λ′).

.

Example

.

.

.

. ..

.

.

A plane partition of shape (432) with 3 rows and 4 columns:

3 2 1 1
2 2 1
1 1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Shape

.

Definition

.

.

.

. ..

.

.

Let π = (πij)i,j≥1 be a plane partition.

A part is a positive entry πij > 0.

The shape of π is the ordinary partition λ for which π has λi

nonzero parts in the ith row.

We say that π has r rows if r = `(λ). Similarly, π has s
columns if s = `(λ′).

.

Example

.

.

.

. ..

.

.

A plane partition of shape (432) with 3 rows and 4 columns:

3 2 1 1
2 2 1
1 1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Shape

.

Definition

.

.

.

. ..

.

.

Let π = (πij)i,j≥1 be a plane partition.

A part is a positive entry πij > 0.

The shape of π is the ordinary partition λ for which π has λi

nonzero parts in the ith row.

We say that π has r rows if r = `(λ). Similarly, π has s
columns if s = `(λ′).

.

Example

.

.

.

. ..

.

.

A plane partition of shape (432) with 3 rows and 4 columns:

3 2 1 1
2 2 1
1 1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Example of plane partitions

.

Example

.

.

.

. ..

.

.

Plane partitions of 0: ∅
Plane partitions of 1: 1

Plane partitions of 2:

2 1 1 1
1

Plane partitions of 3:

3 1 1 1 1
1
1

2 1 2
1

1 1
1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Example of plane partitions

.

Example

.

.

.

. ..

.

.

Plane partitions of 0: ∅
Plane partitions of 1: 1

Plane partitions of 2:

2 1 1 1
1

Plane partitions of 3:

3 1 1 1 1
1
1

2 1 2
1

1 1
1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Example of plane partitions

.

Example

.

.

.

. ..

.

.

Plane partitions of 0: ∅
Plane partitions of 1: 1

Plane partitions of 2:

2 1 1 1
1

Plane partitions of 3:

3 1 1 1 1
1
1

2 1 2
1

1 1
1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Example of plane partitions

.

Example

.

.

.

. ..

.

.

Plane partitions of 0: ∅
Plane partitions of 1: 1

Plane partitions of 2:

2 1 1 1
1

Plane partitions of 3:

3 1 1 1 1
1
1

2 1 2
1

1 1
1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Generating Function

.

Theorem (MacMahon)

.

.

.

. ..

.

.

The generating function for plane partitions is

∑

π

q|π| =
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k=1

(1 − qk )−k ,

where the sum runs over all (unrestricted) plane partitions.
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∞∏

k=1

(1 − qk )−k = 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + 48q6 + · · ·
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A plane partition is said to be column-strict if it is strictly
decreasing in coulumns.

.

Schur functions

.

.
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. ..

. .

Let x1,. . . , xn be n variables, and fix a shape λ. The Schur function
sλ(x1, . . . , xn) is defined to be

sλ(x1, . . . , xn) =
∑

π

xπ,

where π runs over all column-strict plane partitions of shape λ and
xπ =

∏
i x# of i in π

i .
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If λ = (22) and x = (x1, x2, x3), then the followings are
column-strict plane partitions with all parts ≤ 3.

2 2

1 1

3 2

1 1

3 3

1 1

3 2

2 1

3 3

2 1

3 3

2 2

Hence we have

s(22)(x1, x2, x3) = x2
1 x2

2 + x2
1 x2

3 + x2
2 x2

3 + x2
1 x2x3 + x1x2

2 x3 + x1x2x2
3 .
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The Ferrers graph D(π) of π is the subset of P3 defined by

D(π) =
{
(i, j, k) : k ≤ πij

}

.

Example
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.

.

Ferrers graph

3 2 1 1

2 2 1

1 1 ←→
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If π = (πij) is a plane partition,
then the transpose π∗ of π is
defined by π∗ = (πji).

π is symmetric if π = π∗ .

π is cyclically symmetric if
whenever (i, j, k) ∈ π then
(j, k , i) ∈ π.

π is called totally symmetric if
it is cyclically symmetric and
symmetric.

.

Example

.

.

.

. ..

.

.

transpose

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Symmetries of plane paritions

.

Definition

.

.

.

. ..

.

.
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defined by π∗ = (πji).
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Complement
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Let π = (πij) be a plane partition contained in the box
B(r , s, t) = [r] × [s] × [t].
Define the complement πc of π by
πc = { (r + 1 − i, s + 1 − j, t + 1 − k) : (i, j, k) < π }.

π is said to be (r , s, t)-self-complementary if π = πc . i.e.
(i, j, k) ∈ π⇔ (r + 1 − i, s + 1 − j, t + 1 − k) < π.

.

Example

.

.

.

. ..

.

.

B(2, 3, 3)
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A (2, 3, 3)-self-complementary PP
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Let π = (πij) be a plane partition contained in the box B(r , r , t).
Define the transpose-complement πtc of π by
πtc = { (r + 1 − j, r + 1 − i, t + 1 − k) : (i, j, k) < π }.

π is said to be complement=transpose if π = πtc , i.e.
(i, j, k) ∈ π⇔ (r + 1 − j, r + 1 − i, t + 1 − k) < π.

.

Example

.

.
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.

B(3, 3, 2)
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Symmetry classes of plane partitions

.

Symmetry classes (Stanley)

.

.
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.

.

The transformation c and the group S3 generate a group T of order
12. The group T has ten conjugacy classes of subgroups, giving
rise to ten enumeration problems.

.

Table (R. P. Stanley, “Symmetries of Plane Partitions”, J. Combin. Theory Ser. A 43, 103-113 (1986))

.

.

.

. ..

. .

1 B(r , s, t) Any
2 B(r , r , t) Symmetric
3 B(r , r , r) Cyclically symmetric
4 B(r , r , r) Totally symmetric
5 B(r , s, t) Self-complementary
6 B(r , r , t) Complement = transpose
7 B(r , r , t) Symmetric and self-complementary
8 B(r , r , r) Cyclically symmetric and complement = transpose
9 B(r , r , r) Cyclically symmetric and self-complementary
10 B(r , r , r) Totally symmetric and self-complementary
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12. The group T has ten conjugacy classes of subgroups, giving
rise to ten enumeration problems.

.

Table (R. P. Stanley, “Symmetries of Plane Partitions”, J. Combin. Theory Ser. A 43, 103-113 (1986))

.

.

.

. ..

. .

1 B(r , s, t) Any
2 B(r , r , t) Symmetric
3 B(r , r , r) Cyclically symmetric
4 B(r , r , r) Totally symmetric
5 B(r , s, t) Self-complementary
6 B(r , r , t) Complement = transpose
7 B(r , r , t) Symmetric and self-complementary
8 B(r , r , r) Cyclically symmetric and complement = transpose
9 B(r , r , r) Cyclically symmetric and self-complementary
10 B(r , r , r) Totally symmetric and self-complementary
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.

.

Totally symmetric self-complementary plane partitions

.

Definition

.

.

.

. ..

.

.

A plane partition contained in B(2n, 2n, 2n) is said to be totally
symmetric self-complementary plane parition of size n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.
We denote the set of all self-complementary totally symmetric
plane partitions of size n by Tn.

.

Example

.

.

.

. ..

.

.

T1 consists of the single partition
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.

.

Totally symmetric self-complementary plane partitions

.

Definition

.

.

.

. ..

.

.

A plane partition contained in B(2n, 2n, 2n) is said to be totally
symmetric self-complementary plane parition of size n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.
We denote the set of all self-complementary totally symmetric
plane partitions of size n by Tn.

.

Example

.

.

.

. ..

.

.

T1 consists of the single partition
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.

.

Totally symmetric self-complementary plane partitions

.

Definition

.

.

.

. ..

.

.

A plane partition contained in B(2n, 2n, 2n) is said to be totally
symmetric self-complementary plane parition of size n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.
We denote the set of all self-complementary totally symmetric
plane partitions of size n by Tn.

.

Example

.

.

.

. ..

.

.

T1 consists of the single partition
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.

.

TSSCPPs of size 2

.

Example

.

.

.

. ..

.

.

T2 consists of the following two partitions:
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.

.

TSSCPPs of size 2

.

Example

.

.

.

. ..

.

.

T2 consists of the following two partitions:
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.

.

TSSCPPs of size 3

.

Example

.

.

.

. ..

.

.

T3 consists of the following seven partitions:

π1 π2
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.

.

TSSCPPs of size 3

.

Example

.

.

.

. ..

.

.

T3 consists of the following seven partitions:

π3 π4
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.

.

TSSCPPs of size 3

.

Example

.

.

.

. ..

.

.

T3 consists of the following seven partitions:

π5 π6
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.

TSSCPPs of size 3

.

Example

.

.

.

. ..

.

.

T3 consists of the following seven partitions:

π7
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.

.

Tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

A plane partition in B(2n, 2n, 2n) is defined to be tc-symmetric of
size n if it is cyclically symmetric and it is equal to its
transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by
Cn.

.

Example

.

.

.

. ..

.

.

C1 consists of the single partition
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.

.

Tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

A plane partition in B(2n, 2n, 2n) is defined to be tc-symmetric of
size n if it is cyclically symmetric and it is equal to its
transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by
Cn.

.

Example

.

.

.

. ..

.

.

C1 consists of the single partition
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.

.

Tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

A plane partition in B(2n, 2n, 2n) is defined to be tc-symmetric of
size n if it is cyclically symmetric and it is equal to its
transpose-complement.
We denote the set of all tc-symmetric plane partitions of size n by
Cn.

.

Example

.

.

.

. ..

.

.

C1 consists of the single partition
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.

.

Tc-symmetric PPs of size 2

.

Example

.

.

.

. ..

.

.

C2 consists of the following two partitions:
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.

.

Tc-symmetric PPs of size 2

.

Example

.

.

.

. ..

.

.

C2 consists of the following two partitions:

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Tc-symmetric PPs of size 3

.

Example

.

.

.

. ..

.

.

C3 consists of the following eleven plane partitions:

π8 π9
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.

.

Numbers

n 1 2 3 4 5 6 · · ·
TSSCPP 1 2 7 42 429 7436 · · ·
tc-symmetric PP 1 2 11 170 7429 920460 · · ·

.

Definition

.

.

.

. ..

. .

An =
n−1∏

i=0

(3i + 1)!

(n + i)!

TCn =
n−1∏

i=0

(3i + 1)(6i)!(2i)!

(4i)!(4i + 1)!
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P1 consists of the single PP ∅.

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 PPs:

∅ 1
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 PPs:

∅ 1
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 7 PPs

∅ 1 1 1 2 2 1 2
1

2 1
1
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.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of plane partitions c = (cij)1≤i,j subject to
the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 7 PPs

∅ 1 1 1 2 2 1 2
1

2 1
1
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.

.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.
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.

.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P1 consists of the single pair (∅, ∅).
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.

.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 pairs:

(∅, ∅)
(

1 , 1
)

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 pairs:

(∅, ∅)
(

1 , 1
)
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.

.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 11 pairs

(∅, ∅)
(

1 , 1
) (

2 , 1
) (

1 , 2
) (

2 , 2
)

(
1 1 , 1 1

) (
1 1 , 2 1

) (
2 1 , 1 1

) (
2 1 , 2 1

)


2
1 ,

2
1




2 1
1 ,

2 1
1
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.

.

Pairs of Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Qn denote the set of all pairs of plane partitions in Pn of the
same shape.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 11 pairs

(∅, ∅)
(

1 , 1
) (

2 , 1
) (

1 , 2
) (

2 , 2
)

(
1 1 , 1 1

) (
1 1 , 2 1

) (
2 1 , 1 1

) (
2 1 , 2 1

)


2
1 ,

2
1




2 1
1 ,

2 1
1
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.

Bijections

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.

.

Example (n = 3)

.

.

.

. ..

.

.
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.

.

Bijections

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.

.

Example (n = 3)

.

.

.

. ..

.

.
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.

.

Bijections

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.

.

Example (n = 3)

.

.

.

. ..

.

.

There is 1 RCSPP of shape ∅.
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.

.

Bijections

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.

.

Example (n = 3)

.

.

.

. ..

.

.

There are 2 RCSPPs of shape :

1 2
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.

.

Bijections

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.

.

Example (n = 3)

.

.

.

. ..

.

.

There are 2 RCSPPs of shape :

1 1 2 1
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.

.

Bijections

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.

.

Example (n = 3)

.

.

.

. ..

.

.

There is 1 RCSPP of shape :

2

1
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.

.

Bijections

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.

.

Example (n = 3)

.

.

.

. ..

.

.

There is 1 RCSPP of shape :

2 1

1
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.

.

Bijections

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Tn to Pn.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can construct a bijection from Cn to Qn.

.

Example (n = 3)

.

.

.

. ..

.

.

This implies

1 + 2 + 2 + 1 + 1 = 7

12 + 22 + 22 + 12 + 12 = 11
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, Saturated parts

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 1, U1(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 2, U2(c) = 5

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 3, U3(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 4, U4(c) = 4

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 5, U5(c) = 4

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 6, U6(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

.

The statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k . Further let N(π) denote the number
of boxes in π.

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 7, U7(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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. . . . . .

.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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. . . . . .

.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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. . . . . .

.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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. . . . . .

.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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. . . . . .

.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j,

for j = 1, . . . , n − 1. If a part in the 2j − 1th or 2jth column is equal
to n − j, then we call it a saturated part. For a positive integer k

and π ∈ D
(e)
n , set Uk (π) denote the number of parts in c equal to k

plus the number of saturated parts less than k . Further let N(π)
denote the number of dominoes in π.
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.

.

Example

.

Example

.

.

.

. ..

.

.

The following domino plane partition π is an element of D
(e)
3

2

1
111 111

since the 1st and 2nd columns ≤ 2, the 3rd and 4th columns ≤ 1.
The red numbers stand for saturated parts. Hence we have
U1(π) = U2(π) = U3(π) = 3. Since π has 4 dominoes, we have
N(π) = 4.
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.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(o)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j − 1,

for j = 1, . . . , n − 1. The statistics Uk (π) and can be defined
similarly.
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. . . . . .

.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(o)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j − 1,

for j = 1, . . . , n − 1. The statistics Uk (π) and can be defined
similarly.

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(o)
n denote the set of column-strict domino plane partitions c

subject to the constraints that

.

.

.

1 each number in a domino crossing the 2j − 1st column does
not exceed n − j,

.

.

.

2 each number in a domino crossing the 2jth column does not
exceed n − j − 1,

for j = 1, . . . , n − 1. The statistics Uk (π) and can be defined
similarly.
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.

.

Example

.

Example

.

.

.

. ..

.

.

The following domino plane partition π is an element of D
(o)
3

222 111 111

1

since the 1st column ≤ 2, the 2nd and 3rd columns ≤ 1. The red
numbers stand for saturated parts. Hence we have
U1(π) = U2(π) = U3(π) = 3. Since π has 4 dominoes, we have
N(π) = 4.
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.

.

The Stanton-White Bijection

.

Theorem (Stanton-White)

.

.

.

. ..

.

.

There are bijections

π ∈ D
(e)
n ←→ (σ, τ) ∈Pn ×Pn,

and
π ∈ D

(o)
n ←→ (σ, τ) ∈Pn ×Pn−1.

By this bijection, we have

Uk (π) = Uk (σ) + Uk (τ),

N(π) = N(σ) + N(τ).
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. . . . . .

.

.

The Stanton-White Bijection

.

Theorem (Stanton-White)

.

.

.

. ..

.

.

There are bijections

π ∈ D
(e)
n ←→ (σ, τ) ∈Pn ×Pn,

and
π ∈ D

(o)
n ←→ (σ, τ) ∈Pn ×Pn−1.

By this bijection, we have

Uk (π) = Uk (σ) + Uk (τ),

N(π) = N(σ) + N(τ).
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.

.
Tc-symmetric plane partitions and domino plane
partitions

.

Corollary

.

.

.

. ..

.

.

There is a bijection between domino plane partitions π ∈ D
(e)
n

(resp. π ∈ D
(o)
n ) whose row and column lengths are all even and

pairs (σ, τ) ∈Pn ×Pn (resp. (σ, τ) ∈Pn ×Pn−1) such that σ and
τ have the same shape. Especially, there is a pijection between

tc-symmetric plane partitions and domino plane partitions in D
(e)
n

whose row and column lengths are all even.
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. . . . . .

.

.
Tc-symmetric plane partitions and domino plane
partitions

.

Corollary

.

.

.

. ..

.

.

There is a bijection between domino plane partitions π ∈ D
(e)
n

(resp. π ∈ D
(o)
n ) whose row and column lengths are all even and

pairs (σ, τ) ∈Pn ×Pn (resp. (σ, τ) ∈Pn ×Pn−1) such that σ and
τ have the same shape. Especially, there is a pijection between

tc-symmetric plane partitions and domino plane partitions in D
(e)
n

whose row and column lengths are all even.
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.

.

(τ, t)-enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e,RC)
n (resp. D

(o,RC)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose row and column lengths are both all even. We

consider the generating functions

T (e)
n (τ, t) =

∑

π∈D(e,RC)
n

τN(π)tUk (π),

and
T (o)

n (τ, t) =
∑

π∈D (o,RC)
n

τN(π)tUk (π).

We will see the generating functions does not depend on k later.
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. . . . . .

.

.

(τ, t)-enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

Let D
(e,RC)
n (resp. D

(o,RC)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose row and column lengths are both all even. We

consider the generating functions

T (e)
n (τ, t) =

∑

π∈D(e,RC)
n

τN(π)tUk (π),

and
T (o)

n (τ, t) =
∑

π∈D (o,RC)
n

τN(π)tUk (π).

We will see the generating functions does not depend on k later.
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.

.

Example

D
(e,RC)
3 is composed of the following 11 elements;

∅, 1 1
,

222 1
,

222 222
,

222
1 ,

1 1 111 111
,

222 1 111 111
,

222 222 111 111
,

222
1

111 111
,

222 222

1 1
,

222 222 1 1

1 1
.

.

Example

.

.

.

. ..

.

.

T (e)
3 (τ, t) = 1 + (1 + 2t + t2)τ2 + (2t2 + 2t3 + t4)τ4 + t4τ6.
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.

.

A determinant expression

.

Theorem

.

.

.

. ..

.

.

Let

Te
ij (τ, t) =


∑∞

k=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−1
k−j

)
+ t

(
j−1

k−j−1

)}
τ2k−i−j if i, j > 0,

δij otherwise,

and

To
ij (τ, t) =


∑∞

k=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−2
k−j

)
+ t

(
j−2

k−j−1

)}
τ2k−i−j if i, j − 1 > 0,

δij otherwise.

Then we have

T (e)
n (τ, t) = det

(
Te

ij (τ, t)
)
0≤,i,j≤n−1

,

and
T (o)

n (τ, t) = det
(
To

ij (τ, t)
)
0≤,i,j≤n−1

.
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.

.

A refined enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

We define the polynomials tcn(t) by

tcn(t) = T (e)
n (1, t).

.

Example

.

.

.

. ..

. .

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

A refined enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

We define the polynomials tcn(t) by

tcn(t) = T (e)
n (1, t).

.

Example

.

.

.

. ..

. .

tc1(t) = 1

tc2(t) = 1 + t2

tc3(t) = 2 + 2 t + 3 t2 + 2 t3 + 2 t4

tc4(t) = 11 + 22 t + 34 t2 + 36 t3 + 34 t4 + 22 t5 + 11 t6

tc5(t) = 170 + 510 t + 969 t2 + 1326 t3 + 1479 t4 + 1326 t5

+ 969 t6 + 510 t7 + 170 t8
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.

.

A refined enumeration of tc-symmetric plane partitions

.

Definition

.

.

.

. ..

.

.

We define the polynomials tcn(t) by

tcn(t) = T (e)
n (1, t).

.

Observations

.

.

.

. ..

. .

tcn(−1) = 2n−1
n−1∏

i=1

(6i − 6)!(3i + 1)!(2i − 1)!

(4i − 3)!(4i)!(3i − 3)!

tcn(2) =
n−1∏

i=1

(6i − 1)!(3i − 2)!(2i − 1)!

(4i − 2)!(4i − 1)!(3i − 1)!
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.

.

Mills-Robbins-Rumsey Conjectures

.

Mills-Robbins-Rumsey bijection

.

.

.

. ..

.

.

Mills, Robbins and Rumsey have constructed a bijection between
TSSCPPs and a certain set of shifted plane partitions:

Tn ←→ Bn = {shifted plane partitions}

.

Flips

.

.

.

. ..

.

.

They also define an involution πk from this set of shifted plane
partitions onto itself:

πk : Bn → Bn

for k = 1, 2, . . . , n.
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. . . . . .

.

.

Mills-Robbins-Rumsey Conjectures

.

Mills-Robbins-Rumsey bijection

.

.

.

. ..

.

.

Mills, Robbins and Rumsey have constructed a bijection between
TSSCPPs and a certain set of shifted plane partitions:

Tn ←→ Bn = {shifted plane partitions}

.

Flips

.

.

.

. ..

.

.

They also define an involution πk from this set of shifted plane
partitions onto itself:

πk : Bn → Bn

for k = 1, 2, . . . , n.
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. . . . . .

.

.

Mills-Robbins-Rumsey Conjectures

.

Definition

.

.

.

. ..

.

.

They define two important involutions on Bn

ρ = π2π4π6 · · · ,
γ = π1π3π5 · · · ,

and put Bρ
n (resp. Bγ

n) the set of elements Bn invariant under ρ
(resp. γ).
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.

.

Mills-Robbins-Rumsey Conjectures

.

Definition

.

.

.

. ..

.

.

They define two important involutions on Bn

ρ = π2π4π6 · · · ,
γ = π1π3π5 · · · ,

and put Bρ
n (resp. Bγ

n) the set of elements Bn invariant under ρ
(resp. γ).

.

Conjecture 4 (Conjecture 4 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane

partitions”, J. Combin. Theory Ser. A 42, (1986).)

.

.

.

. ..

.

.

Let n ≥ 2 and r , 0 ≤ r ≤ n be integers. Then the number of
elements c in Bn with ρ(c) = c and U1(c) = r would be the same
as the number of n by n alternating sign matrices a invariant under
the half turn in their own planes (that is aij = an+1−i,n+1−i for
1 ≤ i, j ≤ n) and satisfying a1,r = 1.
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.

.

Mills-Robbins-Rumsey Conjectures

.

Definition

.

.

.

. ..

.

.

They define two important involutions on Bn

ρ = π2π4π6 · · · ,
γ = π1π3π5 · · · ,

and put Bρ
n (resp. Bγ

n) the set of elements Bn invariant under ρ
(resp. γ).

.

Conjecture 6 (Conjecture 6 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane

partitions”, J. Combin. Theory Ser. A 42, (1986).)

.

.

.

. ..

.

.

Let n ≥ 3 an odd integer and i, 0 ≤ i ≤ n − 1 be an integer. Then
the number of c in Bn with γ(c) = c and U2(c) = i would be the
same as the number of n by n alternating sign matrices with
ai1 = 1 and which are invariant under the vertical flip (that is
aij = ai,n+1−j for 1 ≤ i, j ≤ n).
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.

.

The Numbers of HTSASMs and VSASMs

.

Definition

.

.

.

. ..

.

.

AHTS
2n =

n−1∏

i=0

(3i)!(3i + 2)!
{
(n + i)!

}2 AHTS
2n+1 =

n!(3n)!
{
(2n)!

}2 · A
HTS
2n ,

AVS
2n+1 =

1
2n

n∏

k=1

(6k − 2)!(2k − 1)!

(4k − 2)!(4k − 1)!
.

.

Example

.

.

.

. ..

.

.

n 1 2 3 4 5 6 7 8 9 · · ·
AHTS

n 1 2 3 10 25 140 588 5544 39204 · · ·
AVS

n 1 1 3 26 646 · · ·
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.

.

The Numbers of HTSASMs and VSASMs

.

Definition

.

.

.

. ..

.

.

AHTS
2n =

n−1∏

i=0

(3i)!(3i + 2)!
{
(n + i)!

}2 AHTS
2n+1 =

n!(3n)!
{
(2n)!

}2 · A
HTS
2n ,

AVS
2n+1 =

1
2n

n∏

k=1

(6k − 2)!(2k − 1)!

(4k − 2)!(4k − 1)!
.

.

Example

.

.

.

. ..

.

.

n 1 2 3 4 5 6 7 8 9 · · ·
AHTS

n 1 2 3 10 25 140 588 5544 39204 · · ·
AVS

n 1 1 3 26 646 · · ·
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.

.

Enumeration polynomials

.

Definition

.

.

.

. ..

.

.

AVS
2n+1(t) =

AVS
2n−1

(4n − 2)!

2n∑

r=1

t r−1
r∑

k=1

(−1)r+k (2n + k − 2)!(4n − k − 1)!

(k − 1)!(2n − k)!
,

.

Example

.

.

.

. ..

.

.

AVS
3 (t) = 1

AVS
5 (t) = 1 + t + t2

AVS
7 (t) = 3 + 6t + 8t2 + 6t3 + 3t4

AVS
9 (t) = 26 + 78t + 138t2 + 162t3 + 138t4 + 78t5 + 26t6
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.

.

Enumeration polynomials

.

Definition

.

.

.

. ..

.

.

AVS
2n+1(t) =

AVS
2n−1

(4n − 2)!

2n∑

r=1

t r−1
r∑

k=1

(−1)r+k (2n + k − 2)!(4n − k − 1)!

(k − 1)!(2n − k)!
,

.

Example

.

.

.

. ..

.

.

AVS
3 (t) = 1

AVS
5 (t) = 1 + t + t2

AVS
7 (t) = 3 + 6t + 8t2 + 6t3 + 3t4

AVS
9 (t) = 26 + 78t + 138t2 + 162t3 + 138t4 + 78t5 + 26t6

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Enumeration polynomials

.

Definition

.

.

.

. ..

.

.

An(t) =
An(

3n−2
n−1

)
n∑

r=1

(
n + r − 2

n − 1

)(
2n − 1 − r

n − 1

)
t r−1

ÃHTS
2n (t)

ÃHTS
2n

=
(3n − 2)(2n − 1)!

(n − 1)!(3n − 1)!

×
n∑

r=0

{n(n − 1) − nr + r2}(n + r − 2)!(2n − r − 2)!

r!(n − r)!
t r

AHTS
2n (t) = ÃHTS

2n (t)An(t)

AHTS
2n+1(t) =

1
3

{
An+1(t)Ã

HTS
2n (t) + An(t)Ã

HTS
2n+2(t)

}

where ÃHTS
2n =

∏n−1
i=0

(3i)!(3i+2)!

(3i+1)!(n+i)!
.
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.

Example

.

Example

.

.

.

. ..

.

.

AHTS
1 (t) = 1

AHTS
2 (t) = 1 + t

AHTS
3 (t) = 1 + t + t2

AHTS
4 (t) = 2 + 3t + 3t2 + 2t3

AHTS
5 (t) = 3 + 6t + 7t2 + 6t3 + 3t4
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The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 1 1

4 4 3 2 2 1 1 1

3 2 2 1

1 1

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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.

The Bender-Knuth involution

.

Remark

.

.

.

. ..

.

.

f2 gives a proof of

sλ(x2, x1, x3, . . . , xn) = sλ(x1, x2, x3, . . . , xn).

Hence sλ(x1, x2, . . . , xn) is a symmetric function.
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A Bender-Knuth Type involution

.

Definition

.

.

.

. ..

.

.

If k ≥ 2, we define a Bender-Knuth-type involution π̃k on Pn which
swaps k ’s and (k − 1)’s where we ignore saturated (k − 1) when
we perform a swap.

.

Example

.

.

.

. ..

. .
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.

A Bender-Knuth Type involution

.

Definition

.

.

.

. ..

.

.

If k ≥ 2, we define a Bender-Knuth-type involution π̃k on Pn which
swaps k ’s and (k − 1)’s where we ignore saturated (k − 1) when
we perform a swap.

.

Example

.

.

.

. ..

. .

n = 7 Apply π̃3 to the following c ∈P3.

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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A Bender-Knuth Type involution

.

Definition

.

.

.

. ..

.

.

If k ≥ 2, we define a Bender-Knuth-type involution π̃k on Pn which
swaps k ’s and (k − 1)’s where we ignore saturated (k − 1) when
we perform a swap.

.

Example

.

.

.

. ..

. .

n = 7 Apply π̃3 to the following c ∈P3.

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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.

A Bender-Knuth Type involution

.

Definition

.

.

.

. ..

.

.

If k ≥ 2, we define a Bender-Knuth-type involution π̃k on Pn which
swaps k ’s and (k − 1)’s where we ignore saturated (k − 1) when
we perform a swap.

.

Example

.

.

.

. ..

. .

n = 7 Then we obtain the following π̃3(c) ∈P3.

5 5 4 3 2

4 4 3 1

3 3 2

2 1

1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

A Bender-Knuth Type involution

.

Definition

.

.

.

. ..

.

.

We define an involution π̃1 on Pn similarly assuming the outside of
the shape is filled with 0.

.

Example

.

.

.

. ..

.

.
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.

A Bender-Knuth Type involution

.

Definition

.

.

.

. ..

.

.

We define an involution π̃1 on Pn similarly assuming the outside of
the shape is filled with 0.

.

Example

.

.

.

. ..

.

.

n = 7 Apply π̃1 to the following c ∈P3.

5 5 4 3 2

4 4 3 2 1

3 1

1
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.

A Bender-Knuth Type involution

.

Definition

.

.

.

. ..

.

.

We define an involution π̃1 on Pn similarly assuming the outside of
the shape is filled with 0.

.

Example

.

.

.

. ..

.

.

n = 7 Apply π̃1 to the following c ∈P3.

5 5 4 3 2 1

4 4 3 2

3 1 1
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Flips in words of RCSPP

.

Proposition

.

.

.

. ..

.

.

If σ ∈Pn and k ≥ 2, then

Uk−1 (πk (σ)) = Uk (σ)

N (πk (σ)) = N (σ)

.

Definition

.

.

.

. ..

.

.

We define involutions on Pn

ρ̃ = π̃2π̃4π̃6 · · · ,
γ̃ = π̃1π̃3π̃5 · · · ,

and we put P ρ̃
n (resp. P γ̃

n ) the set of elements Pn invariant under
ρ̃ (resp. γ̃).
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.

Flips in words of RCSPP

.

Proposition

.

.

.

. ..

.

.

If σ ∈Pn and k ≥ 2, then

Uk−1 (πk (σ)) = Uk (σ)

N (πk (σ)) = N (σ)

.

Definition

.

.

.

. ..

.

.

We define involutions on Pn

ρ̃ = π̃2π̃4π̃6 · · · ,
γ̃ = π̃1π̃3π̃5 · · · ,

and we put P ρ̃
n (resp. P γ̃

n ) the set of elements Pn invariant under
ρ̃ (resp. γ̃).
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Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
1 = {∅}
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.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
2 =

{
∅, 1

}
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.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
3 is composed of the following 3 RCSPPs:

∅ 2
1

2 1
1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
4 is composed of the following 10 elements:

∅ 2 1 2 1 1 2
1

2 2
1 1

2 2 1
1 1

3 3
2
1

3 2
2 1
1

3 2 1
2 1
1
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.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
5 has 25 elements, and P ρ̃

6 has 140 elements.
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Invariants under γ̃

.

Proposition

.

.

.

. ..

.

.

If c ∈Pn is invariant under γ̃, then n must be an odd integer.

.

Example

.

.

.

. ..

.

.

Thus we have P γ̃
3 =

{
1

}
,

P γ̃
5 is composed of the following 3 RCSPPs:

1 1 3 2 1
1

3 3 1
2 2
1

and P γ̃
5 has 26 elements.
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.

Invariants under γ̃

.

Proposition

.

.

.

. ..

.

.

If c ∈Pn is invariant under γ̃, then n must be an odd integer.

.

Example

.

.

.

. ..

.

.

Thus we have P γ̃
3 =

{
1

}
,

P γ̃
5 is composed of the following 3 RCSPPs:

1 1 3 2 1
1

3 3 1
2 2
1

and P γ̃
5 has 26 elements.
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.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.
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.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

The following c ∈P11 is invariant under γ̃:

7 7 6 6 3 2 1 1

5 5 4 3 1

4 3 2 2

1 1
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.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

Remove all 1’s from c ∈P γ̃
11.

7 7 6 6 3 2 1 1

5 5 4 3 1

4 3 2 2

1 1
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.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

Then we obtain a PP in which each row has even length.

7 7 6 6 3 2

5 5 4 3

4 3 2 2
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Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

Identify 3 with 2, 5 with 4, and 7 with 6.

7 7 6 6 3 2

5 5 4 3

4 3 2 2
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.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

Repace 3 and 2 by dominos containing 1, 5 and 4 by dominos con-
taining 2, 7 and 6 by dominos containing 3.

3 3 1

2
2

1
1
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.

Column-strict domino plane partitions of even rows

.

Definition

.

.

.

. ..

.

.

Let D
(e,R)
n (resp. D

(o,R)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose row lengths are all even.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. Let τ2n+1 denote our bijection of P γ̃
2n+1

onto D
(e,R)
n . Further we have U1(τ2n+1(c)) = U2(c).
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.

Column-strict domino plane partitions of even rows

.

Definition

.

.

.

. ..

.

.

Let D
(e,R)
n (resp. D

(o,R)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(o)
n ) whose row lengths are all even.

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. Let τ2n+1 denote our bijection of P γ̃
2n+1

onto D
(e,R)
n . Further we have U1(τ2n+1(c)) = U2(c).
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.

.

Example

.

Example

.

.

.

. ..

.

.

D
(e,R)
1 = {∅} is the set of column-strict domino plane partitions with

all columns ≤ 0.
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.

.

Example

.

Example

.

.

.

. ..

.

.

D
(e,R)
2 is composed of the following 3 elements:

∅, 1 , 1 1
.

This is the set of column-strict domino plane partitions with the first
and second columns ≤ 1, other columns ≤ 0 and each row of even
length.
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.

Example

.

Example

.

.

.

. ..

.

.

D
(e,R)
3 is the set of column-strict domino plane partitions with the

1st and 2nd columns ≤ 2, the 3rd and 4th columns ≤ 1, other
columns ≤ 0 and each row of even length (26 elements):

∅ 1 1 1 2 2 1 2
1

2 1
1

2
1

1 1 1 1 2 1 2 2 1 1 1 1

2 1 1 1 2 2 1 1 1 1
1

2 1
1

2 2
1

2 1

1 1

2

1 1

2

1 1
1 1 2 2

1

2 2

1

1

Masao Ishikawa Enumeration problems of plane partitions



. . . . . .

.

.

Example

.

Example

.

.

.

. ..

.

.

2 2

1

1 1 2 2

1 1

2 2

1 1

1
2 2

1 1

1 1

D
(e,R)
4 is the set of column-strict domino plane partitions with the

1st and 2nd columns ≤ 3, the 3rd and 4th columns ≤ 2, the 5rd
and 6th columns ≤ 1, other columns ≤ 0 and each row of even
length (646 elements).
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.

(τ, t)-enumeration

.

Definition

.

.

.

. ..

.

.

We consider the generating functions

V (e)
n (τ, t) =

∑

π∈D (e,R)
n

τN(π)tUk (π),

and
V (o)

n (τ, t) =
∑

π∈D (o,R)
n

τN(π)tUk (π).

.

Example

.

.

.

. ..

.

.

V (e)
3 (τ, t) = 1 + (1 + t)τ+ (1 + 3t + 2t2)τ2 + (2t + 3t2 + t3)τ3

+ (3t2 + 3t3 + t4)τ4 + (2t3 + t4)τ5 + t4τ6
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.

(τ, t)-enumeration

.

Definition

.

.

.

. ..

.

.

We consider the generating functions

V (e)
n (τ, t) =

∑

π∈D (e,R)
n

τN(π)tUk (π),

and
V (o)

n (τ, t) =
∑

π∈D (o,R)
n

τN(π)tUk (π).

.

Example

.

.

.

. ..

.

.

V (e)
3 (τ, t) = 1 + (1 + t)τ+ (1 + 3t + 2t2)τ2 + (2t + 3t2 + t3)τ3

+ (3t2 + 3t3 + t4)τ4 + (2t3 + t4)τ5 + t4τ6
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.

Example

.

Theorem (Stanton-White, Carré-Leclerc)

.

.

.

. ..

.

.

We can define a map which associate a pair in Pn ×Pn (resp.

Pn ×Pn−1) with a domino plane partition in D
(e)
n (resp. D

(o)
n ).

Let Φ denote the map which associate the pair (c0, c1) of
column-strict plane partitions with a column-strict domino plane
partition d.

Color 0 Color 0 Color 1 Color 1
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.

Example

.

Theorem (Stanton-White, Carré-Leclerc)

.

.

.

. ..

.

.

We can define a map which associate a pair in Pn ×Pn (resp.

Pn ×Pn−1) with a domino plane partition in D
(e)
n (resp. D

(o)
n ).

Let Φ denote the map which associate the pair (c0, c1) of
column-strict plane partitions with a column-strict domino plane
partition d.

Color 0 Color 0 Color 1 Color 1
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.

Domino plane partition

.

Example

.

.

.

. ..

.

.

For example, we associate the column-strict domino plane partition

3 3 1

2
2
1

1
d =

the pair

c0 = 1 1 c1 = 3 3 1

2 2

of plane partitions.
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.

Conditions on shape

.

Theorem

.

.

.

. ..

.

.

Let d be a column-strict domino plane partition, and let
(c0, c1) = Φ(d). Then

(i) All columns of d have even length if, and only if, shc1 ⊆ shc0

and shc0 \ shc1 is a vertical strip.

(ii) All rows of d have even length if, and only if, shc0 ⊆ shc1 and
shc1 \ shc0 is a horizontal strip.
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.

Conditions on shape

.

Theorem

.

.

.

. ..

.

.

Let d be a column-strict domino plane partition, and let
(c0, c1) = Φ(d). Then

(i) All columns of d have even length if, and only if, shc1 ⊆ shc0

and shc0 \ shc1 is a vertical strip.

(ii) All rows of d have even length if, and only if, shc0 ⊆ shc1 and
shc1 \ shc0 is a horizontal strip.
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.

Conditions on shape

.

Theorem

.

.

.

. ..

.

.

Let d be a column-strict domino plane partition, and let
(c0, c1) = Φ(d). Then

(i) All columns of d have even length if, and only if, shc1 ⊆ shc0

and shc0 \ shc1 is a vertical strip.

(ii) All rows of d have even length if, and only if, shc0 ⊆ shc1 and
shc1 \ shc0 is a horizontal strip.
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From RCSPPs to lattce paths

.

Theorem

.

.

.

. ..

.

.

Let V = {(x, y) ∈ N2 : 0 ≤ y ≤ x} be the vertex set, and direct an
edge from u to v whenever v − u = (1,−1) or (0,−1).
Let uj = (n − j, n − j) and vj = (λj + n − j, 0) for j = 1, . . . , n, and let
uuu = (u1, . . . , un) and vvv = (v1, . . . , vn). We claim that the c ∈Pn

of shape λ′ can be identified with n-tuples of nonintersecting
D-paths in P (uuu,vvv).

R
R
R

R
R
R

R
R
R
R

R
R
R
R
R

R
R
R
R
R
R

R
R
R
R
R
R
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Example of lattice paths

.

Example

.

.

.

. ..

.

.

n = 7, c ∈P7: RCSPP

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Lattice paths
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A determinant expression

.

Theorem

.

.

.

. ..

.

.

Let

Ve
ij (τ, t) =



∑∞
k=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−1
k−j

)
+ t

(
j−1

k−j−1

)}
τ2k−i−j

+
∑∞

k=0

{(
i−1

k−i−1

)
+ t

(
i−1

k−i−2

)} {(
j−1
k−j

)
+ t

(
j−1

k−j−1

)}
τ2k−i−j−1

if i, j > 0,

δij

otherwise,

and

Vo
ij (τ, t) =



∑∞
k=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−2
k−j

)
+ t

(
j−2

k−j−1

)}
τ2k−i−j

+
∑∞

k=0

{(
i−1

k−i−1

)
+ t

(
i−1

k−i−2

)} {(
j−2
k−j

)
+ t

(
j−2

k−j−1

)}
τ2k−i−j−1

if i, j − 1 > 0,

δij

otherwise.
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A determinant expression

.

Theorem

.

.

.

. ..

.

.

Then we have

V (e)
n (τ, t) = det

(
Ve

ij (τ, t)
)
0≤,i,j≤n−1

,

and
V (o)

n (τ, t) = det
(
Vo

ij (τ, t)
)
0≤,i,j≤n−1

.

.

Conjecture

.

.

.

. ..

.

.

V (e)
n (1, t) = AVS

2n+1(t),
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Observations

.

Observations

.

.

.

. ..

.

.

We would have

V (e)
n (−1, t) =



(
AVS

2m−1

)2
tcm(t)2 if n = 2m − 1,

(TCm)2 (1 − t + t2) AVS
2m+1(t)

2 if n = 2m,

and

V (o)
n (−1, t) =


AVS

2m−1 TCm−1 AVS
2m−1(t) tcm(t) if n = 2m − 1,

AVS
2m−1 TCm AVS

2m+1(t) tcm(t) if n = 2m,
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Generalized domino plane partitions

.

Generalized domino plane partitions

.

.

.

. ..

.

.

A domino is a special kind of skew shape consists of two squares.
A 1 × 2 domino is called a horizontal domino while a 2 × 1 domino
is called a vertical domino. A generalized domino plane partition
of shape λ consists of a tiling of the shape λ by means of ordinary
1 × 1 squares or dominoes, and a filling of each square or domino
with a positive integer so that the integers are weakly decreasing
along either rows or columns. Further we call it a domino plane
partition if the shape λ is tiled with only dominoes.
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Generalized domino plane partitions

.

Example

.

.

.

. ..

.

.

The left-below is a column-strict generalized domino plane
partition of shape (4, 3, 2, 1), and the right-below is a column-strict
domino plane partition of shape (4, 4, 2).

2

1

2

1

1
1 2

1 1

1 1
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Twisted domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let m and n ≥ 1 be nonnegative integers. Let PHTS
n denote the set

of column-strict generalized domino plane partitions c subject to
the constraints that

(E1) c has at most n columns;

(E2) each part in the jth column does not exceed d(n − j)/2e;
(E3) A domino containing d(n − j)/2e must not cross the jth column

for any j such that n − j is odd.

(E4) A single box can appear only when it contains d(n − j)/2e and
it is in the jth column such that n − j is odd.

We call an element in PHTS
n a twisted domino plane partition.
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Twisted domino plane partitions

.

Example

.

.

.

. ..

.

.

PHTS
1 = {∅}

PHTS
2 =

{
∅, 111

}

PHTS
3 is composed of the following 3 elements:

∅ 1 1
111
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Twisted domino plane partitions

.

Example

.

.

.

. ..

.

.

PHTS
4 is composed of the following 10 elements:

∅ 1 1 111 1 1 1

1 1
111 222 222

1

222

1
1

222

1
1

111

PHTS
5 has 25 elements and PHTS

6 has 140 elements.
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Twisted domino PPs and RCSDPPs with all columns of
even length

.

Conjecture

.

.

.

. ..

.

.

For a positive integer n, there would be a bijection between PHTS
n

(the set of twisted domono PPs) and D
(e,C)
n or D

(o,C)
n (the set of

restricted column-strict domino PPs with all columns of even
length) which has the following property;

.

.

.

1 the numeber of 1’s is kept invariant;

.

.

.

2 the number of columns is kept invariant.
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RCSDPPs with all columns of even length

.

Example

.

.

.

. ..

.

.

D
(e,C)
1 = {∅}

D
(o,C)
1 =

∅, 111


D

(e,C)
2 has the following 3 elements:

∅, 1
,

1 1
.
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RCSDPPs with all columns of even length

.

Example

.

.

.

. ..

.

.

D
(o,C)
3 has the following 10 elements:

∅, 1
,

2
,

1 1
,

2 1
,

1 1 1
,

2 1 1
,

2

1
,

2 1

1
,

2 1 1

1
.

D
(e,C)
3 has 25 elements, D

(e,C)
4 has 140 elements, and D

(e,C)
4 has

588 elements.
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(τ, t)-enumeration

.

Definition

.

.

.

. ..

.

.

Let D
(e,C)
n (resp. D

(o,C)
n ) denote the set of π ∈ D

(e)
n (resp.

π ∈ D
(e)
n ) whose column lengths are all even. We consider the

generating functions

H(e)
n (τ, t) =

∑

π∈D (e,C)
n

τN(π)tUk (π),

and
H(o)

n (τ, t) =
∑

π∈D (o,C)
n

τN(π)tUk (π).
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Example

.

Example

.

.

.

. ..

.

.

D
(o,C)
3 consists of the following 10 elements:

∅, 1
,

2
,

1 1
,

2 1
,

1 1 1
,

2 1 1
,

2

1
,

2 1

1
,

2 1 1

1
.

Thus we have

H(o)
3 (τ, t) = 1 + (1 + t)τ+ (2t + t2)τ2 + (2t2 + t3)τ3 + t3τ4.
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A determinant expression

.

Theorem

.

.

.

. ..

.

.

Let

He
ij (τ, t) =



∑∞
k=0

∑k
l=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−1
l−j

)
+ t

(
j−1

l−j−1

)}
τk+l−i−j

if i, j > 0,

(1 + tτ)(1 + τ)i−1 if i > 0 and j = 0,

δ0,j if i = 0,

and

Ho
ij (τ, t) =



∑∞
k=0

∑k
l=0

{(
i−1
k−i

)
+ t

(
i−1

k−i−1

)} {(
j−2
l−j

)
+ t

(
j−2

l−j−1

)}
τk+l−i−j

if i, j − 1 > 0,

(1 + tτ)(1 + τ)i−1 if i > 0 and j = 0, 1,

δij if i = 0.
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A determinant expression

.

Theorem

.

.

.

. ..

.

.

Then we have

H(e)
n (τ, t) = det

(
He

ij (τ, t)
)
0≤,i,j≤n−1

,

and
H(o)

n (τ, t) = det
(
Ho

ij (τ, t)
)
0≤,i,j≤n−1

.

.

Conjecture

.

.

.

. ..

.

.

H(e)
n (1, t) = AHTS

2n−1(t),

H(o)
n (1, t) = AHTS

2n (t),
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A determinant expression

.

Observation

.

.

.

. ..

.

.

We would have

H(e)
n (−1, t) = (1 − t + t2) AVS

2n−1(t),

and
H(o)

n (−1, t) = t(1 − t) V (o)
n−2(1, t) for n ≥ 3.
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The end

Thank you!
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