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Partitions

1. Ordinary parttions

2. Strict partitions
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Partitions

A partition of a positive integer n is a finite nonincreasing

sequence of positive integers λ1, λ2,. . . , λr such that∑r
i=1 λi = n. The λi are called the parts of the partition,

and n is called the weight of the partition, denoted by |λ|.
Many times the partition (λ1, λ2, . . . , λr) will be denoted

by λ, and we shall write λ ` n to denote “λ is a partition

of n”. The number of (non-zero) parts is the length,

denoted by `(λ).
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Example

The empty sequence ∅ forms the only partition of zero.

n = 1: (1);

n = 2: (2), (12);

n = 3: (3), (21), (13);

n = 4: (4), (31), (22), (212), (14);

n = 5: (5), (41), (32), (312), (221), (213), (15);
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Young Diagram

To each partition λ is associated its graphical representation

(Young diagram) Dλ, which formally is the set of points

with integral coordinates (i, j) in the plane such that if

λ = (λ1, λ2, . . . , λr), then (i, j) ∈ Dλ if and only if

1 ≤ j ≤ λi. We sometimes identify the Ferres graph Dλ

with the partition λ and use the same symbol λ to express

its Young diagram.
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Example

The Young diagram of the partition (8, 6, 6, 5, 1) is

.
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Conjugate

If λ = (λ1, λ2, . . . , λr) is a partition, we may define a

new partition λ′ = (λ′
1, λ′

2, . . . , λ′
r) by choosing λ′

i as

the number of parts of λ that are ≥ i. The partition λ′ is

called the conjugate of λ.
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Example

The conjugate of the partition (86251) is (544312)

.



10

Strict Partitions

A partition µ all of whose parts are distinct (have multiplicity 1) is called

a strict partition. For a strict partition µ = (µ1, > µ2 > · · · > µr),

the shifted diagram S— is obtained from the Young diagram of µ by

moving the ith row (i − 1) squares to the right, for each i > 1.

If µ = (7, 5, 4, 2, 1) then S— is

.
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Symmetric functions

1. Complete symmetric functions

2. Elmentary symmetric functions

3. Schur functions

(a) Ratio of determinants

(b) Tableaux

(c) Jacobi-Trudi formula

(d) Bender-Knuth involution
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Complete symmetric functions

Let x = (x1, x2, . . . ) be countably many variables. For a positive

integer l, we write the rth complete symmetric function in n variables

x1, . . . , xn by h(n)
r (x) = h(n)

r (x1, . . . , xn), i.e. we have

1∑
r=0

h(n)
r (x)yr =

l∏

i=1

(1 − xiy)`1.

Example

h
(3)
2 (x) = x2

1 + x2
2 + x2

3 + x1x2 + x1x3 + x2x3.
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Elementary symmetric functions

For a positive integer n, we write the rth elementary symmetric

function in n variables x1, . . . , xn by e(n)
r (x) = e(n)

r (x1, . . . , xn),

i.e. we have
1∑
r=0

e(n)
r (x)yr =

n∏

i=1

(1 + xiy).

Example

e
(3)
2 (x) = x1x2 + x1x3 + x2x3.
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The Schur functions

For a positive integer n and a partition λ such that

`(λ) ≤ n, let

s
(n)
λ (x) =

det(x
λj+n−j
i )1≤i,j≤n

det(xn−j
i )1≤i,j≤n

.

s
(n)
λ (x) is called the Schur function corresponding to λ.
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Tableaux

Given a partition λ, A tableaux T of shape λ is a filling of the diagram

with numbers 1, . . . , n whereas the numbers must strictly increase

down each column and weakly from left to right along each row.

Schur functions

The Schur function s
(n)
– (x) is

s
(n)
– (x) =

∑
T

xT ,

where the sum runs over all tableaux of shape λ.

Here xT = x]1s in T
1 x]2s in T

2 · · · x]ns in T
n
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Example

A Tableau T of shape (5441).

1 1 1 2 2

2 2 3 4

3 3 4 5

5

The weight of T is x3
1x4

2x3
3x2

4x2
5.
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Example

When λ = (2, 2) and X = (x1, x2, x3, x4),

1 1
2 2

1 1
2 3

1 1
2 4

1 1
3 3

1 1
3 4

1 1
4 4

1 2
2 3

1 2
2 4

1 2
3 3

1 2
3 4

1 2
4 4

1 3
2 4

1 3
3 4

1 3
4 4

2 2
3 3

2 2
3 4

2 2
4 4

2 3
3 4

2 3
4 4

3 3
4 4

s
(4)
λ (X) = x2

1x2
2 + x2

1x2
3 + x2

1x2
4 + x2

2x2
3 + x2

2x2
4 + x2

3x2
4 + 2x1x2x3x4

+ x2
1x2x3 + x2

1x2x4 + x2
1x3x4 + x2

2x1x3 + x2
2x1x4 + x2

2x3x4

+ x2
3x1x2 + x2

3x1x4 + x2
3x2x4 + x2

4x1x2 + x2
4x1x3 + x2

4x2x3
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Jacobi-Trudi formula

For a positive integer n and a partition λ, we have

s
(n)
λ (x) = det(h

(n)
λi+j−i)1≤i,j≤`(λ)

= det(e
(n)
λ′

i+j−i)1≤i,j≤`(λ′).



19

Bender-Knuth involution

A classical method to prove that a Schur function is

symmetric is to define involutions si on tableaux which

swaps the number of i’s and (i − 1)’s, for each i. This is

well-known as the Bender-Knuth involution.
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Swapping rule sr

Consider the parts of T equal to r − 1 or r. Since T is

column-strict, some columns of T will contain neither r − 1

nor r, while some others will contain one r − 1 and one r.

These columns we ignore. The remaining parts equal to

r − 1 or r occur once in each column. Assume row i has a

certain number k of r − 1’s followed by a certain number l

of r’s. In row i, convert the k r − 1’s and l r’s to l

r − 1’s and k r’s.
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Swapping rule sr

For example, the three consecutive rows i − 1, i and i + 1 of c could look as follows.

i − 1
...

... r − 1 . . . r − 1

i r − 1 . . . r − 1 r − 1 . . . r − 1 r . . . r r . . . r

i + 1 r . . . r
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Example

A Tableau T

1 1 1 2 2
2 2 3 4
3 3 4 5
5

of shape (5441) is mapped to

1 1 1 1 2
2 2 3 4
3 3 4 5
5

by the swap s2.
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Alternating Sign Matrices and Symmetries

1. Alternating sign matrices

2. Half-turn

3. Vertical flip

4. Monotone triangles
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Alternating sign matrices

An alternating sign matrices is a square matrix which

satisfies:

(i) all entries are 1, −1, or 0,

(ii) every row and column has sum 1,

(iii) in every row and column the nonzero entries

alternate in sign.
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Examples

All permutation matrices are alternating sign matrices. For

1 × 1 and 2 × 2 matrices these are only alternating sign

matrices. There are exactly seven 3 × 3 alternating sign

matrices, six permutation matrices and the matrix



0 1 0

1 −1 1

0 1 0


 .
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Symmetries

1. no symmetry

2. aij = an−1−i,n−1−j half turn

3. aij = ai,n−1−j vertical axis
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Example

3 × 3 alternating matrices A3(t) = 2 + 3t + 2t2




1 0 0

0 1 0

0 0 1







1 0 0

0 0 1

0 1 0







0 1 0

1 0 0

0 0 1







0 1 0

0 0 1

1 0 0







0 0 1

1 0 0

0 1 0







0 0 1

0 1 0

1 0 0







0 1 0

1 −1 1

0 1 0
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Double distribution

3 × 3 alternating matrices

(B3(k, l))1≤k,l≤3 =




0 1 1

1 1 1

1 1 0




Bn(k, l) is the number of n × n alternating sign matrices

which has a 1 in the kth column of the top row and has a 1

in the lth column of the bottom row.
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Example

Half-turn symmetric 3 × 3 alternating matrices




1 0 0

0 1 0

0 0 1







0 0 1

0 1 0

1 0 0







0 1 0

1 −1 1

0 1 0




AHTS
3 (t) = 1 + t + t2.
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Example

Vertical symmetric 3 × 3 alternating matrix




0 1 0

1 −1 1

0 1 0




AVS
3 (t) = 1.
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Monotone triangles

A monotone triangle of size n is, by definition, a triangular array of positive integers

mn,n

mn−1,n−1 mn−1,n

. .
. ...

...

m1,1 . . . m1,n−1 m1,n

subject to the constraints that

(M1) mij < mi,j+1 whenever both sides are defined,

(M2) mij ≥ mi+1,j whenever both sides are defined,

(M3) mij ≤ mi+1,j+1 whenever both sides are defined,

(M4) the bottom row (m1,1, m1,2, . . . , m1,n) is (1, 2, . . . , n).

Let Mn denote the set of monotone triangles of size n.
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Example

M3 consists of the following seven elements.

1

1 2

1 2 3

2

1 2

1 2 3

1

1 3

1 2 3

2

1 3

1 2 3

3

1 3

1 2 3

2

2 3

1 2 3

3

2 3

1 2 3
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Certain Numbers

1. An : ASM numbers

2. An,r, An(t) : the refined ASM numbers.

3. Bn(k, l) : the doubly refined ASM numbers.

4. AHTS
n , AHTS

n (t) : the number of half-turn

symmetric ASMs.

5. AVS
n , AVS

n (t) : the number of ASMs invariant under

the vertical flip.
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An

Let An denote the number defined by

An =

n−1∏

i=0

(3i + 1)!

(n + i)!
.

This number is famous for the number of alternating sign

matrices.
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An;r

Let n be a positive number and let 1 ≤ r ≤ n. Set An;r to be the

number

An;r =

(
n+r`2

n`1

)(
2n`r`1

n`1

)
(
2n`2

n`1

) An`1 =

(
n+r`2

n`1

)(
2n`1`r
n`1

)
(
3n`2

n`1

) An.

Then the number An;r satisfies the recurrence An;1 = An`1 and

An;r+1

An;r

=
(n − r)(n + r − 1)

k(2n − r − 1)
.

We also define the polynomial An(t) =
∑n
r=1 An;rt

r`1. For instance,

the first few terms are A1(t) = 1, A2(t) = 1 + t,

A3(t) = 2 + 3t + 2t2, A4(t) = 7 + 14t + 14t2 + 7t3.
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Bn(k, l)

Let n be a positive integer and let Bn(k, l), 1 ≤ k, l ≤ n, denote

the number which satisfies the initial condition

Bn(k, 1) = Bn(1, k) =

{
0 if k = 1

An`1;n`k if 2 ≤ k ≤ n

and the recurrence equation

Bn(k + 1, l + 1) − Bn(k, l)

=
An`1;k(An;l+1 − An;l) + An`1;l(An;k+1 − An;k)

An;1

for 1 ≤ k, l ≤ n − 1.
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Example

This recurrence equation satisfied by Bn(k, l) has been introduced by

Stroganov to describe the double distribution of the positions of the 1’s

in the top row and the bottom row of an alternating sign matrix.

(B4(k, l))1»k;l»4 =




0 2 3 2

2 4 5 3

3 5 4 2

2 3 2 0




.
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AHTS
n

Let AHTS
n be the number defined by

AHTS
2n =

n`1∏

i=0

(3i)!(3i + 2)!

{(n + i)!}2

and

AHTS
2n+1 =

n!(3n)!

{(2n)!}2
· AHTS

2n .

The first few terms are 1, 2, 3, 10, 25, 140, 588. This is the number

of half-turn symmetric alternating sign matrices.
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ÃHTS
n (t)

We also define the polynomial ÃHTS
n (t) by

ÃHTS
2n (t)

ÃHTS
2n

=
(3n − 2)(2n − 1)!

(n − 1)!(3n − 1)!

n∑
r=0

{n(n − 1) − nr + r2}(n + r − 2)!(2n − r − 2)!

r!(n − r)!
tr

where ÃHTS
2n =

∏n`1
i=0

(3i)!(3i+2)!

(3i+1)!(n+i)!
. For instance, the first few terms

are ÃHTS
2 (t) = 1 + t, ÃHTS

4 (t) = 2 + t + 2t2,

ÃHTS
6 (t) = 5 + 5t + 5t2 + 5t3 and

ÃHTS
8 (t) = 20 + 30t + 32t2 + 30t3 + 20t4.
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AHTS
2n (t)

Let

AHTS
2n (t) = ÃHTS

2n (t)An(t),

and

AHTS
2n+1(t) =

1

3

{
An+1(t)Ã

HTS
2n (t) + An(t)Ã

HTS
2n+2(t)

}
.

The first few terms are AHTS
2 (t) = 1 + t, AHTS

3 (t) = 1 + t + t2,

AHTS
4 (t) = 2 + 3t + 3t2 + 2t3,

AHTS
5 (t) = 3 + 6t + 7t2 + 6t3 + 3t4. Let AHTS

n;r denote the

coefficient of tr in AHTS
n (t).
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AVS
2n+1

Let AVS
2n+1 be the number defined by

AVS
2n+1 =

1

2n

n∏

k=1

(6k − 2)!(2k − 1)!

(4k − 1)!(4k − 2)!

and let AVS
2n+1;r be the number given by

AVS
2n+1;r =

AVS
2n`1

(4n − 2)!

r∑

k=1

(−1)r+k
(2n + k − 2)!(4n − k − 1)!

(k − 1)!(2n − k)!
.

This number AVS
2n+1 is equal to the number of vertically symmetric

alternating sign matrices of size 2n + 1. For example, the first few

terms of AVS
2n+1 is 1, 3, 26, 646 and 45885.
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AVS
2n+1(t)

We also define the polynomial AVS
2n+1(t) by

AVS
2n+1(t) =

2n∑
r=1

AVS
2n+1;rt

r`1.

For instance, the first few terms are AVS
3 (t) = 1,

AVS
5 (t) = 1 + t + t2, AVS

7 (t) = 3 + 6t + 8t2 + 6t3 + 3t4 and

AVS
9 (t) = 26 + 78t + 138t2 + 162t3 + 138t4 + 78t5 + 26t6.
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Plane Partitions

1. Plane parttions

2. Shifted plane partitions

3. Domino plane partitions
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Plane Partitions

A plane partition is an array π = (πij)i;j–1 of nonnegative integers

such that π has finite support (i.e., finitely many nonzero entries) and is

weakly decreasing in rows and columns. If
∑
i;j–1 πij = n, then we

write |π| = n and say that π is a plane partition of n, or π has the

weight n.

A part of a plane partition π = (πij)i;j–1 is a positive entry πij > 0.

The shape of π is the ordinary partition λ for which π has λi nonzero

parts in the ith row. The shape of π is denoted by sh(π). We say that

π has r rows if r = `(λ). Similarly, π has s columns if s = `(λ0).
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Example

The following is a plane aprtition of shape (9, 8, 4, 1), 4

rows, 9 columns, weight 49.

5 5 4 3 3 2 2 2 1

4 4 2 2 1 1 1 1

2 1 1 1

1
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Example

Plane partition of 0: ∅
Plane partition of 1: 1

Plane partition of 2:

2 1 1 1
1

Plane partition of 3:

3 1 1 1 1
1
1

2 1 2
1

1 1
1
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Column-strict plane partitions

A plane partition is said to be column-strict if it is weakly

decreasing in rows and strictly decreasing in coulumns.

Example

5 5 4 3 3 3 1

4 4 2 2 1 1

3 2 1 1

1 1

is a column-stric plane partition.
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Ferrers graph

The Ferrers graph F (π) of π is the set of all lattice points

(i, j, k) ∈ P3 such that k ≤ πij.
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Example

The Ferrers graph of

3 2 2

2 1

is as follows:

¡¡

¡¡

¡¡

¡¡
¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡
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Shifted plane partitions

We can define a shifted plane partition similarly. A shifted plane

partition is an array τ = (τij)1»i»j of nonnegative integers such that

τ has finite support and is weakly decreasing in rows and columns. The

shifted shape of τ is the distinct partition µ for which τ has µi nonzero

parts in the ith row.

Example

4 4 3 3 2 1 1

4 3 2 1 1

2 2 1 1

1 .



51

Domino plane partitions

Let λ be a partition. A domino plane partition of shape λ is a tiling of

this shape by means of dominoes (2 × 1 or 1 × 2 rectangles), where

each domino is numbered by a positive integer and those intergers are

weakly decreasing in rows and columns. The integers in the dominoes

are called parts. A domino plane partition is said to be column-strict if it

is strictly decreasing in columns.

Example

2

1 1

1 1
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Symmetries

1. Self-complementary plane parttions

2. Totally symmetric plane parttions

3. Cyclically cymmetric plane parttions
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Complementary

Let π = (πij)i,j≥1 be a plane partition with at most r

rows, at most c columns, and with largest part at most t.

We say that π′ = (π′
ij)i,j≥1 is (r, c, t)-complementary

plane partition of π if π′
ij = t − πr+1−i,c+1−j for all

1 ≤ i ≤ r and 1 ≤ j ≤ c.
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Example

The (3, 2, 3)-complementary PP of the above PP is

3 2 1

1 1

and its Ferrers graph is as follows:

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡
¡¡

¡¡

¡¡

¡¡
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Self-complementary plane partitions

A plane partition π = (πij)i,j≥1 is said to be

(r, c, t)-self-complementary if πij = t − πr+1−i,c+1−j for

all 1 ≤ i ≤ r and 1 ≤ j ≤ c.
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Example

3 2 1

2 1

is a (3, 2, 3)-self-complementary plane partition and its Ferrers graph is

as follows:

¡¡

¡¡

¡¡

¡¡
¡¡

¡¡

¡¡

¡¡
¡¡

¡¡

¡¡

¡¡
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Totally symmetric plane partitions

Let P denote the set of positive integers. Consider the

elements of P3, regarded as the lattice points of R3 in the

positive orthant. The symmetric group S3 is acting on P3 as

permutations of the coordinate axies. A plane partition is

said to be totally symmetric if its Ferrors graph is mapped to

itself under all 6 permutations in S3.
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Example

3 2 1

2 1

1

is a totally symmetric plane partition and its Ferrers graph is as follows:

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡
¡¡

¡¡

¡¡

¡¡
¡¡

¡¡

¡¡

¡¡
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Cyclically symmetric plane partitions

A plane partition is said to be cyclically symmetric if its Ferrors graph is

mapped to itself under all 3 permutations in A3.

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡
¡¡

¡¡

¡¡

¡¡

is cyclically symmetric, but not totally symmetric.
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Certain Classes of Plane Partitions

1. Totally symmetric self-complementary plane

parttions

2. Triangular shifted plane partitions

3. Restricted column-stricted plane partitions

4. Restricted column-stricted domino plane partitions



61

Totally symmetric self-complementary plane partitions

Let Tn denote the set of all plane partitions which is contained in the

box Xn = [2n] × [2n] × [2n], (2n, 2n, 2n)-self-complementary

and totally symmetric. An element of Tn is called a totally symmetric

self-complementary plane partition (abbreviated as TSSCPP) of size n.

Example

T1

¡¡

¡¡

¡¡

¡¡
¡¡

¡¡

¡¡

¡¡
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T2

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡¡

¡¡

¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡¡

¡
¡¡

¡
¡¡

¡¡
¡¡

¡
¡¡

¡¡

¡¡

¡¡
¡¡

¡
¡¡

¡¡

¡
¡¡

¡
¡¡

¡¡
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T3

6 6 6 3 3 3
6 6 6 3 3 3
6 6 6 3 3 3
3 3 3
3 3 3
3 3 3

6 6 6 4 3 3
6 6 6 3 3 3
6 6 5 3 3 2
4 3 3 1
3 3 3
3 3 2

6 6 6 4 3 3
6 6 6 4 3 3
6 6 4 3 2 2
4 4 3 2
3 3 2
3 3 2

6 6 6 5 4 3
6 6 5 3 3 2
6 5 5 3 3 1
5 3 3 1 1
4 3 3 1
3 2 1

6 6 6 5 4 3
6 6 5 4 3 2
6 5 4 3 2 1
5 4 3 2 1
4 3 2 1
3 2 1

6 6 6 5 5 3
6 5 5 3 3 1
6 5 5 3 3 1
5 3 3 1 1
5 3 3 1 1
3 1 1

6 6 6 5 5 3
6 5 5 4 3 1
6 5 4 3 2 1
5 4 3 2 1
5 3 2 1 1
3 1 1
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Triangular shifted plane partitions

Mills, Robbins and Rumsey considered a class Bn of

triangular shifted plane partitions b = (bij)1≤i≤j subject to

the constraints that

(B1) the shifted shape of b is (n − 1, n − 2, . . . , 1);

(B2) n − i ≤ bij ≤ n for 1 ≤ i ≤ j ≤ n − 1,

and they constructed a bijection between Tn and Bn. In

this paper we call an element of Bn a triangular shifted

plane partition (abbreviated as TSPP) of size n.
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Example

B1 consists of the following 1 PPs: ∅
B2 consists of the following 2 PPs:

2 1

B3 consists of the followng 7 elements:

3 3
3

3 3
2

3 3
1

3 2
2

3 2
1

2 2
2

2 2
1
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A statistics

In this talk, for b = (bij)1»i»j»n`1 ∈ Bn, we set bi;n = n − i for

all i and b0;j = n for all j by convention.

Definition (Mills, Robbins and Rumsey)

For a b = (bij)1»i»j»n`1 in Bn and integers r = 1, . . . , n, let

Ur(b) =

n`r∑
t=1

(bt;t+r`1 − bt;t+r) +

n`1∑
t=n`r+1

{bt;n`1 > n − t}.

Here {. . . } has value 1 when the statement “. . . ” is true and 0

otherwise. for 1 ≤ k ≤ n,
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Example n = 7.

7 7 7 7 7 7

6 6 6 5 5

5 4 4 4

4 4 4

3 2

2

U1(b) = 3, U2(b) = 1, U3(b) = 3, U4(b) = 2, U5(b) = 2,

U6(b) = 3, U7(b) = 3.
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Example

B3 consists of the followng 7 elements:

3 3
3

3 3
2

3 3
1

3 2
2

3 2
1

2 2
2

2 2
1

U1(b) 2 1 0 2 1 1 0

U2(b) 2 2 1 1 0 1 0

U3(b) 2 2 1 1 0 1 0
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Flip

Mills, Robbins and Rumsey defined the notion of flip.

Let b = (bij)1»i»j»n`1 be an element of Bn and let

1 ≤ i < j ≤ n − 1 so that bij is a part of b off the main diagonal.

Then the flip of the part bij is the operation of replacing bij by b0ij
where

b0ij + bij = min(bi`1;j, bi;j`1) + max(bi;j+1, bi+1;j).

When the part is in the main diagonal, the flip of a part bii is the

operation replacing bii by b0ii where

b0ii + bii = bi`1;i + bi;i+1.
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Involution

Let 1 ≤ r ≤ n and b = (bij)1≤i≤j≤n−1 ∈ Bn. Define

an opration

πr : Bn → Bn

b 7→ πr(b)

where πr(b) is the result of flipping all the bi,i+r−1,

1 ≤ i ≤ n + m − r. Since none of these parts of b are

neighbors, the result is indpendent of the order in which the

flips are applied, and this operation πr is evidently an

involution, i.e. π2
r = id.
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Example

The seven elements of B3

3 3
3

3 3
2

3 3
1

3 2
2

3 2
1

2 2
2

2 2
1

is mapped to

3 3
1

3 3
2

3 3
3

2 2
1

2 2
2

3 2
1

3 2
2

by π1, respectively.
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An involution corresponding to the half-turn

Mills, Robbins and Rumsey defined an involution ρ of Bn by

ρ = π2π4 · · ·
where the product is over all πi with i even and ≤ n, and

presented a conjecture that this involution ρ corresponds to

the half turn of an alternating matrix.
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Example

The seven elements of B3

3 3
3

3 3
2

3 3
1

3 2
2

3 2
1

2 2
2

2 2
1

is mapped to

3 3
3

3 2
2

3 2
1

3 3
2

3 3
1

2 2
2

2 2
1

by ρ, respectively. So the three elements remains invariant

under ρ.
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An involution corresponding to the vertical flip

Mills, Robbins and Rumsey defined an involution γ of Bn by

γ = π1π3 · · ·
where the product is over all πi with i odd and ≤ n, and

presented a conjecture that this involution γ corresponds to

the vertical flip of an alternating matrix.
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Example

The seven elements of B3

3 3
3

3 3
2

3 3
1

3 2
2

3 2
1

2 2
2

2 2
1

is mapped to

3 3
1

3 3
2

3 3
3

2 2
1

2 2
2

3 2
1

3 2
2

by γ, respectively. So one element is invariant under γ.
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Conjectures and Progress

Mills-Robbins-Rumsey, “Self-complementary totally symmetric plane

partitions” J. Combin. Theory Ser. A, 42 (1986), 277 – 292.

The conjectures by Mills-Robbins-Rumsey

1. Conjecture 2 : the refined TSSPP conjecture.

2. Conjecture 3 : the doubly refined TSSCPP conjecture.

3. Conjecture 4 : HTS refined TSSCPP conjecture.

4. Conjecture 6 : VS refined TSSCPP conjecture.

5. Conjecture 7, 7’ : MT refined TSSCPP conjecture.
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The TSSCPP conjecture

Theorem (Andrews)

The number of totally symmetric self-complementary plane

partition of size n is equal to An.

Definition

If A be a matrix with n rows, we denote by dn(A) the sum

of all minors of size n from A.
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The number of the TSSCPPs

Theorem

Let

Pn =

((
i

j − i

))

0»i»n`1; 0»j»2n`2

.

Then the number of TSSCPPs of size n is equal to dn(Pn).

Example

P4 =




1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 2 1 0 0

0 0 0 1 3 3 1
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The refined TSSCPP conjecture

Conjecture (MRR, Conjecture 2)

Let 1 ≤ k ≤ n and 1 ≤ r ≤ n. Then the number of

elements b of Bn such that Ur(b) = k − 1 would be

An,k. Namely,
∑

b∈Bn
tUr(b) = An(t) would hold.



80

Theorem

Let

Pn(t) =

({
δi;j if i = 0,(
i`1

j`i`1

)
+

(
i`1

j`i
)
t if i > 0.

)

0»i»n`1; 0»j»2n`2

.

The polynomial
∑
b2Bn tUr(b) is equal to dn(Pn(t)).

Example

P4(t) =




1 0 0 0 0 0 0

0 1 t 0 0 0 0

0 0 1 1 + t t 0 0

0 0 0 1 2 + t 1 + 2t t
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Theorem

The polynomial
∑

b∈Bn
tUr(b) is given by the Pfaffian Pf (aij(t))1≤i,j≤n if n is

even, and Pf (aij(t))0≤i,j≤n if n is odd. Here a0j = (1 + t)δ0,j−1 and

aij(t) = (1 + t2)

{
2
(

i + j − 3

2i − j

)
+ 3

(
i + j − 3

2i − j − 1

)

− 3
(

i + j − 3

2i − j − 2

)
− 2

(
i + j − 3

2i − j − 3

)}

+ t

{
2
(

i + j − 3

2i − j + 1

)
+ 3

(
i + j − 3

2i − j

)
−

(
i + j − 3

2i − j − 1

)

+
(

i + j − 3

2i − j − 2

)
− 3

(
i + j − 3

2i − j − 3

)
− 2

(
i + j − 3

2i − j − 4

)}

when 0 < i < j.
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The doubly refined TSSCPP conjecture

Conjecture (MRR, Conjecture 3)

Let n ≥ 2 and 1 ≤ k, l ≤ n be integers. Then the

number of elements b of Bn such that U1(b) = k − 1 and

U2(b) = n − l would be Bn(k, l).
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Theorem

Let n be a positive integer and let 2 ≤ r ≤ n.

Let

Qn(t, u)

=








δi,j if i = 0,

u
(i−1

j−i

)
+ t

( i−1
j−i−1

)
if i = 1,

u
(i−2

j−i

)
+ (1 + tu)

( i−2
j−i−1

)
+ t

( i−2
j−i−2

)
if i ≥ 2.




0≤i≤n−1, 0≤j≤2n−2

.

The polynomial
∑

b∈Bn
tU1(b)uUr(b) is equal to dn(Qn(t, u)).
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Example

Q4(t, u) =




1 0 0 0 0 0 0

0 u t 0 0 0 0

0 0 u 1 + tu t 0 0

0 0 0 u 1 + u + tu 1 + t + tu t
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The refined HTS TSSCPP conjecture

Conjecture (MRR, Conjecture 4)

Let n ≥ 2 and r, 0 ≤ r < n be integers. Then the

number of elements of Bn with ρ(b) = b and U1(b) = r

would be AHTS
n,r . Namely,

∑
b∈Bn

ρ(b)=b
tU1(b) = AHTS

n (t) would

hold.
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The refined VS TSSCPP conjecture

Conjecture (MRR, Conjecture 6)

Let n ≥ 3 an odd integer and r, 0 ≤ r < n be an

integer. Then the number of elements of Bn with

γ(b) = b and U2(b) = r would be AVS
n,r. Namely,∑

b∈Bn
γ(b)=b

tU2(b) = AVS
n (t) would hold.
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Theorem

Let n ≥ 3 an odd integer.

The polynomial
∑

b∈Bn
γ(b)=b

tU2(b) is given by the determinant det(cij(t))0≤i,j≤n−1,

where c00 = 1, c0j =
( j
2j

)
+

( j
2j+1

)
t when j ≥ 1, ci0 =

( i
−i+1

)
+

( i
−i

)
t when

i ≥ 1, and

cij(t) =
(

i + j − 1

2j − i

)
+

{(
i + j − 1

2j − i − 1

)
+

(
i + j − 1

2j − i + 1

)}
t

+
(

i + j − 1

2j − i

)
t2

when i, j ≥ 1.
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Theorem

Let n ≥ 3 an odd integer.

Then the number of elements of Bn with γ(b) = b is equal

to AVS
n .
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The refined MT TSSCPP conjecture

For k = 0, . . . , n − 1, let Mk
n be the set of monotone triangles with

all entries mij in the first n − k columns equal to their minimum

values j − i + 1. For example, M0
3 is composed of one element, M1

3

is composed of five elements, and M2
3 = M3.

For k = 0, . . . , n − 1, let Bk
n be the subset of those b in Bn such

that all bij in the first n − 1 − k columns are equal to their maximal

values n.

Conjecture (MRR, Conjecture 7)

For n ≥ 2 and k = 0, . . . , n − 1, the cardinality of Bk
n is equal to

the cardinality of Mk
n.
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The MT TSSCPPs

Theorem

Let n ≥ 2 and k = 1, . . . , n − 1. Let

P k
n =

((
i

j − i

))

0»i»n`1; 0»j»n+k`1

.

Then the cardinality of Bk
n is equal to dn(P

k
n).

Example

P 1
3 =




1 0 0 0

0 1 1 0

0 0 1 2
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Restricted column-stricted plane partitions

Let Pn denote the class of column-strict (ordinary) plane partitions in

which each part in the jth column does not exceed n − j. We call an

element of Pn a restricted column-stricted plane partition.

Example

P1 consists of the following 1 PPs: ∅
P2 consists of the following 2 PPs:

∅ 1

P3 consists of the following 7 PPs:

∅ 1 1 1 2 2 1 2
1

2 1
1
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Saturated parts

Let π ∈ Pn. A part πij of π is said to be saturated if πij = n − j.

A saturated part, if it exists, appears only in the first row.

Example

n = 7.

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Definition

Let c = (cij)1»i»n;1»j»n be a RCSPP in Pn and let k be a positive

integer. Let c–k denote the plane partition formed by the parts ≥ k.

Let

θi(c–k) = ]{l : ci;l ≥ k}
denote the length of the ith row of c–k, i.e. the rightmost column

containing a letter ≥ k in the ith row of c.
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A bijection

Theorem

Let n ≥ 1 be nonnegative integers and c = (cij)1»i»n;1»j»n be a

RCSPP in Pn;m. Associate to the array c = (cij)1»i»n;1»j»n the

array b = (bij)1»i»j»n`1 defined by

n − bij = θn`j(c–1`i+j)

with 1 ≤ i ≤ j ≤ n − 1. Then b is in Bn, and this mapping ϕn,

which associate to a RCSPP c the TSPP b = ϕn(c), is a bijection of

Pn onto Bn.
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A statistics

Definition

For π ∈ Pn let

Uk(π) = ]{(i, j)|πij = k} + ]{1 ≤ i < k|π1;n`i = i}
for 1 ≤ k ≤ n, i.e. Uk(π) is the number of parts equal to k plus the

number of saturated parts less than k.

Especially,

U1(π) : the number of 1s in π,

Un(π) : the number of saturated parts in π.
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Example n = 7.

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1

U1(π) = 3, U2(π) = 5, U3(π) = 3, U4(π) = 4,

U5(π) = 4, U6(π) = 3, U7(π) = 3.
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The statistics

Theorem

Let n ≥ 1 be nonnegative integers and let c ∈ Pn. Then

U r(c) = n − 1 − Ur(ϕn(c))
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A deformed Bender-Knuth involution

Now we define a Bender-Knuth type involution π̃r : Pn → Pn. Let

2 ≤ r ≤ n and c ∈ Pn. Consider the parts of c equal to r or r − 1.

Since c is column-strict, some columns of c will contain neither r nor

r − 1, while some others will contain one r and one r − 1. These

columns we ignore. We also ignore an r − 1 in column n − r + 1, i.e.

we ignore a saturated part which is equal to r − 1 because a saturated

r − 1 can’t be changed to r. The remaining parts equal to r or r − 1

occur once in each column. Assume row i has a certain number k of r’s

followed by a certain number l of r − 1’s. Note that we don’t count an

r − 1 if it is saturated so that a saturated r − 1 always remains

untouched. In row i, convert the k r’s and l r − 1’s to l r’s and k

r − 1’s.



99

Involution π̃r

Define an operation π̃r : Pn → Pn by c 7→ π̃r(c) where π̃r(c) is

the result of swapping r’s and r − 1’s in row i of c by this deformed

rule for 1 ≤ i ≤ n − r. We call the involution π̃r, 1 ≤ r ≤ n, the

deformed Bender-Knuth involution (abbreviated to the DBK involution).

i − 1
...

... r . . . r

i r . . . r r . . . r r − 1 . . . r − 1 r − 1 . . . r − 1

i + 1 r − 1 . . . r − 1
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Example

P3 consists of the following 7 PPs

∅ 1 1 1 2 2 1 2
1

2 1
1

and mapped to

∅ 2 2 1 1 1 1 2
1

2 1
1

by π̃2, respectively.
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Example

P3 consists of the following 7 PPs

∅ 1 1 1 2 2 1 2
1

2 1
1

and mapped to

1 1 1 ∅ 2 1
1

2
1

2 1 2

by π̃1, respectively.
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Proposition

Let n ≥ 1 be non-negative integers. Let 2 ≤ r ≤ n and

let c in Pn. Then

U r (π̃r(c)) = U r−1 (c)

and

U r (c) = U r−1 (π̃r(c)) .
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Theorem

Let n ≥ 1 be non-negative integers and let 1 ≤ r ≤ n.

Then we have

πr (ϕn (c)) = ϕn (π̃r(c)) .
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A HT involution

Define an involution γ̃ : Pn → Pn by

ρ̃ = π̃2π̃4π̃6 · · ·
where the product is over all π̃i with i even and ≤ n.

Let P e
n denote the set of elements of Pn which is invariant under ρ̃.
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Example

There are 1 elements of P1 that is invariant under ρ̃.

∅

There are 2 elements of P2 that is invariant under ρ̃.

∅ 1

There are 3 elements of P3 that is invariant under ρ̃.

∅ 2
1

2 1
1

There are 10 elements of P4 that is invariant under ρ̃.

There are 25 elements of P5 that is invariant under ρ̃.
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A vertical flip involution

Define an involution γ̃ : Pn → Pn by

γ̃ = π̃1π̃3π̃5 · · ·
where the product is over all π̃i with i odd and ≤ n.

Let P γ̃
n denote the set of elements of Pn which is invariant

under γ̃.

P γ̃
n is empty unless n is odd.
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Example

There are 1 element of P3 which is invariant under γ̃.

1

There are 3 element of P5 which is invariant under γ̃.

∅ 3 2 1
1

3 3 1
2 2
1

There are 26 element of P7
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Restricted column-stricted domino plane partitions

Let PVS
2n+1 be the set of domino plane partitions c which satisfies

(F1) the shape of c is even;

(F2) c is column-strict;

(F3) each part in the jth column does not exceed

b(2n + 2 − j)/2c.

We call an element of PVS
2n+1 a restricted column-strict domino plane

partition (abbreviated to RCSDPP). The condition (F3) can be restated

as follows; if c ∈ PVS
2n+1, then all the parts in the 1st and 2nd row of c

are ≤ n − 1, all the parts in the 3rd and 4th row of c are ≤ n − 2,

and so on.
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Example

For example, if n=5, then PVS
5 is composed of the following three

elements.

∅ 1
1 1

We also let U1(c) denote the number of 1’s in c for c ∈ PVS
2n+1. From

the above example, we have
∑
c2PVS

5
tU1(c) = 1 + t + t2. The reader

can easily check that there are 26 elements in PVS
7 and∑

c2PVS
7

tU1(c) = 3 + 6t + 8t2 + 6t3 + 3t4.
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A bijection

Theorem

There is a bijection between RCSPPs P2n+1 invariant under

γ̃ and RCSDPPs PVS
2n+1. By this bijection U2 of P2n+1

corresponds to U1 of PVS
2n+1.
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Another restricted column-stricted domino plane partitions

Let PHTS
2n+1 be the set of domino plane partitions c which satisfies

(F1’) the conjugate of the shape of c is even;

(F2) c is column-strict;

(F3) each part in the jth column does not exceed

b(2n + 2 − j)/2c.

The condition (F3) can be restated as follows; if c ∈ PHTS
2n+1, then all

the parts in the 1st and 2nd row of c are ≤ n − 1, all the parts in the

3rd and 4th row of c are ≤ n − 2, and so on.



112

Another bijection

There is a strong evidence that the following conjecture

holds.

Conjecture

There would be a bijection between RCSPPs P2n+1

invariant under ρ̃ and PHTS
2n+1. By this bijection U1 of Pn

corresponds to U1 of PHTS
2n+1.
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Carré-Leclerc bijection

Proposition

Carré-Leclerc defined a bijection between a domino plane partition T

and a pair of plane partitions (T 0, T 1). By this bijection,

1. the shape of T is even if and only if the shape T 0 is obtained by

removing a vertical strip from the shape of T 1;

2. the conjugate of the shape of T is even if and only if the shape T 1

is obtained by removing a horizontal strip from the shape of T 0,

C. Carré and B. Leclerc, “Splitting the Square of a Schur Function into

its Symmetric and Antisymmetric Parts”, J. Algebraic Combin. 4

(1995), 201 – 231.
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Example

The domino plane partition

2

1 1

1 1

correspond to the following pair of plane partitions:

1 1 2 1

1
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Paired restriced column-stricted plane partitions

Let QVS
n be the set of pairs (c0, c1) of plane partitions which satisfies

(G1) c0, c2 ∈ Pn;

(G2) The shape of c0 is obtained by removing a vertical strip from

the shape of c1.

We call an element of QVS
n a paired restricted column-strict plane

partition (abbreviated to PRCSPP).

Theorem

There is a bijection between RCSPPs Pn invariant under γ̃ and

PRCSPPs QVS
n .
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Example

PVS
5 is composed of the following three elements

∅

,

1

,

1 1

,

which corresponds to

(∅, ∅),

(
∅ , 1

)
,

(
1 , 1

)
,

respectively.
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Pk
n

Definition

For k = 0, . . . , n − 1, let Pk
n denote the subset of those c = (cij) in

Pn which has at most k rows.

Example

P3 consists of the following seven plane partitions.

∅ 1 1 111 222 222 111 222

1

222 111

1

There are only one element, i.e. ∅, of P3 with no row, five elements of

P3 with with at most one row, and seven elements of P3 with at most

two rows.
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Bijection

Theorem

Let n ≥ 1 be nonnegative integers. Let 0 ≤ k ≤ n − 1.

By the bijection ϕn defined above, the subset Bk
n of Bn is

in one-to-one correspondence with the subset Pk
n of Pn.
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Let t = (t1, . . . , tn) and x = (x1, . . . , xn−1) be sets of variables. Let

U(π) = (U1(π), . . . , Un(π)) and we set tU(π) =
∏n

k=1 t
Uk(π)
k . Similarly we

write xπ for
∏

ij xπij .

Theorem 0.1.

∑
π∈Pn

sh(π)=λ′

tU(π)xπ

= det

(
e
(n−i)
λj−j+i

(
t1x1, . . . , tn−i−1xn−i−1,

n∏
r=1

trxn−i

))

1≤i,j≤n

where e(m)
r (x) denote the rth elementary symmetric function in the viariables

(x1, . . . , xm), i.e.
∑

r

e(m)
r (x)zr =

m∏

i=1

(1 + xiz)
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Corollary 0.2. ∑

π∈Pn

tU(π)xπ

is the sum of the all minors of the rectangular matrix
[
e
(i)
j−i

(
t1x1, . . . , tn−i−1xn−i−1,

n∏
r=1

trxn−i

)]

0≤i≤n−1

0≤j≤2n−2

of size n.

Example.

When n = 3, the sum of all minors of


1 0 0 0 0

0 1 t1t2t3x1 0 0

0 0 1 t1x1 + t2t3x2 t1t2t3x1x2




is 1 + t1x1 + t2t3x2 + t1t2t3x1x2 + t21t2t3x2
1 + t1t22t23x1x2 + t21t22t23x2

1x2.
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Each term corresponds to the following PPs:

∅ U1(π) = 0 U2(π) = 0 U3(π) = 0 1

1 U1(π) = 1 U2(π) = 0 U3(π) = 0 t1x1

1 1 U1(π) = 2 U2(π) = 1 U3(π) = 1 t21t2t3x2
1

2 U1(π) = 0 U2(π) = 1 U3(π) = 1 t2t3x2

2 1 U1(π) = 1 U2(π) = 2 U3(π) = 2 t1t22t23x1x2

2
1 U1(π) = 1 U2(π) = 1 U3(π) = 1 t1t2t3x1x2

2 1
1 U1(π) = 2 U2(π) = 2 U3(π) = 2 t21t22t23x2

1x2
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Corollary 0.3. ∑

π∈Pn

tUk(π) = dn (Pn(t))

where dn(A) stands for the sum of all minors of size n from A.

Corollary 0.4. ∑

π∈Pn

tU1(π)sU2(π) = dn (Qn(t, s))
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Conjecture ?? is equivalent to the following conjecture.

Conjecture 0.5. (Refined TSSCPP conjecture)

The number of π ∈ Pn such that Uk(π) = r − 1 is An(r) for 1 ≤ r ≤ n and

1 ≤ k ≤ n.

(cf. [13][14])

Conjecture 0.6. (Double refined TSSCPP conjecture)

The number of π ∈ Pn such that U1(π) = r − 1 and U2(π) = n − s is

Bn(r, s) for 1 ≤ r, s ≤ n. (cf. [14][21])
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1 ASM

A alternating sign matrix (ASM) is, by definition, a matrix of 0s, 1s, and −1s in which

the entries in each row or column sum to 1 and the nonzero entries in each row and

column alternate in sign. The additional restriction is added that any −1s in a row or

column must have a ”outside” it (i.e., all −1s are ”bordered” by +1s),

Let An denote the set of all ASMs of size n.

Example.

A1:
[
1
]

A2:


1 0

0 1





0 1

1 0
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A3:



1 0 0

0 1 0

0 0 1






1 0 0

0 0 1

0 1 0






0 1 0

1 0 0

0 0 1






0 1 0

0 0 1

1 0 0






0 0 1

1 0 0

0 1 0






0 0 1

0 1 0

1 0 0






0 1 0

1 −1 1

0 1 0




Theorem 1.1. (Zeilberger, Kuperberg) [Alternating sign matrix conjecture]

The number of the ASMs of size n is An.
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D.P. Robbins, “Symmetry Classes of Alternating Sign Matrices”,

arXiv:math.CO/0008045.

The 8-element group of symmetries of square acts on square matrices. For any

subgroup of the group we may consider the subset of matrices invariant under elements

of the subgroup. There are 8 conjugacy classes of these subgroups giving rise to 8
symmetry classes of matrices.

1. no conditions (ASM)

2. aij = ai,n−1−j vertical symmetric (VSASM)

3. aij = an−1−i,n−1−j half turn symmetric (HTSASM)

4. aij = aji diagonal symmetric (DSASM)

5. aij = aj,n−1−i quarter-turn symmetric (QTSASM)

6. aij = ai,n−1−j = an−1−i,j veriticallly and horizontally symmetric

(VHSASM)

7. aij = aji = an−1−j,n−1−i both diagonals (DASASM)
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8. aij = aji = ai,n−1−j all symmetries (TSASM)

Let µ be a non-negative integer and define

Zn(x, y, µ) = det(δij + zij)0≤i,j≤n−1

where

zij =
n−1∑

t,k=0

(
i + µ

t

)(
k

t

)(
j − k + µ − 1

j − k

)
xk−t

for 0 ≤ i ≤ n − 2, 0 ≤ j ≤ n − 1 and

zn−1,j =
n−1∑

t,k,l=0

(
n − 2 + µ − l

t − l

)(
k

t

)(
j − k + µ − 1

j − k

)
xk−tyl+1

for 0 ≤ j ≤ n − 1.
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Let

Tn(x, µ) = det

(
2n−2∑
t=0

(
i + µ

t − i

)(
j

2j − t

)
x2j−t

)

0≤i,j≤n−1

.

Let

Y (i, t, µ) =
(

i + µ

2i + 1 + µ − t

)
+

(
i + 1 + µ

2i + 1 + µ − t

)

and define

Rn(x, µ) = det

(
2n−1∑
t=0

Y (i, t, µ)Y (j, t, 0)x2j+1−t

)

0≤i,j≤n−1

.
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Let

f(i, j) =
∑

0≤k<l

∣∣∣∣∣∣

(x+i−1
k−i−1

)
+

(x+i−1
k−i

)
t

(x+i−1
l−i−1

)
+

(x+i−1
l−i

)
t

(y+j−1
k−j−1

)
+

(y+j−1
k−j

)
t

(y+j−1
l−j−1

)
+

(y+j−1
l−j

)
t

∣∣∣∣∣∣
.

Then

f(i, j) =
∑

k≥x+2i−j

[
(1 + t2)

(
x + y + i + j − 2

k − 1

)

+t

{(
x + y + i + j − 2

k − 2

)
+

(
x + y + i + j − 2

k

)}]

+
∑

k≥y+2j−i

[
(1 + t2)

(
x + y + i + j − 2

k − 1

)

+t

{(
x + y + i + j − 2

k − 2

)
+

(
x + y + i + j − 2

k

)}]
.
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