On Refined TSSCPP Conjectures

Masao Ishikawa*

*Tottori University, ishikawa@fed.tottori-u.ac. jp

0-0



1 TSSCPP

G.E. Andrews and W.H. Burge, “Determinant ldentities”, Pacific J. Math. 158
(1993), 1-14.
Theorem 1.1. (Andrews-Burge)

M, (z,y) = det <(z +.‘7 +.m) + (z +.J +y>)
21 — ) 21— 0<i,j<n—1

n—1

= H A2kz(w + y)a

k=0
where Ag(u) = 2 and for 5 > 0
(w425 +2);(zu+25+3)j1
(1)i(Gu+37+3)j—1

Azj(u) =

(A)j = A(A+1)-++ (A+j —1).




Corollary 1.2. (Andrews)

det(aij)o<ij<n—1 = A2,

ifi =4 =0,
ifi =3 >0,
if 3 < j,
ifi > j,

Example.

Ag = 429.




If A be a matrix with n rows, we denote by d,,(A) the sum of all minors of size n
from A.
Theorem 1.3. Let

)
P=((20)) |
J — 1)/ 0<i<n—1,0<;j<2n—2

dn(Pn) — Pf(aij)OS'i,,an—1°

Example.




Proof of Corollary 1.2. We define several new matrices:

Wnpn = . . + . . ’
29 —1 2) —1—1/)/o<ij<n—1

= (035 — 20;,j4+1)0<i,j<n—1s
( (36 + 1)(3§ + 1)(35 — 34) (i—|—j—|—2>)
0<i,j<n-—1 ’

(t+7)0+7+1)E+5+2)\2j —¢t+1
(where we define the (0, 0)-th entry of v(n) to be 1),
ui(n) = u(n) + (26(;—1)244,0)0<i,j<n—1s
stp, = (a’z’j)OSi,an—l'
Then elementary algebra reveals

u(n)wy, = vn,

uq(n)sty, ur (n) = vy,.




If we expand M, 1, (—2, —1) along the top row, we find
1+ 7 t1+7+1
Myp+1(—2,—1) = 2det (( : +.] ) + ( .+J.+ ))
2t — 7+ 1 20 — 3+ 1)/ o<ij<n—1
= 2det (w,) .
Since the determinant of w and w are each 1, it follows
det(a;j)o<i,j<n—1 = det(st,) = det(v,)

1
= det(wn) = 5 n_|_1(—2, —1)

=[] Az(-3) = A2
k=1

because

(3k — 1)!(k — 1)! )2. _

Agp(—3) = ((2k — 2)1(2k —1)!




Let A,,(k) denote the number defined by

(n—l—k—l) (2n—kz—2)

n—1 n—1

Gy

An(k) =

Then it satisfies

zn: A, (k) = A,

An(k+1)  (n—k)(n+k—1)
A (k) k(2n—Ek—1)

for0 < k < n.

Let F,(t) = > 1, An(k)tF—L.




Example. A, (k) for 1 < k < n < 6.

429

Example.

2002

Fi(t) =1
Fo(t) =1+t

Fs(t) = 2 + 3t + 2t2

Fy(t) =714+ t)(1 +t+t2)



F5(t) = 42 + 105t + 135t* + 105t> 4 42t*
Fg(t) = 429 + 1287x 4 2002z2 4+ 2002x° + 1287x* 4+ 4292°

oy — [ ]9 if i = 0,
OV CERY Y ifi > o.
7 )

—i—1 j— 0<i<n—1,0<j<2n—2

0 0 0 0 0)
t 0 0 0 0
1 14+t ¢ 0 0
0 1 24t 142t t)

Py(t) =

Conjecture 1.4.
dn, (Pn(t)) — Fn(t)




Theorem 1.5.

dn(Prn(t)) = Pf(a;; (t))ogi,jgn—1

where

y

1 ife =7 =0,

0 ife =7 >0,
29-1(1 4 1) ifi=0,5 >0,
1+ X250 ()

+ {Zﬁi_zi—jﬂ (5 + X <i+i_2)} 1o <r<y,

—aj; ifi > j.

\




Example.

(aij(t))1<i,j<a

[ 1

—(1+1¢)
—2(1 +¢)
\ —4(1+1¢)

14t
0
—(2 + 3t + 2t?)
—4 (14 t)°

2(1 + t)
2 + 3t + 2t2
0
—(7 + 11t + 7t?)

4(1+¢)
4 (141t)°
T+ 11t 4 7¢2
0

/
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Conjecture 1.4 is equivalent to the following conjecture:

Conjecture 1.6.

det(aij (t))ogi,jgn—l — Fn(t)2

11
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Assume B, (7, s) satisfies the following recursion:

2

0 if s =1,
KAn_l(n—s) if 2 < s <n,

y

B, (1,s) = <

0 if r =1,

B,(r,1) = |
Apn_1(n—7r) f2<r<n,

\

and

B,(r+1,s+1) — B,(r,s)

An—l(T){An(S +1) — An(s)} + An—l(s){An(r +1) — An(T)}
An(1)

forl1 <r,s <n-—1.




Note that A,,(1) = A,,—1 and

Z B, (r,s) = A,(s)

Y Bn(r,s) = Ap(r)

Gn(t,u) = Z B, (r,s)t" tu" "5,

r,s=1

14



Example.

[Bl (’I", 8)]1§r,s§1

(B2 (7, 5)] 1<r,s<2 —

[B3 (’l", S)]lSr,sSS —

[B4 (’I", S)]lgr,s§4 —

15



[B5 (’I", S)] 1<r,s<5 —

Example.

Gi(t,u) =1

Gaz(t,u) =t+u

Gs(t,u) —t+u+t? + tu + u? + t2u + tu?

G4(t,u) = 2t 4+ 2u + 3t? + 4tu + 3u? + 2t° + 5t%u + 5tu’ + 2u°
+ 3t3u + 4t?u® + 3tu® + 2t3u® + 2t%u°

16



u(i2) + ¢

J—1

Example.

Q4 (ta ’LL) —

Conjecture 1.7.

1—1
j—i1—1

)

if 2 = 0,
ifz =1,

\ (Z 2) + (1 + t’LL)( > 2 ) + t(g —1— 2) If’l, Z 2. OSiSn—l,OSjSZn—Z

0 0 0 0 0)
¢ 0 0 0 0
u 14+ tu tu 0 0
0 w l+u+ttu 1+t+tu tu)

dn(Qn(ta u)) — Gn(t7 ’U,)
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Let n < N. Let A be an n by N matrix.
Define d/ (A) by

> det (Aj,,....5,(A))

1<j1<<in<N
J2k=d2k—11t1 (k>1)

if n is even,

> det (Aj,,...5,(A))

1<j1 < <in<N
Jokt1=d2k+1 (k=1)

if n is odd.

Example.

18
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dy(Py) =9
dg(Ps) = 78
d',(Ps) = 676
d.(Py) = 16796
d',(Ps) = 417316

Set S(n) =3 "~V 8p4n)(n —1,n —1,n —2,n — 2,...1,1,0,0) where
Sp(4n)(n —1,n—1,n —2,n — 2,...1,1, 0, 0) stands for the dimmension of
the irreducible representation of the symmplectic group with the highest weight
mn—1,n—1,n—2,n—2,..1,1,0,0).

Example.
Sp(4)(0,0) =1, Sp(8)(1,1,0,0) = 27, Sp(12)(2,2,1,1,0,0) = 18954.
S(1) =1, 5(2) =3, Sp(3) = 26.




Conjecture 1.8. 1. If n is even, then

d,,(Pn) = S(n)*

= Aé%(Sn, 1;¢6) = Ay (2n + 1;1,1;¢6)?

2. If n is odd, then

d.,(P) = S(n)S(n + 1)

20



a,_( i+ 7 )_( i+ )
woo\2j—i—1 2t —j — 1

(

(3§ =3)(i+j+1)
(2125 i+ 1)

and let St;?, = (a;j)oéi,jgn_l
(where we define the (0, 0)-th entry of st(n) to be 1),

Theorem 1.9.
d;l(Pn) = Pf(st;%).

i+
2§ — i

)

21



Example.

Pf(st;) = 676.

—6
—1

—28
—27

28 27
0 90
—90 O
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Define d!/(A) by

Conjecture 1.10.

Z det (Aj,,....5,. (A))

| <jr < <in<N
2k —1 0dd jo even (k>1)

d::(Pn) = An—1

23
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A plane partition is an array w = (7r;;); j>1 of nonnegative integers such that 7 has
finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and
columns. If >, .~ m;; = n, then we write || = n and say that 7 is a plane
partition of n, or 7w has the weight n.

A part of a plane partition m = (7;;); j>1 is a positive entry m;; > 0. The shape of
7 is the ordinary partition X for which 7 has \; nonzero parts in the 2th row. The
shape of 7 is denoted by sh(7r). We say that 7 has r rows if » = £(\). Similarly, 7
has s columns if s = £(\').

Example. shape (9, 8,4,1), 4 rows, 9 columns, weight 49.

5]

5]
4 | 4
2
1




Example.

Plane partition of 0: (

Plane partition of 1: [ 1

Plane partition of 2:

Plane partition of 3:

A plane partition is said to be column-strict if it is weakly decreasing in rows and
strictly decreasing in coulumns.




The Ferrers graph F'(7) of 7 is the set of all lattice points (¢, 7, k) € P2 such that
k S Tijg-

Example.

The Ferrers graph of

is as follows:

26



Let m = (m;;);,;>1 be a plane partition with at most r rows, at most ¢ columns, and
with largest part at most ¢t. We say that 7/ = (7! j)ig>1 1 (7, c, t)-complementary
plane partition of 7 if 71'7’:3. =t —Tmp_je—jforalll << randl1 <j<ec

Example. The (3, 2, 3)-complementary PP of the above PP is

3| 2

1|1

and its Ferrers graph is as follows:




28

Let P denote the set of positive integers. Consider the elements of P2, regarded as
the lattice points of R2 in the positive orthant. The symmetric group Ss is acting on
P3 as permutations of the coordinate axies. A plane partition is said to be totally
symmetric if its Ferrors graph is mapped to itself under all 6 permutations in Ss.

A plane partition is said to be cyclically symmetric if its Ferrors graph is mapped to
itself under all 3 permutations in As.

/S
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A plane partition m = (7r;;5), j>1 is said to be (r, c, t)-self-complementary if

i =t — Tp_je—jforalll <z < rand1l < j < c. Let 7, denote the set of
all plane partitions which is contained in the box X,, = [2n] X [2n] X [2n],

(2n, 2n, 2n)-self-complementary and totally symmetric. An element of 7, is called a

totally symmetric self-complementary plane partition (abbreviated as TSSCPP) of size
n.

Example.

T
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6/6/6|5(4|3

6/6|5|3[3]|2

6/5|5|3(3]|1

6/6(6[5|5|3

6/5|5|4(3]|1

6(5(4|3(2]|1

6/6(6|4(3|3
6/6/6[(4|3|3
6(6(4]|3|2]|2

6/6(6[(5|5|3

6/5|5|3(3]|1

6/5|5|3(3]|1

6/6/6|4(3|3
6/6/6[(3|3|3

6/6|5|3[3]|2

6/6/6[(5(4]|3

665|432
6(5(4]|3|2]|1

6/6/6[(3[3|3
6/6/6[(3[3|3
6/6/6[(3|3|3




We can define a shifted plane partition similarly. A shifted plane partition is an array

T = (7i5)1<i<; of nonnegative integers such that 7 has finite support and is weakly
decreasing in rows and columns. The shifted shape of 7 is the distinct partition p for
which 7 has p; nonzero parts in the ith row. In [?], Mills, Robbins and Rumsey
considered a class B, of triangular shifted plane partitions b = (b;;)1<;<; subject to
the constraints that

(B1) the shifted shape of bis (n —1,n — 2,...,1);

B2) n—i<b;<nfrl<i<j<n-—1,

and they constructed a bijection between 7,, and B,,. In this paper we call an element
of B,, a triangular shifted plane partition (abbreviated as TSPP) of size n.

32



When n = 3, B3 consists of the followng 7 elements:

3

313 [3[3] |3 3
2 1

3
3

33
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In this talk we consider another classes of plane partitions. Let P,, denote the class of
column-strict (ordinary) plane partitions in which each part in the jth column does not
exceed n — 7. We call an element of P,, a restricted column-stricted plane partition.

Example.

P1 consists of the following 1 PPs:

P> consists of the following 2 PPs:

0

P3 consists of the following 7 PPs:




Let m € P,,. A part 7;; of 7 is said to be saturated if w;; = n — 7. A saturated
part, if it exists, appears only in the first row.

Example. n=="1.

For m € P,, let

Uk(m) = #{(%,5)|mi; = k} + {1 <@ < k|m1,n—; = i}

for1 < k < n.

35



Especially,
U, () : the number of 1s in T,
U, () : the number of saturated parts in 7.

Example. n==1.

ﬁl(ﬂ') = 3, ﬁz(ﬂ') = 4, ﬁg(ﬂ') = 3, ﬁ4(7‘l’) = 3, ﬁg,(ﬂ') = 4,
Ug(m) =3, Ur(m) = 3.

36



Let t = (t1,...,t,) and x = (x1,...,Tn—1) be sets of variables. Let
Up ()

U(n) = (Ui(w)y...,Up(x)) and we set tV (™) = T]7_. ¢, *"™ . Similarly we
write ™ for [ [, @x,;.
Theorem 1.11.

Z tU(ﬂ')w‘ﬂ'

sh(mw)=\’/

n
(tlwla coestpn_i1Tn_i_1, H tr“’n—i))
r=1 1<ij<n

where efqm) () denote the rth elementary symmetric function in the viariables

(T1yeeesTom), ie.

>l e @)z = [[(+ iz)

37



Corollary 1.12.

Z tﬁ(ﬂ')wﬂ'

TwEPn
is the sum of the all minors of the rectangular matrix

n
(2)
[ej_i 111y oyl 1Tpn_i_1, H (25 7
r=1
of size n.

Example.

When n = 3, the sum of all minors of

1 0 0 0 0
0 1 t1t2t3w1 0 0
_0 0 1 tliEl —|— t2t3CB2 tltztgilllwz_

is 1 —|— tlwl -|— t2t3:132 -|— t1t2t3331£82 —I- t%tgtgw% —|— tltgtgwlwg -|— tft%t%w%wg.
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Each term corresponds to the following PPs:

O Ui(mr)=0 Usz(xr)=0 Usz(w)=0

ﬁl(ﬂ') =1 ﬁz(ﬂ') =0 ﬁg(ﬂ') =0 tla:l

ﬁl (71') = 2 ﬁz(ﬂ') =1 ﬁg(ﬂ') =1 t%tgtga}i

ﬁl(ﬂ') =0 ﬁz(ﬂ') =1 Ug(ﬂ') =1 t2t3CL‘2

ﬁl(ﬂ') =1 ﬁz(ﬂ') = 2 ﬁ3(ﬂ') = 2 tltgtgwlwz

ﬁl(ﬂ') =1 ﬁz(ﬂ') =1 ﬁg(ﬂ') =1 t1t2t3€B1€B2

Ui(n)=2 Uz(m)=2 Usz(w)=2 titot2xi Ty




Corollary 1.13.
> 17 = d, (P (1)

TwEPn

where d,, (A) stands for the sum of all minors of size n from A.

Corollary 1.14.

Z tU1(m) gUz(m) — g (Qn(t,s))

wEPn

40



Conjecture 1.6 is equivalent to the following conjecture.

Conjecture 1.15. (Refined TSSCPP conjecture)

The number of m € P,, such that Uy (w) =7 — 1is A, () for 1 < r < n and
1 < k<n.

(cf. [13][14])

Conjecture 1.16. (Double refined TSSCPP conjecture)

The number of m € P,, suchthat U, (7)) =r —1land Uz(w) = n — s is
B, (r,s) for 1 < r,s < n. (cf. [14][21])

41



2 ASM

A alternating sign matrix (ASM) is, by definition, a matrix of Os, 1s, and —1s in which
the entries in each row or column sum to 1 and the nonzero entries in each row and
column alternate in sign. The additional restriction is added that any —1s in a row or
column must have a "outside” it (i.e., all —1s are "bordered” by +1s),

Let .A,, denote the set of all ASMs of size n.

Example.

42
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Theorem 2.1. (Zeilberger, Kuperberg) [Alternating sign matrix conjecture]

The number of the ASMs of size n is A,,.

0
0
1

0
1
0

0
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D.P. Robbins, “Symmetry Classes of Alternating Sign Matrices”,
arXiv:math.C0/0008045.

The 8-element group of symmetries of square acts on square matrices. For any
subgroup of the group we may consider the subset of matrices invariant under elements
of the subgroup. There are 8 conjugacy classes of these subgroups giving rise to 8
symmetry classes of matrices.

no conditions (ASM)
vertical symmetric  (VSASM)
half turn symmetric (HTSASM)

= Q;n—1—j

= an—-1—i,n—1—j
= aj; diagonal symmetric (DSASM)

= Qjn—1—i quarter-turn symmetric  (QTSASM)

veriticallly and horizontally symmetric

Ain—1—5 — An—1—4,j

(VHSASM)

. Qi — Q53 — Opn—1—j,n—1—1 both diagonals (DASASM)

44



8. A;5 — Aj; — Ain—1—j all symmetries (TSASM)

Let 1+ be a non-negative integer and define

Zn(Tyy, p) = det(d;5 + 245)0<i,j<n—1

n—1 . .
_ t+p\ (k\(J—k+p—1\ . .
Z””_Z( t )(J( j—k )w

t,k=0
for0<21<n—-—2,0<73<mn-—1and

n—1 .
n—2+pu—10\/k\/j—k+p—1
1 = Z ( v )( )(J . 1 )mk—tyl—l—l
t—1 t 71—k

t,k,l=0

for0<j3<mn-—1.
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T, (x,u) = det

Y (i,t, 1) =

and define

R, (x, ) = det (

(50
( i+ g

21 +14+p—1t

2n—1

t=0

)+

0<i,j<n—1

1+ 14+ p )
20 +14+pu—1t

> Y (i t, )Y (4, ¢, O)w%’“-t) :
0<z,<n—1

46



FG,0) = )

0<k<l

Then
i 4) = Z [(1+t2)<m+y+i+j—2>

k>a+2i—j k—1

r+y+i+g—2 t+y+i+g—2
t
(T O

. [(1+t2)<w+y+i+j—2)

k>y+25—i k—1

c+yt+it+g—2 t+y+i+g—2
t :
TR

47
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